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ABSTRACT

Reduced visibility is a major safety concern at airports leading to flight delays or diversions. The primary motivation for
this study is to enhance understanding of visibility and to build a simple, practical visibility forecasting method across Taiwan
in an operational setting by using readily available, ground-based observations.

This paper presents for the first time a systematic, quantitative examination of the controls on visibility over the entire
Taiwan region by adopting a statistical approach relating visibility to various physical variables. A multiple linear regression is
carried out for the early morning hours during the months of November ~ April, when visibility is especially low. The
regression reveals that on the west coast of Taiwan, the concentration of fine particles (PM; 5) and relative humidity (RH) are
most related to visibility, and to a lesser extent, coarse particles (PM.,5) and windspeed. The significantly elevated PM
concentrations would, therefore, cause a marked reduction in visibility on Taiwan’s west coast - where most of Taiwan’s
population and anthropogenic PM emissions are found. Visibility on the east coast appears to be controlled by somewhat
different mechanisms, with rainfall playing a larger role. The probability of occurrence of especially low visibility (< 1600 m)
was revealed by logistic regression to be the most statistically related to RH, and, to a less extent, to PM concentrations.

An uncertainty analysis to understand current limitations in predicting visibility indicated that 24-hour visibility forecasts
were dominated by a) errors in forecasting RH and b) inadequacies in the adopted statistical model, followed by c) errors in PM
forecasts. Hence to minimize the considerable uncertainties in visibility forecasts, which could reach standard deviations of
several thousand meters, future work needs to adopt a more sophisticated statistical model as well as reduce the considerable
errors in predicting RH. Finally, the uncertainties associated with PM can be reduced by improving PM emission estimates
through an inverse analysis method.
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1. INTRODUCTION/MOTIVATION

Visibility is defined as the “greatest distance in a given
direction at which an object can be visually identified with
unaided eyes (Yuan et al. 2006).” Reduced visibility has
long been recognized as a major concern at airports (George
1960; Martin and Suckling 1987) by causing flight delays or
diversions, with significant attendant financial costs (Teixeira
and Miranda 2001). Given the large impact of visibility on
aviation, accurate forecasts are important. Imperfect visibil-
ity forecasts adversely affect airport operation, resulting in
diverted flights when visibility is lower than expected and
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lost capacity when visibility is higher than expected (Miiller
et al. 2007). The motivation of this research project is to
improve visibility forecasts at various airports around Tai-
wan. A related objective is to gain insight and scientific un-
derstanding of factors controlling visibility.

We adopt an empirical, statistical approach to character-
ize visibility with a goal towards employing the results in an
operational forecasting setting. A simple multiple linear re-
gression method is adopted, as this work is envisioned to
provide an initial, overall picture of the factors controlling
visibility around the entire Taiwan region. The dataset de-
rives from readily available, ground-based observations at
airports as part of routine aviation weather reports (METARS).
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The reasons for using such “simple” observations are two-
fold: 1) wide availability of continuous observations; 2) ease
of use when formulating visibility forecasts. “Ease of use”
refers to the availability of timely, up-to-date observations
that can be readily used for forecasting purposes. This means
that quantities such as chemical composition of atmospheric
particulates (Horng and Cheng 2008), although demon-
strated to have important consequences for influencing visi-
bility (Tsai and Cheng 1999; Yuan et al. 2006), will not be
considered, since such observations are available only on a
limited, campaign basis. In addition, we make use of particu-
late matter (PM) measurements being carried out by auto-
mated instrumentation on a continuous basis around Taiwan
by the Environmental Protection Administration (EPA)
(Chang and Lee 2007a).

To our knowledge from the published literature, a statis-
tical modeling approach to predict visibility has yet to be at-
tempted over the entire Taiwan region. This is the first time a
large number of stations are analyzed to reveal spatial pat-
terns in visibility around Taiwan and the factors controlling
visibility. Previous studies generally focused on visibility at
a single location (e.g., Tsai and Cheng 1999; Yuan et al.
2006) or only a few, generally urban sites (Chen et al. 1999).
While the statistical approach may lack direct connection to
physical mechanisms, it is nonetheless a first step towards
physical understanding, as the statistical results would de-
monstrate exactly which variables are most related to visi-
bility; also, the regression coefficients themselves may hint
at physical mechanisms at play.

After a discussion of the observational dataset and sta-
tistical methodology (section 2), this paper proceeds as fol-
lows. First, we present figures summarizing the visibility
data and identify dominant features in the data (section 3).
Secondly, we examine which physical variables are the
most important in determining visibility, as a guide towards
building the statistical model (section 4.1). Thirdly, we carry
out multiple regression to relate visibility to physical vari-
ables in a quantitative manner. The multiple regression con-
sists of two parts. The first part (section 4.2) is based upon a
linear model that predicts visibility, while the second part
(section 4.4) hones in on the probability of occurrence of
extremely low visibility events (< 1600 m) by using a logis-
tic regression model. A quantitative analysis of uncertain-
ties in forecasts of visibility by using the regression model
follows next (section 4.3). Finally, our summary and con-
clusions are presented in section 5, along with a discussion
of how the uncertainties currently limiting accuracy of visi-
bility forecasts can be minimized.

2. MEASUREMENTS/METHODOLOGY
2.1 Visibility and Meteorological Measurements

A large atmospheric observational database has been
collected over numerous years by the Taiwanese Air Force at

13 stations around Taiwan (Table 1). Two of the stations
were situated on the small off-shore islands of Magong (QC)
and Lyudao (LT). Except for MQ and LT, all of the other sta-
tions were close to sea level, with elevations < 50 m above
sea level. The geographical locations of the 13 stations can
be seen in Fig. 1.

At these stations measurements of visibility and stan-
dard meteorological variables such as temperature, dew
point, rainfall, wind speed, and wind direction were carried
out at least every hour. All of these variables were measured
as part of an automated weather observation system (AWOS).
These stations were outfitted with the AWOS 2000 (Artais
Weather Check, Ohio, USA) in the early 1990s and are ser-
viced and calibrated every 3 months. A description of the
AWOS 2000 can be found in Arpino (1994).

The visibility measurement is referred to as “horizon
visibility” and is defined as the visibility in the horizontal di-
rection, in all 360 degrees. These observations derive pri-
marily from human observers looking out towards the hori-
zon, at objects of a known distance. The observations were
supplemented with measurements from the AWOS-based
visibility sensor, particularly under conditions of extremely
low visibility, when distant objects can no longer been dis-
tinguished.

The data were reported following the format of routine
aviation weather reports (METARSs). Temperature and dew-
point were reported as whole numbers, thus introducing er-
rors in the derived relative humidity (see section 4.3 for de-
tails). Visibility observations were reported at discrete levels
following International Civil Aviation Organization (ICAO)
guidelines (ICAO Annex 3 2007), at every 1000 m above
5000 m and with the maximum value set to 9999 m.

This study makes use of data from the years of 2005 ~
2007. 2005 was the first year in which PM; 5 was monitored
widely around Taiwan on a continuous basis. The 2005 and
2006 data were used in fitting the regression model, while
2007 was used as an independent dataset to evaluate the sta-
tistical fit and to quantify uncertainties in extrapolating the
fitted statistical coefficients to other years.

2.2 Particulate Matter (PM) Measurements

The visibility dataset was combined with hourly mea-
surements of particulate matter (PM) concentrations (in
ug m™) carried out by Taiwan’s Environmental Protection
Administration (EPA). Particulate matter refers to “any ma-
terial, except uncombined water, that exists in the solid or
liquid state in the atmosphere or gas stream at standard con-
dition” (Malm 1999).

PM concentration measurements were carried out at
stations in the Taiwan Air Quality Monitoring Network
(TAQMN) (Chang and Lee 2007a). Observations of both
PM, s and PM,, were available, where PM, s and PM,, re-
fer to PM below aerodynamic diameters of 2.5 micrometers
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Fig. 1. Monthly averaged visibility (years 2005 ~ 2007) based on the 13 observational stations around Taiwan and outlying islands. The continuous
fields were constructed by interpolating the station data using a Kriging method (Venables and Ripley 2002). Note the color scale increases from red

(low visibility) to blue (high).

and 10 micrometers, respectively. The PM measurements
were carried out by the Beta attenuator method (Chang
and Lee 2007a) using the beta gauge automated particle
monitor (EQPM-0391-081) for PM,y and model EQPM-
0990-076 with a 2.5 pum cut size inlet for PM; s (Chang
and Lee 2007b). TAQMN instruments underwent regular
daily zero and span checks, as well as calibration (Chang
and Lee 2007a, b). Following Yuan et al. (2006), we refer
subsequently to PM, s and PM_, 5 as the concentration of
“fine” and “coarse” particles, respectively. PM g5 was
calculated by simply taking the difference between PM,,
and PM2,5.

Since PM measurements were not coincident with those
from the Air Force, we merged the two datasets by simply
choosing PM measurement sites closest to each Air Force
airport. Distances between airport and PM measurement
sites ranged from 1 to 36 km (Table 1), resulting in uncer-
tainties due to spatial displacement in visibility and PM. The

displacement at LT was as much as 36 km, because no PM
observations were available on Lyudao Island; the closest
one was on the main island of Taiwan. In consideration of
the ocean and large distance separating the visibility and PM
measurements, we removed PM from consideration at LT in
subsequent analyses.

2.3 Statistical Modeling
2.3.1 Multiple Linear Regression

The degree to which different variables were “useful” in
predicting visibility was first established by fitting a linear,
multiple regression model and then calculating the change in
Akaike Information Criterion (AIC; Akaike 1974) when
each explanatory variable was dropped from the regression
(Venables and Ripley 2002). AIC is a measure of the good-
ness of fit of a statistical model and often used for model se-
lection. AIC is defined as follows (Akaike 1974):
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AIC = -2maximized log-likelihood + 2 # parameters (1)

The coefficient of -2 means that Jower AIC is associated
with higher likelihood (statistically “superior”’). However,
a cost is imposed when the tighter fit is achieved by addi-
tional parameters to the model (second term on the RHS). If
dropping a particular variable resulted in a lower AIC, we
removed it from consideration in the subsequent multiple
regression. Detailed results from the AIC analysis will be
shown in section 4.1.

From the AIC analysis the following linear model was
established:

Visib = M; + B(ioo - rrry * [100 - RH] + Bpypp s * [PM; 5]
+ Bpyioas * [PMioas] + Brain * [Rain]
+ Byina * [Windspd] (2)

where Visib indicates visibility, RH is relative humidity,
PM, s and PM,y., 5 are the particulate matter concentra-
tion of fine and coarse particles, respectively, and Windspd
is the windspeed. Rain indicates the presence of rain: 1
when rain is present, 0 when otherwise. M; and B,,, (where
var indicates any explanatory variable) are the parameters
to be solved in the regression. M;denotes a “month” factor
with 7 denoting the various months of the year. M, can be
also thought of as the “base-line visibility” with RH =
100% and in the absence of PM, rain, or wind. (100 - RH)
can be regarded as a measure of the deviation from satu-
ration - i.e., a measure of the atmosphere’s “dryness.”
(100 - RH) was chosen rather than RH, because the mean
values of RH were high over Taiwan (Table 1), closer to
100% than to 0%. This meant that selecting 100% as the
“origin” - i.e., the point of departure - was a natural
choice. In any case, due to the linear relationship be-
tween RH and (100 - RH) values of B,,, for other explan-
atory variables would not be changed with the choice of
(100 - RH).

Equation (2) is simple and is by no means meant to be
exhaustive in its consideration of variables that might
control visibility (synoptic weather systems, strength of
turbulence, mixed-layer height are just a few of the other
possible variables). It also does not attempt to fit a sepa-
rate B,,, for each month. The relative simplicity of the sta-
tistical model follows from the overarching goal of this
study, which is meant as an initial step towards gaining an
overall understanding of visibility around the entire Tai-
wan region rather than focusing on details at individual
sites.

Values of M; and B,,, were established through a least-
square method that minimizes the squared differences be-
tween the observed and calculated visibilities. We carried
out the AIC and multiple regression calculations using the
function “Im” within “R”, an open source data analysis soft-
ware (R Development Core Team 2005).

2.3.2 Logistic Regression

We further zeroed in on the variables controlling occur-
rence of particularly low visibility events, defined as when
visibility dipped to values < 1600 m. The threshold of 1600 m
was chosen following personal communication with person-
nel in the Air Force familiar with airport operations, who
pointed out this as the value below which airport operations
are significantly affected by the low visibility.

Because in this case the variable to be explained takes
on only two possible outcomes (presence/absence of low
visibility), a statistical model is used to predict the probabil-
ity of occurrence of extremely low visibility events (p).

We adopt the logistic regression method to predict p
(Dalgaard 2002):

logit(p) = log.[p/(1 - p)] = m; + bo0 - rery * [100 - RH]
+ bpyns * [PMas] + bpanioas * [PMio-2 5] (€))

The logit function transforms the probability such that the
response variable is no longer limited to values between 0
and 1. p/(1 - p) is known as the “odds”. