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ABSTRAcT

Typhoon Morakot 2009, with significant southwest monsoon flow, produced a record-breaking rainfall of 2361 mm 
in 48 hours. This study hopes to improve a statistical typhoon rainfall forecasting method used over the mountain region of 
Taiwan via an artificial neural network based southwest monsoon enhancement (ANNSME) model. Rainfall data collected 
at two mountain weather stations, ALiShan and YuShan, are analyzed to establish the relation to the southwest monsoon 
moisture flux which is calculated at a designated sea area southwest of Taiwan. The results show that the moisture flux, with 
southwest monsoon flow, transported water vapor during the landfall periods of Typhoons Mindulle, Bilis, Fungwong, Kal-
maegi, Haitaing and Morakot. Based on the moisture flux, a linear regression is used to identify an effective value of moisture 
flux as the threshold flux which can enhance mountain rainfall in southwestern Taiwan. In particular, a feedforward neural 
network (FNN) is applied to estimate the residuals from the linear model to the differences between simulated rainfalls by a 
typhoon rainfall climatology model (TRCM) and observations. Consequently, the ANNSME model integrates the effective 
moisture flux, linear rainfall model and the FNN for residuals. Even with very limited training cases, our results indicate that 
the ANNSME model is robust and suitable for improvement of TRCM rainfall prediction. The improved prediction of the 
total rainfall and of the multiple rainfall peaks is important for emergency operation.
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1. INTRoducTIoN

Taiwan is located in the hot zone of the Western Pa-
cific typhoon tracks with an average three to five typhoons 
making landfall in Taiwan each year. While the typhoon 
rainfall is the most important water resource in Taiwan, it 
also causes serious disasters. Obviously, the typhoon rain-
fall prediction affects disaster mitigation and emergency 
operations. The importance of the central mountain range in 
typhoon precipitation has long been realized (e.g., Hong et 
al. 2010; Lin et al. 2010). The long term rainfall data suggest 

that the mountain stations of ALiShan and YuShan often ex-
perience extreme typhoon rainfall. The interactions of sum-
mer or winter monsoons as important factors that contribute 
to the extreme rainfall in Taiwan are also recognized by the 
meteorological community (e.g., Wu et al. 2009; Chien and 
Kuo 2011; among many others).

Typhoon Morakot 2009 produced a record-breaking 
rainfall, 2361 mm in 48 hours, causing the most serious 
flood and landslide disaster in southwestern Taiwan in 50 
years. Typhoon Morakot’s landing on Taiwan occurred con-
currently with the cyclonic phase of the intra-seasonal os-
cillation, which may have enhanced the background south-
westerly flow. The extreme rainfall event is caused by the 
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continuous formation of mesoscale convection with the wa-
ter vapor supply from the southwest (SW) monsoon surge, 
and the very slow movement of Typhoon Morakot both in 
the landfall and in the post landfall periods. The Typhoon 
Morakot case thus suggests the importance of multiple scale 
processes interaction on producing the extreme rainfall. In 
particular, the importance of the SW monsoon flow provid-
ing the water vapor for heavy rain is emphasized in Ge et 
al. (2010), Hong et al. (2010), and Chien and Kuo (2011). 
Another example of SW monsoon flow interaction with a 
typhoon is the case of Typhoon Mindulle (2004), which also 
caused severe flooding over central and southwestern Tai-
wan (Chien et al. 2008; Lee et al. 2008).

The quantitative typhoon rainfall forecast in Taiwan is 
often used with a statistical approach based on the relation 
between the observed rainfall pattern and the tracks of ty-
phoon in the climatology model (e.g., Lee et al. 2006, the Ty-
phoon Rainfall Climatology Model, TRCM). The statistical 
method uses the fact that precipitation is often phase locked 
with the central mountain range, thus knowing the track of 
a typhoon allows the prediction of a precipitation pattern 
and the quantity of the rain from the typhoon climatology 
history. For typical typhoons, a forecast model such as the 
TRCM often gives very reasonable rainfall estimate on the 
100 km scale for the 24 - 36 hour time scale. For extreme 
rainfall event such as Typhoon Morakot, factors such as the 
water vapor supply by a SW monsoon flow may not be well 
represented in the TRCM, as most of the typhoons do not 
necessarily converge with a strong SW monsoon flow. 

Due to the complex interaction between a typhoon 
and seasonal monsoon, we use an artificial neural network 
(ANN) algorithm to improve the statistical forecast model 
such as TRCM to examine the effect of a SW monsoon on 
extreme mountain rainfall. The ANN algorithm is an attrac-
tive inductive approach in rainfall prediction because of their 
highly nonlinearity, flexibility and data-driven learning in 
building models without any prior assumptions concerning 
the data distribution (Gardner and Dorling 1998). For rain-
fall forecasting, French et al. (1992) designed a Multi-Input-
Multi-Output (MIMO) Back-Propagation Neural Network 
(BPNN) to perform one-hour-ahead rainfall forecasting for 

two dimensional fields associated with observed rainfall. 
Furthermore, remote sensing data were used to estimate the 
rainfall through the ANN algorithms, which served the pur-
pose of both data classification and approximation (Hsu et 
al. 1997; Bellerby et al. 2000; Hong et al. 2004; Chen et al. 
2008). Olsson et al. (2004) applied wind speed and humid-
ity data reproduced by atmospheric numerical modeling to 
generate regional rainfall using an ANN approach. For ty-
phoon rainfall forecasting, Lin and Chen (2005) and Lin et 
al. (2009) used typhoon characteristics such as maximum 
wind, central pressure, location and the radius of 15 m s-1 
wind as BPNN’s inputs to forecast one-hour-ahead typhoon 
rainfall. In this study, we improve the TRCM rainfall pre-
diction with the SW monsoon enhancement based on the 
ANN algorithm. The ANN algorithm and the data are de-
scribed in section 2. The results are in section 3 and conclu-
sion in section 4.

2. dATA ANd METhod

Due to the lifting of typhoon flow over the Central 
Mountain Range (CMR), Wang (1992) and Chang et al. 
(1993) concluded that the hourly rainfall distributions over 
the Taiwan area is displayed as a function of the typhoon-
center location. Lee et al. (2006) developed the TRCM to 
forecast typhoon rainfall. The model domain is confined 
within 19 - 27°N, 118 - 126°E, with 256 grid boxes (0.5° × 
0.5° latitude-longitude grid box). The hourly rainfall data of 
total 371 rain gauges from 1989 - 2007 are used in the sta-
tistics. During the typhoon event, the hourly rainfall at each 
rain gauge could be forecasted through the TRCM based on 
the typhoon track prediction issued by the Central Weather 
Bureau (CWB). The ALiShan and YuShan weather stations 
are used in the present study (Table 1).

Six hourly (at 0000, 0600, 1200, and 1800 UTC) grid-
ded operational analyses from the European Centre for 
Medium-Range Weather Forecasts - Tropical Ocean Global 
Atmosphere (ECMWF - TOGA) were used to estimate the 
moisture flux at 925 hPa for our ANN algorithm. The data-
set is with 1.125° × 1.125° resolution and the domain is from 
110.25 to 120.375°E and from 16.875 to 22.5°N (Fig. 1)  

Table 1. The profile of ALiShan and YuShan weather stations.

official Id Name
Position

Longitude Latitude Altitude (m)

46753 ALiShan 120.81 23.51 2413.4

46755 YuShan 120.95 23.49 3844.8

official Id Name obs. Frequency  
(time/day) Watershed Set up (year)

46753 ALiShan 8 Zengwun River 1933

46755 YuShan 8 Gaoping River 1943
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which consisted of 60 grid points. Figure 1 also shows the 
locations of the 22 weather stations which provide long-term 
precipitation observations. The moisture flux is defined by 

u v q2 2+^ h , where q is the specific humidity, u and v are 
zonal and meridional velocity (m s-1), respectively. We cal-
culate the average moisture flux Q,

Q
u v q
60

2 2
1

60

=
+^ h/

        (1)

with the SW monsoon in mind, the flux is estimated only 
when u ≥ 0 and v ≥ 0. 

Tsoi and Back (1997) classified ANNs into two cat-
egories, feedforward neural networks (FNNs) and recur-
rent neural networks (RNNs). Although Pan et al. (2007) 
showed that RNNs perform superiorly for dynamical sys-
tems, FNNs is still one of the most popular forms due to its 
ability of simplifying calculation and enhancing the adapt-
ability. Based on the learning algorithms of ANNs, unsuper-
vised ANNs are applied in classification or clustering while 
supervised ANNs are adopted as a function approximator. 
In this study, a supervised FNN is designed for approximat-
ing the residual rainfalls of moisture flux- rainfall intensity 
regression as shown in Fig. 2. 

Figure 2 also shows four essential elements to compose 

a FNN: neurons, activation functions, layers and connec-
tions. A neuron, like a standalone unit, performs static map-
ping between the input and output through a linear or non-
linear activation function. The activation function adopted 
for the hidden layer is a hyperbolic tangent sigmoid transfer 
function as following Eq. (2).

exp
f

net1 2
2 1h $

=
+ -

-^ h         (2)

where the fh is the response of the neuron h excited by net. 
The connections among neurons determine the dynamics of 
a network, like data flow. Because ANNs are trained by da-
ta-driven learning algorithms, and the data-driven learning 
algorithms always develop full connections between neu-
rons in different layers (Pan et al. 2007), the dynamics of a 
network could be accounted as the strengths of connections, 
like the weights in Fig 2. Therefore, the input net of a neu-
ron in the hidden and output layers are described as Eqs. (3)  
and (4), respectively.
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i
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Fig. 1. The topography of Taiwan with locations of weather stations, watersheds and the domain for detecting the strength of the SW monsoon, and 
the tracks of the six selected typhoons.
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where w ,i h
H  and w ,i n

O  mean the weight of the signal uk, i from 
the ith input neuron to the hth hidden layer neuron and the 
weight of the signal fi from the ith hidden layer neuron to 
the nth output neuron, respectively, and wh

bH  and wn
bO  present 

the weight of bias bH in the hidden layer and the weight of 
bias bO in the output layer, respectively. For determining 
all weights mentioned above, a conjugate gradient back-
propagation with Fletcher-Reeves updates (Scales 1985) is 
adopted to train the supervised ANN. A layer is composed 
by a collection of neurons arranged conveniently in a one-
dimensional array. In general, a FNN includes an input 
layer, an output layer, and hidden layers. The greater the 
number of hidden layers embedded in a FNN, the greater 
the complexity of the model. However, one hidden layer is 
used in most of the applications due to its simplicity. By 
composing the four elements, an arrangement of neurons in-
terconnected by connections in space forms the architecture 
of an FNN. Based on the architecture of an FNN, the input 
layer takes the input signals and delivers them to every neu-
ron in the next layer, the hidden layer, which represents the 
features that relate the outputs of the neural network to the 
inputs. The output layer takes the hidden layer signals and 
adds them to each output neuron as the outputs of the FNN. 
The output of FNN is used to improve the prediction.

Figure 3 is the flowchart of our work. With the selected 
typhoon cases and the area of SW monsoon moisture flux, 

the hourly rainfall intensities derived from the TRCM based 
on the typhoon tracks are compared with the observed hourly 
rainfall intensities of the CWB and evaluated the difference, 
denoted as DIFF in Fig. 3. The moisture flux of the area SW 
of Taiwan is calculated from the ECMWF-TOGA data. We 
found that the peak precipitation is not necessary to follow 
the occurrence of the peak of SW moisture flux. It is likely 
that the mesoscale convection is important and the peak 
rainfall resulted when sufficient moisture supply exists. A 
threshold of effective moisture flux contributing to the extra 
rainfall in the specified weather station is identified based 
on a transition point detecting method. The relation between 
the effective moisture flux and the extra rainfall (DIFF) is 
evaluated by a preliminary linear regression and a FNN for 
residual estimation that integrated as the ANNSME.

The interaction of SW monsoon and typhoon circula-
tion with the terrain often causes significant rainfall in the 
southwestern Taiwan, especially the upstream watersheds of 
the Gaoping River and the Zengwun River (Fig. 1). Our data 
base is comprised of landfall typhoons from 2000 to 2009 
with cumulative rainfall over 400mm per event in each of 
the mountain station, and also with northeast-southwest rain 
bands. The selected typhoons are Mindulle in 2004, Haitang 
in 2005, Bilis in 2006, Fungwong in 2008, and Morakot in 
2009. Moreover, Typhoon Kalmaegi 2008, with mountain 
rainfall less than 400 mm, is added to the data base due to 

Fig. 2. A feedforward neural nework (FNN) with 1-hidden-layer multiple-input-multiple-output (MIMO) framework.
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its extreme rainfall over the plain and the significant SW 
monsoon (Tsai et al. 2010). The six selected typhoons are 
all with southeastern-northwestern oriented track, which 
will produce rainfall in SW of Taiwan over the mountain 
region. 

Table 2 summarizes the profiles of the typhoons and 
the precipitations for the ALiShan and YuShan weather sta-
tions. The period A is from the CWB sea warning time to 
two days after the end of the sea warning, and the period 
B is only the post-landfall time. Note that the rainfall is  

Fig. 3. Flowchart of the improved TRCM rainfall prediction with SW monsoon.

Table 2. The profile of the selected typhoon events.

Note: Categ.: Category; CR: Cumulative rainfall; Period A: the whole analyzed time; Period B: from leaving land to the end of analyzed time.

Year Typhoon
central  pressure (mb)

categ.
Time (local time: mm/dd hh)

Minimum Landfall Leave land Landfall Leave land Analyzed time

2004 Mindulle 916 975 983 2 07/01 22 07/02 10 06/28 - 07/05

2005 Haitang 898 925 955 3 07/18 14 07/18 22 07/16 - 07/22

2006 Bilis 987 978 978 TS 07/13 22 07/14 01 07/12 - 07/17

2008 Kalmaegi 956 970 990 1 07/17 21 07/18 07 07/16 - 07/20

2008 Fungwong 952 948 970 2 07/28 06 07/28 14 07/26 - 07/31

2009 Morakot 954 955 975 1 08/07 23 08/08 14 08/05 - 08/12

Year Typhoon
cR@AliShan (mm) cR@Yushan (mm)

Period A Period B B/A (%) Period A Period B B/A (%)

2004 Mindulle 1763.0 1678.0 95.2 1014.1 859.4 84.7 

2005 Haitang 1291.5 992.0 76.8 1187.5 775.5 65.3 

2006 Bilis 848.0 699.0 82.4 623.8 435.2 69.8 

2008 Kalmaegi 703.0 219.5 31.2 461.0 90.0 19.5 

2008 Fungwong 645.9 507.5 78.6 437.0 230.0 52.6 

2009 Morakot 3135.5 2174.0 69.3 2170.2 1266.5 58.4 
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Fig. 4. The averages of 925 hPa wind speed vectors (m s-1) and specific humidity (10-2 kg kg-1) (shaded) of the six selected typhoons: (a) Mindulle, 
(b) Haitang, (c) Bilis, (d) Kalmaegi, (e) Fungwong, and (f) Morakot.

3136 mm at ALiShan and 2170 mm at YuShan in Typhoon 
Morakot. The ratio of periods B to A illustrates the domi-
nance of heavy rainfall even after the center of the typhoon 
left Taiwan. With the exception of Typhoon Kalmaegi,  
all other typhoons are with heavier rainfall in the post-land-
fall period. Figure 4 shows the moisture and wind velocity 
of the six typhoon cases averaged over the period A. Ty-
phoons Bilis and Morakot are with very strong SW flow of 
approximately 15 m s-1 and with higher specific humidity 

of 0.019 kg kg-1. Other typhoons are with a typical 10 m s-1 
flow and 0.015 kg kg-1 humidity.

3. ThE ANNSME RESuLTS

The time series of rainfall observations and the TRCM 
rainfall predictions are shown in Fig. 5 for ALiShan and 
YuShan stations. The differences between observed and 
predicted rainfalls (DIFF) are also indicated. The DIFFs 

(a) (b)

(c) (d)

(e) (f)
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Fig. 5. The time series of averages of moisture flux of the SW monsoon in detecting zone (m s-1), the observed and simulated rainfall intensities via 
the TRCM, and their difference at (a) ALiShan and (b) YuShan weather stations (mm h-1) for the six selected typhoons.

(a)

(b)
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are mostly positive indicating an underestimation of predic-
tions. Moreover, there are peaks local in times which are not 
produced by the TRCM. For extreme rainfall events such as 
Typhoon Morakot and ones in Table 2, factors such as a SW 
monsoon water vapor supply may not be properly repre-
sented in the typhoon climatology, as most of the typhoons 
are not necessarily associated with a strong SW monsoon 
flow. Table 3 gives the time difference between the peak of 
rainfall and the peak SW moisture flux for the six typhoons. 
It appears that there is no general relationship for the time 
differences, only Typhoons Morakot and Mindulle show the 
peak rainfall after the peak SW water vapor flux. It is pos-
sible that the maximum rainfalls in the up-streams of the 
two stations are not only affected by the intensity of the SW 
monsoon, but also affected by the mesoscale convections. 
The peak rainfall results when a sufficient moisture supply 
exists. With this in mind, we want to establish a threshold 
for the SW moisture for heavy rain predictions. We define 

