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ABSTRAcT

A singular-value-decomposition (SVD) statistical downscaling technique was developed for monthly rainfall over south-
ern Taiwan. The statistical model was applied to seven different general circulation models. Seven different geographical 
domains for the large-scale atmospheric predictors were tested and their effects on rainfall projections were evaluated. Be-
cause different climate models indicate different future rainfall projections, a multi-model ensemble approach was applied to 
provide best guess estimates. Using the multi-model ensemble, and a range of metrics, it was found that the different predictor 
geographical domains had little influence on the projected monthly rainfalls. Two emission climate change scenarios (A1B 
and B1) were used to project the future rainfalls for the period from 2010 to 2045 across southern Taiwan. Overall, future 
rainfall shows an increasing trend during the May-to-October wet season and a decreasing trend during the November-to-
April dry season.
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1. InTRoDucTIon

Rainfall has become more extreme in recent years. Cli-
mate change is one of the reasons and a critical issue not 
only for climatic research but also for hydrological research 
(Tolika et al. 2007; Labraga 2010). The Fourth Assessment 
Report of the United Nations Intergovernmental Panel on 
Climate Change (IPCC 2007) points out that possible ex-
treme events of rainfall become more serious under climate 
change and lead to flood or drought. Therefore, the impact 
assessment of climate change on rainfall has become an im-
portant world-wide issue.

To infer the variability of future rainfall, general cir-
culation models (GCMs) are used as the primary tool to 
tackle this issue through the help of a range of plausible 
future emission scenarios (Chu and Yu 2010). Since GCMs 
have coarse grid resolutions, the output data from GCMs 
cannot present local characteristics. Therefore, downscaling 
methods are used to deal with this problem. The purpose of 
downscaling is transforming the information of coarse reso-
lution to that of finer resolution. There are two categories of 

downscaling methods: statistical downscaling and dynamic 
downscaling. Statistical downscaling methods construct a 
statistical relationship between large-scale GCMs outputs 
(i.e., atmospheric variables) and local weather variables; 
dynamic downscaling methods employ high-resolution 
regional climate models nested in a GCM to obtain local 
weather variables (Chen et al. 2010). The statistical down-
scaling methods are frequently used due to its low compu-
tational consumption.

Before using statistical downscaling methods, us-
ers have to decide the large-scale atmospheric variables 
of GCM, local weather variables, statistical methods, and 
geographical domains. Large-scale atmospheric variables of 
GCM are usually used as predictors and local weather vari-
ables as predictands. Statistical methods rely on a stable re-
lationship between the predictor and the predictand. More-
over, the predictors have to be well simulated by GCMs 
(Wilby et al. 1999). The choice of predictor and predictand 
is largely driven by reliable existing observations and user 
needs. Generally, large-scale atmospheric variables for pro-
jecting local rainfall include geo-potential height (Timbal 
et al. 2003), sea level pressure (Chu et al. 2008), and wind 
speed (Murphy 1999; Haylock et al. 2006).
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In addition to the choice of predictor and predictand, 
a statistical method requires the determination of the geo-
graphical domain for the large-scale atmospheric predictors. 
The domain size applied to predictors to optimize the rec-
ognition of synoptic systems from unnecessary background 
noise is a key parameter of the statistic model (Timbal and 
McAvaney 2001). Timbal and McAvaney (2001) and Ben-
estad (2001) indicated that different geographical domains 
may cause different results of temperature downscaling. 
Benestad (2001) also suggested that the geographical do-
main should change with different seasons. Benestad (2004) 
further suggested selecting a suitable geographical domain 
where the boundary with a zero correlation coefficient be-
tween a predictor and a predictand. Wetterhall et al. (2007) 
chose the proper geographical domains for different seasons 
for rainfall downscaling. Paul et al. (2008) used the mete-
orological point of view to explain their selection of geo-
graphical domains. The above studies found that the geo-
graphical domain affects the downscaling results of rainfall 
or temperature. In this work, different geographical domains 
for the large-scale atmospheric predictors were tested; and, 
their effects on rainfall projections were evaluated.

Various statistical downscaling schemes have been de-
veloped for constructing the relationship between the pre-
dictor and the predictand, such as multiple regression mod-
els (Wilby et al. 1999), artificial neural networks (ANNs) 
(Harpham and Wilby 2005), canonical correlation analysis 
(CCA) (Juneng et al. 2010), support vector machine (Yu 
et al. 2006), and the singular-value-decomposition (SVD) 
based statistical downscaling method (Chu et al. 2008). The 
SVD-based statistical downscaling method was used suc-
cessfully in Taiwan (Chu et al. 2008; Chu and Yu 2010) and 
the East Asia (Paul et al. 2008), which was adopted in this 
work for downscaling monthly rainfall accumulations.

This paper describes an application of a statistical 
downscaling technique to southern Taiwan. A key focus is 
on the validation of the statistical downscaling model and in 
particular the geographical domain required for the predic-
tors. The rest of this paper is organized as follows. Section 2, 
“Study Area and Data Set,” provides a summary description 
of the study area (i.e., southern Taiwan) and the data set. 
Section 3, “Methodology,” describes the SVD-based statis-
tical downscaling model and the evaluating metrics. Section 
4, “Results and Discussion,” describes the validation of the 
statistical models, the determination of the geographical do-
main required for the predictors, and the effect of climate 
change on rainfall projections under two emission scenarios 
(A1B and B1). Finally, Section 5, “Conclusions,” sums up 
and offers a direction for future work.

2. STuDy AREA AnD DATA SET

The southern environs of Taiwan with an area of nearly 
6000 km2, including Chiayi, Tainan, Kaohsiung, and Ping-

tung counties, was chosen as the study area. In this area, 
there are four important reservoirs (i.e., Tsengwen, Nanhua, 
Akungtien, and Mudan Reservoirs) which are mainly for 
water supply. Due to the significant difference of rainfall 
between the May-to-October wet season and the November-
to-April dry season, rainfall in the wet season has to be re-
tained in reservoirs to prevent a shortage of water supply in 
the dry season thus providing a large challenge with regard 
to water supply allocation in this area.

The data set used in this study includes the local weath-
er variable (i.e., the monthly rainfall) and large-scale atmo-
spheric variables of GCM (i.e., the sea level pressure and 
the meridional wind field at 850 hPa). The monthly rainfall 
was used as the predictand in the statistical downscaling 
model. The statistical downscaling model was performed at 
each of the 82 rainfall stations in the study area. Figure 1 
shows the spatial distribution of these rainfall stations. The 
spatially-averaged monthly rainfalls during the period from 
1975 to 2000 were calculated using the Thiessen polygon 
method (Thiessen 1911). The temporal distribution of mean 
monthly rainfall is shown in Fig. 2. From this figure, the 
study area receives temporally uneven rainfall. Around 85% 
of the annual rainfall occurs during the wet season but only 
15% of the annual rainfall occurs during the dry season. 

The large-scale atmospheric variables of GCM include 
two variables which were used as the predictors in the sta-
tistical downscaling model. The two large-scale atmospher-
ic variables on a monthly scale are the sea level pressure 
(SLP) and the meridional wind field at 850 hPa (v850). 

Fig. 1. Distribution of 82 rainfall stations in southern Taiwan.
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The statistical downscaling model was applied to seven dif-
ferent GCMs under the 20th Century Experiment Scenario 
(20C3M) and two future emission scenarios (i.e., A1B and 
B1). Table 1 lists the information about the seven GCMs. 

The data from the SLP and v850 from the outputs of 
seven GCMs under 20C3M for the period from 1975 to 
2000 were used for downscaling rainfall which was served 
as the baseline rainfall projection for comparing future 
rainfall projections. For projecting the future rainfalls, 
the data from the SLP and v850 from the outputs of sev-
en GCMs under A1B and B1 for the period from 2010 to 
2045 were used. The Program for Climate Model Diagno-
sis and Intercomparison (http://www-pcmdi.llnl.gov/ipcc/ 
about_ipcc.php) provided the aforementioned data for this 
work.

In this study, seven different geographical domains for 
the large-scale atmospheric predictors were tested and their 
effects on rainfall projections were evaluated. The seven 
different geographical domains with their ranges of longi-
tude and latitude are Domain 1 (120 - 122.5°E, 20 - 27.5°N), 
Domain 2 (110 - 130°E, 15 - 35°N), Domain 3 (100 - 140°E, 
10 - 40°N), Domain 4 (80 - 160°E, 0 - 60°N), Domain 5 (60 
- 180°E, 20°S - 80°N), Domain 6 (60 - 180°E, 5 - 40°N), 
and Domain 7 (60 - 130°E, 20 - 60°N). Their positions are 
shown in Fig. 3. The area of domain increases from Do-
mains 1 to 5. This nested design after the “Matryoshka doll” 
concept of domains is used for evaluating the effects of dif-
ferent domain sizes on rainfall downscaling. Domains 6 and 
7 consider the climate regimes of different seasons. Domain 
6 is designed to consider the effect of the southwesterly flow 
on rainfall downscaling; Domain 7 is designed to consider 
the effects of the northeast monsoon and the Siberian High 
on rainfall downscaling.

3. METhoDology
3.1 Statistical Downscaling Method

One of the strategies for our downscaling study is to re-
late local rainfall to the observed large-scale predictors and 
build a downscaling scheme based upon the assumption that 
GCMs do not well simulate interannual variability found in 
observed large-scale variables (Cheng et al. 2008). Down-
scaled results will be obtained by projecting predictors of 
GCM outputs to the scheme. However, when the strategy 
for downscaling is applied, the systematic biases in a given 
model will not be removed. The systematic biases found 
in a given model may cause more uncertainties when the 
state of future climate is estimated. Nevertheless, the effect 
of systematic biases for a given model on climate change 
can be modified when downscaling is made by conducting 
fitting equations between a predictand and a predictor of 
model output (Feddersen et al. 1999). Therefore, in the pres-
ent study, downscaling schemes are constructed by means 
of relating local rainfall to a predictor of a given model out-
put. Similar procedures were provided by Nishimori and 
Kitoh (2006). First, the time series of regional rainfall and 
large-scale variables are reconstructed through the use of 
their respective empirical orthogonal functions and princi-
pal components to filter most spatial noise. Then, the SVD 
is applied to extract coupled patterns between regional rain-
fall and large-scale variables which can be expressed in the 
following equations: 
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Here the total number of SVD modes is denoted by m. The 
large-scale circulation anomaly field, Zpredictor(t, x), and the 
observed station rainfall anomaly field, Zpredictand(t, x), are 
normalized. Ui(x) and Ri(x) denote the singular vector of 
the predictor and the singular vector of the predictand, re-
spectively, in the ith mode. Si(t) and Ki(t) indicate the time 
series of expansion coefficient of the ith SVD mode for the 
predictor and the predictand. Finally, the results of down-
scaling will be obtained by applying GCMs data, which are 
based on different scenarios. The transfer functions are as 
follows:
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Here PRJ(t, x) represents the downscaled projection and 
n denotes the total number of the SVD modes retained. In 

Fig. 2. Mean monthly rainfall in southern Taiwan from 1975 to 2000.

http://www-pcmdi.llnl.gov/ipcc/ about_ipcc.php
http://www-pcmdi.llnl.gov/ipcc/ about_ipcc.php
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this study, the leading 10 modes are retained. The details 
of the downscaling method are given by Kim et al. (2004) 
and Feddersen and Andersen (2005). For a given month, the 
downscaling procedure is applied respectively to a selected 
predictor for each GCM which means that fitting equations 
are built separately by GCMs, by predictors, and by months. 
The data of each of the seven GCMs, the outputs of which 
are driven on the basis of 20C3M, are subjected to the same 
process. For the sake of keeping the downscaling scheme 
from over-fitting, the method of cross validation is applied 
to generate a set of 26-year downscaled data for validation 
(Michaelsen 1987). The cross-validation method excludes 
one set of data during the construction of a statistical scheme 
and subsequently uses the model to project the value of the 
predictand that was excluded from the model calibration. 
The process of excluding one data point is repeated N times, 
here N is the total number of year of observation records. 
Following that sequence, a set of independent projection 
data with N time series will be generated (Benestad et al. 
2008).

3.2 Evaluation Metrics 

In order to compare downscaling results, three evalu-
ation metrics, which include the Gerrity skill score (GSS) 
(Gerrity 1992), root mean square error (RMSE), and mean 
absolute percent error (MPE), were used. 

GSS is a skill score for a categorical deterministic 
forecast recommended by the World Meteorological Or-
ganization (WMO) in the standardized verification system 
for long-range forecasts (WMO 2002). In a three-by-three 
contingency table, the GSS equations can be expressed as 
follows:

,GSS P S P n Nwhereij ij ij ij
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Here Pij denotes the relative sample frequency, which is de-
fined as the ratio of the cell counts nij to the total amount of 
the forecast/observation pair N; and, Sij indicates a score ma-
trix of the reward or penalty for every forecast/observation 

Fig. 3. Domains used for atmospheric predictors (from Domains 1 to 7).

Table 1. GCMs used in the study.

Model organization, country Resolution

CGCM3.1(T63) Canadian Centre for Climate Modelling and Analysis, Canada T63

CSIRO-MK3.0 Commonwealth Scientific and Industrial Research Organization, Australia 1.9 × 1.9

ECHAM5/MPI-OM Max Planck Institute for Meteorology, Germany T63

GFDL-CM2.0
Geophysical Fluid Dynamics Laboratory, USA

2 × 2.5

GFDL-CM2.1 2 × 2.5

MIROC3.2-HIRES Center for Climate System Research, Japan T42

MRI-CGCM2.3.2a Meteorological Research Institute, Japan T42
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outcome represented by the contingency table. The score 
matrix is expressed by the following equations:
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GSS ranges from -1 to 1. The larger the skill scores for 
the results, the better the downscaling scheme performs. If 
the skill score is lower than zero, then poorer skill than that 
of randomly guess will be expected. 

RMSE and MPE are frequently-used metrics for the dif-
ferences between values predicted by a model or an estima-
tor and the values are actually observed from the thing being 
modeled or estimated, in which MPE usually expresses ac-
curacy as a percentage. RMSE and MPE are defined as:
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Here Po(t) denotes the tth observed rainfall (mm). Ps(t) de-
notes the tth simulated rainfall (mm), and n is the number of 
data. The smaller RMSE and MPE for the results, the better 
the downscaling scheme performs.

4. RESulTS AnD DIScuSSIon

Rainfall downscaling was performed at each of the 82 
rainfall stations on a monthly scale in the study area. Based 
on the downscaled monthly rainfalls of the 82 rainfall sta-
tions, the spatial-averaged monthly rainfalls were calculated 
by the Thiessen polygon method for further analyses. The 
monthly data of SLP and v850 from the outputs of seven 
GCMs under 20C3M, as well as the observed monthly rain-
fall at the 82 rainfall stations, for the period from 1975 to 
2000 were used to build the statistical models for rainfall 
downscaling. The monthly data of SLP and v850 from GCM 
outputs under A1B and B1 emission scenarios for the period 
from 2010 to 2045 were used for future rainfall projection 
by the validated statistical models. The following subsec-
tions describe: (1) the validation of the statistical models, 
including the choice of suitable predictors and the detec-
tion of different numbers of GCM for MME (multi-model 
ensemble), for finding the suitable setting of the statistical 
models over southern Taiwan; (2) the determination of the 
geographical domain required for the predictors by com-
parison of downscaling results for different domains; (3) the 

effect of climate change on rainfall projections under two 
future emission scenarios.

4.1 choice of Suitable Predictors for Statistical Model 

For choosing the suitable predictors for rainfall down-
scaling, three cases of downscaling results have been com-
pared for a given domain and a given GCM. The cases are: 
(1) the downscaling result using the sea level pressure (SLP) 
as predictor; (2) the downscaling result using the meridi-
onal wind field at 850 hPa (v850) as predictor; and, (3) the 
average downscaling result of the two former predictors  
( 2predictorAVEDR ).

To compare the downscaling performances among the 
above three cases, the evaluation metrics, GSS and RMSE, 
were used. The values of GSS and RMSE were calculated 
for the three cases for each month, domain and GCM. The 
best downscaling results of the three cases for the largest 
value of GSS and the smallest value of RMSE, respectively, 
were decided for each month, domain and GCM. For one of 
the three cases, the number of month with the best down-
scaling result has been counted; the ratio of this number to 
the total number of month for rainfall downscaling (i.e.,  
7 GCMs × 7 domains × 12 months = 588) was calculated as 
“performance percentage.” The performance percentages by 
GSS and RMSE, respectively, for the three cases are shown 
in Table 2. From this table, the performance percentages by 
GSS for the three cases are close to one another, which de-
lineates the evaluation metric, GSS, and does not necessar-
ily distinguish the downscaling performances of the three 
cases; the performance percentages by RMSE for the three 
cases are 9%, 32%, and 59%, respectively, which reveals 
the third case (i.e., average downscaling result of the two 
predictors, 2predictorAVEDR ) has the best downscaling per-
formance. Therefore, the 2predictorAVEDR  was chosen for the  
following analyses.

4.2 Application of Statistical Model to Different gcMs

Due to the best downscaling performance of 
2predictorAVEDR , the 2predictorAVEDR  was used for evaluat-

ing the effects upon seven different geographical domains 
with regard to rainfall projections using the metrics, RMSE 
and MPE. Figures 4 and 5 show the values of RMSE and 
MPE of downscaling results, respectively, in each month 

Table 2. Performance percentages (PPs) for three cases.

Note: Cases 1, 2, and 3 denote the downscaling results by SLP, v850, and 
the average downscaling results of Cases 1 and 2, respectively.

case 1 case 2 case 3

PP by gSS 31% 34% 35%

PP by RMSE 9% 32% 59%
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Fig. 4. Values of RMSE for different 
GCMs and domains.

(a) (b)

(c) (d)

(e) (f)

(g)
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Fig. 5. Values of MPE for different 
GCMs and domains.

(a) (b)

(c) (d)

(e) (f)

(g)
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for the seven different GCMs and the five geographical 
domains (i.e., Domains 1 to 5). For a given GCM (e.g., 
CCCMA), Fig. 4a shows that the values of RMSE for the 
different domains are close and smaller during the period 
from November to April, but still diverse and larger during 
the period from May to October; Fig. 5a displays that the 
values of MPE for the different domains are close and less 
than 20% in each month except February and October. Due 
to the fact that the temporal patterns of RMSE and MPE, 
respectively, for the seven different GCMs in Figs. 4 and 5 
are roughly similar, it is difficult to decide the better GCM. 

4.3 Detection of Different numbers of gcM for MME

More stable and skillful downscaled results can be ob-
tained through the use of MME which is a simple average 
of downscaled outputs from all models (Tebaldi and Knutti 
2007). It raises an interesting question about how many 
GCMs should be adopted using the MME approach. There-
fore, the effects of different combinations for a different 
GCM number used for MME on downscaling performance 
were detected here. The number of GCM used for MME 
varies from two to seven to form different combinations. 
The detection procedure for the different combinations of 
two GCMs used for MME is illustrated as follows. Two of 
the seven GCMs used for MME have 21 different combi-
nations (i.e., C2

7 ). The downscaling performance of each 
combination was presented by the calculation of RMSE 
for each domain. Thereafter, 21 values of RMSE from the 
21 combinations were averaged to present the downscaling 
performance of two GCMs used for MME for that domain. 

The same procedures were performed for the numbers, three 
to seven, of GCM used for MME, respectively. Based on 
the results of the previous procedures, it can be seen that 
the mean value of RMSE decreases with the increasing 
number of GCM used for MME in a month for each do-
main. That means the MME approach using more different 
GCMs has better downscaling performance. In this study, 
the downscaled results averaged by MME from the seven 
GCMs are the best. Due to the similar trends of downscaling 
performance for the entire twelve months, only the results 
in March and August are illustrated in Fig. 6 for represent-
ing the relationship between the number of GCM used for 
MME and the mean value of RMSE for each domain. From 
the above analysis, the MME approach adopted all the seven 
GCMs hereafter in this work.

4.4 comparison of Downscaling Results for Different 
Domains

For evaluating the effects of the seven different domains 
on rainfall downscaling, the evaluation metrics, RMSE and 
MPE, of downscaling results were used. Such an evalua-
tion is helpful in determining which domain is suitable for 
southern Taiwan. For each geographic domain, Figs. 7 and 
8 show the values of RMSE and MPE, respectively, in each 
month for each GCM and the MME result. For a given geo-
graphic domain, it is found that the values of RMSE for the 
MME result are less than the values for the seven individual 
GCMs obviously in months from May to October; the val-
ues of MPE for the MME result are less than the values 
for the seven individual GCMs obviously in February and 

Fig. 6. Relationships between number of GCM and mean RMSE in March and August.

(a) (b)
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Fig. 7. Values of RMSE for different GCMs and the MME in Domains 1 to 7.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Fig. 8. Values of MPE for different GCMs and the MME in Domains 1 to 7.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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October. Figures 7a - e and Figs. 8a - e reveal that the MME 
approach can reduce the downscaling errors compared with 
those of the individual GCM; the MME results for different 
domains (i.e., Domains 1 to 5) are almost identical. Because 
the MME results for different domains have little influence 
on downscaling performance, it is difficult to decide the op-
timal domain from these five different domains. Domains 6 
and 7, considering the seasonal situations, were further used 
for detecting their effects on the downscaling results. As 
displayed in Figs. 7f - g and 8f - g, it is found that the MME 
approach can reduce the downscaling errors compared with 
those of the individual GCM; Domains 6 and 7 have little 
difference in downscaling performance using the MME ap-
proach, and has little influence on downscaling results as 
those of Domains 1, 2, 3, 4, and 5. Figures 7h and 8h show 
the small differences among all the MME results of seven 
different domains.

It is found that the MME results are insensitive to the 
domain selection, which may result from the fact that the 
fitting equations between the predictors and predictand are 
built separately by months. In this way, the “seasonal mem-
ory” of predictors is lost and the adopted procedure might 
have an over-fitted problem resulting in similar results. 
Though the downscaling results from these seven domains 
are similar, the computational efficiencies using different 
domains were considered for choosing the best domain in 
the study. The smaller domain, the faster computational ef-
ficiency performs. Therefore, Domain 1 with the best com-
putational efficiency was chosen for the following analysis. 

Based on the observed monthly rainfalls and down-
scaled monthly rainfalls using the MME in Domain 1, the 
values of mean and standard deviation of the observed and 
downscaled monthly rainfalls, respectively, for each month 
were estimated and listed in Table 3. It reveals the statistical 
characteristics of both the observed and downscaled month-
ly rainfalls are close; the downscaled monthly rainfalls us-
ing the MME in Domain 1 are thus reasonable.

4.5 Effect of climate change on Rainfall Projections

In order to assess the effect of climate change on rainfall 
projections, the GCM outputs under A1B and B1 emission 
scenarios for the period from 2010 to 2045 provide large-
scale atmospheric predictors (i.e., SLP and v850) for future 
rainfall projections. For each month, the change amount of 
the future rainfall projections to the baseline rainfall projec-
tions under 20C3M scenario is defined as:

R i R i R ifuture 20C3MD = -^ ^ ^h h h     (10)

where ΔR is the change amount for month i, Rfuture(i) denotes 
the future rainfall projections (i.e., mean monthly rainfall 
for month i) under a given scenario, and R20C3M denotes the 

baseline rainfall projections (i.e., mean monthly rainfall for 
month i) under 20C3M scenario.

Figure 9 shows the monthly change amounts for each 
individual GCM and the MME of seven GCMs under A1B 
and B1 emission scenarios. Based upon the MME results, 
the figure reveals that the change amounts under A1B and 
B1 in each month are close; positive change occurs during 
the wet season (May to October) except June with a value 
around -23 mm; the change in July is the largest with 38 
and 47 mm under A1B and B1, respectively; the changes in 
May, August, September, and October are in the range of 
5 - 10 mm; during the dry season (November to April) the 
change is small (around ±1 mm) except February and April 
with values around -5 mm. Overall, future rainfall shows 
an increasing trend during the May-to-October wet season 
and a decreasing trend during the November-to-April dry 
season. 

In southern Taiwan, the temporal rainfall distribution 
over the course of a year is uneven which makes this region 
prone to droughts in the dry season. The results of change 
analysis imply that southern Taiwan may face a worse situ-
ation which a more uneven temporal rainfall distribution 
will occur in the future. How to enhance the allocation and 
management of water resources in the future over southern 
Taiwan should be concerned.

5. concluSIonS

An SVD statistical downscaling technique was devel-
oped for monthly rainfall over southern Taiwan. A key fo-
cus is on the validation of the statistical downscaling model 
and in particular the geographical domain required for the 
predictors. 

Table 3. Mean and standard deviation of rainfall observation and 
downscaling result by MME in Domain 1 for each month.

Month
Mean (mm) Standard deviation (mm)

observation Downscaling observation Downscaling

January 23.63 23.63 0.74 0.96

February 31.21 30.87 3.88 4.98

March 50.47 50.46 3.09 4.47

April 84.99 85.07 4.50 5.29

May 274.00 273.96 9.59 15.48

June 511.67 513.12 25.05 39.23

July 514.54 513.26 20.61 30.10

August 588.36 587.86 7.07 11.79

September 323.40 323.21 8.69 13.83

October 84.02 83.94 9.17 12.15

November 25.50 25.56 1.76 2.36

December 17.23 17.27 0.68 1.08
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The effects of seven different GCMs and seven dif-
ferent domains on downscaling results were investigated. 
Since different GCMs have different results on rainfall 
downscaling, the MME approach was applied to provide 
best guess estimates. The analysis results show that the dif-
ferent geographical domains had little influence on the pro-
jected monthly rainfalls. Due to the similar downscaling re-
sults for different geographical domains, the computational 
efficiency for different geographical domains is under con-
sideration. Domain 1 (120 - 122.5°E, 20 - 27.5°N) with the 
best computational efficiency was chosen to be the optimal 
domain in this work. Finally, two emission climate change 
scenarios (A1B and B1) were used to project the future rain-
falls for the period from 2010 to 2045 across southern Tai-
wan. Overall, the future rainfalls show an increasing trend 
during the May-to-October wet season and a decreasing 
trend during the November-to-April dry season. The results 
warn that southern Taiwan may face a worse situation with 
a more uneven temporal rainfall distribution in the future. 
The allocation and management of water resources in this 
area have to be enhanced in the future.

It is notable that the MME results of SVD-based down-
scaling process among seven different domains are almost 
identical. The probable reason is that the transfer function 
between the predictors and predictand was built month-by-
month in this work. Because of this method, the “seasonal 
memory” of predictors is lost and the adopted procedure 
might have the over-fitted problem, resulting in similar 
findings. However, for the hydrological applications (e.g., 
rainfall-runoff modeling), monthly scale for downscal-
ing procedure is more practical than the longer time scales 

(e.g., seasonal and yearly scales). To verify this argument, 
future work may adopt the other methods (e.g., CCA-based 
or ANN-based downscaling method) or use different time 
scales to build the transfer function in comparison with the 
results in the present work. 
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