the effective moisture flux as the flux above the threshold.
Figure 6 is the scatter plots of the DIFF data and mois-

ture flux in ALiShan and YuShan, respectively. Figure 6 
illustrates not only an increasing trend of extreme rainfall 
towards the moisture flux, but also a growing variance 
with the moisture flux. To identify the threshold of the ef-
fective moisture flux, each 30-data set of moisture flux are 
averaged with increasing rainfall intensity, and a transition 
point is carried out based on the maximum slop difference 
of two linear regressions for two segments (Brunder et al. 
1981). The threshold of effective moisture flux at ALiShan 
and YuShan stations for all test cases are shown in Table 4. 
The moisture flux threshold variability in ALiShan (from 
0.1527 to 0.1863 m s-1) is smaller than that of YuShan (from 
0.1363 to 0.2137 m s-1). The ALiShan station is with a more 
robust threshold. The lower threshold of ALiShan than that 
of YuShan suggests that the extreme rainfall enhanced by 
the SW monsoon flow is easier to implement in ALiShan 

Fig. 6. Scatter plot of the DIFF and the SW monsoon moisture flux at (a) ALiShan and (b) YuShan weather stations.

Table 3. The time difference between the peak of moisture flux and the peak of DIFF at ALiShan and YuShan weather stations.

Mindulle haitang Bilis Kalmaegi Fungwong Morakot

ALiShan -1 6 0 3 12 -11

YuShan -2 6 10 4 12 -20

(unit: hour)

(a) (b)



Typhoon Rainfall Forecasting with Southwest Monsoon ANN 641

Table 4. The cross test for the threshold of effective moisture flux.

Weather  
station

Threshold of effective moisture flux (m s-1)

6 events
5 events without

Mindulle haitang Bilis Kalmaegi Fungwong Morakot

ALiShan 0.1683 0.1597 0.1863 0.1527 0.1658 0.1705 0.1541 

YuShan 0.1693 0.1651 0.2137 0.1363 0.1622 0.1769 0.1734 

station. This is consistent with the fact that the altitude of 
ALiShan is lower than YuShan. 

Figure 7 gives the linear regressions of DIFF and the 
effective moisture flux over the stations. From the linear re-
gression formula, a FNN is adopted to estimate the residuals 
of DIFF to the linear regressions. Namely, the averages of 
western wind speed, southern wind speed, specific humid-
ity, and the moisture flux in the SW moisture detecting zone 
are selected as the inputs of the FNN, and the residuals is the 
designed output.

The input-output data are separated into 3 groups for 
model construction: 4/5 data as a training set, 1/10 data as a 
validation set and 1/10 data as a test set. Based on the thresh-
old of effective moisture flux, 0.1683 and 0.1696 m s-1 at 
ALiShan and YuShan weather stations, respectively, there 
are 302 and 298 available data passing the thresholds from 
874 and 853 observations in 6 typhoon events. Typhoon Ka-
lmaegi is with 74 and 48 mm h-1 rainfall intensity in ALiS-
han and YuShan stations, respectively. Even if a significant 
SW monsoon was observed in Kalmaegi case, the maximum 
moisture flux of Kalmaegi is less than the thresholds of both 
stations. Thus, typhoons other than Kalmaegi contribute 

greatly in ANNSME. A trial and error method is applied to 
identify the optimum number of neurons in the hidden layer 
from 1 to 50. Consequently, the structures of the ANNSMEs 
at ALiShan and YuShan are 4-12-1 and 4-11-1 FNNs, re-
spectively.

Figure 8 shows the performance of ANNSME to ad-
just the TRCM rainfall prediction. Based on the contribu-
tion of the SW monsoon, the TRCM rainfall prediction is 
modified through ANNSME in two steps: a linear transfor-
mation from the effective moisture of the SW monsoon to 
expect extra rainfall, and a FNN for estimating residual to 
the expected extra rainfall. The diagonal lines in the Fig. 8  
suggest that the ANNSME provides a satisfied modified 
rainfall based on the information of the SW monsoon for 
the ALiShan and YuShan stations. 

To demonstrate the value of our approach, we now 
test the performance of TRCM rainfall prediction with 
ANNSME model for Typhoons Mindulle and Morakot. For 
each of the test typhoon cases, we use the ANNSME mod-
el without the test typhoon case in the training data base. 
The results of Typhoons Mindulle and Morakot are illus-
trated in Figs. 9 and 10. The black dashed line is the TRCM  

Fig. 7. Scatter plot of the DIFF and the moisture flux, and its linear regression at (a) ALiShan and (b) YuShan weather stations.

(a) (b)
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Fig. 9. The rainfall processes of typhoon Mindulle illustrated by observed rainfall (dot), the TRCM (black dash), the TRCM with ANNSME trained 
without Mindulle (blue), and the TRCM with ANNSME trained including Mindulle (red) at (a) ALiShan and (b) YuShan weather stations.

Fig. 8. The performance of the TRCM and the TRCM with ANNSME to observed rainfall intensity at (a) ALiShan and (b) YuShan weather stations.

(a) (b)

(a) (b)
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Table 5. The performance of TRCM and ANNSME evaluated by root mean square error (RMSE), error of cumulative rainfall 
(ECR), and error of the time for peak to arrive (ETp).

Note: TRCM+ANN means TRCM prediction with ANNSME.

prediction, the red line is ANNSME model with all cases in 
the data base and the blue line is the ANNSME model with-
out the test case. The amount of the water vapor flux is also 
shown in the figures. It is not surprising that the ANNSME 
model with the test case in the data base results in a predic-
tion so close to the observation. On the other hand, when 
the test case is removed from the training set, the predic-
tion is still better than the original TRCM prediction, in 
that the amount of rainfall as well as the multiple peak of 

rainfall is predicted. The performances of original TRCM 
prediction and TRCM prediction with ANNSME are fur-
ther evaluated by root mean square error (RMSE), error of 
cumulative rainfall (ECR), and error of the time for peak 
to arrive (ETp) in Table 5 (Pan et al. 2011). We found that 
the RMSE and ECR are improved through TRCM predic-
tion with ANNSME in all cases except the extreme rainfall 
case at ALiShan in Typhoon Morakot. In such a case, the 
rainfall may be overestimated due to the fact that ANNs 

Fig. 10. The rainfall processes of typhoon Morakot illustrated by observed rainfall (dot), the TRCM (black dash), the TRCM with ANNSME trained 
without Morakot (blue), and the TRCM with ANNSME trained including Morakot (red) at (a) ALiShan and (b) YuShan weather stations.

(a) (b)

Typhoon Weather station Model RMSE (mm hr-1) EcR (%) ETP (hr)

Mindulle

YuShan
TRCM 12.5 -72.3 -16.0

TRCM+ANN 9.2 11.4 -14.0

ALiShan
TRCM 23.4 -71.0 -17.0

TRCM+ANN 16.8 -10.5 -18.0

Morakot

YuShan
TRCM 16.1 -69.9 -13.0

TRCM+ANN 12.8 11.6 -15.0

ALiShan
TRCM 30.6 -75.0 -15.0

TRCM+ANN 54.0 56.3 1.0
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are not effective for extrapolation (Yin et al. 2003). On the 
other hand, the ETp is improved significantly for the single 
peak event, like the test case at ALiShan in Typhoon Mora-
kot. Even with very limited training cases, Table 5, Figs. 9  
and 10 indicate the ANNSME is robust and suitable for im-
provement of quantitative rainfall prediction.

4. coNcLuSIoN

This study proposes an ANN-based SW monsoon en-
hancement to improve the typhoon rainfall forecast over 
the mountain. The ALiShan and YuShan’s rainfall data and 
the SW monsoon moisture flux are used in the algorithm. 
The strength of the SW monsoon is evaluated in terms of 
the moisture flux in the detecting zone located at sea over 
southwestern Taiwan. The analysis suggests that the mois-
ture flux during the landfall periods of Typhoon Mindulle, 
Bilis, Fungwong and Morakot were accompanied a with 
large scale monsoon flow transporting water vapor and that 
of Typhoons Kalmaegi and Haitaing were with only local 
southwester wind. A linear regression is adopted to iden-
tify the threshold of the moisture flux for effective moisture 
flux to mountainous rainfall in the southwestern Taiwan. 
A FNN is then applied to estimate the residual from linear 
model to the difference between simulated rainfall by the 
TRCM and observations. Our main results are in Figs. 8 - 
10, which suggest that ANNSME is robust and the better 
predictions of both total rainfall and multiple rainfall peaks 
on the mountain. In the future, we would like to extend the 
study with more stations and also consider the cases with 
northeast monsoon enhancement.
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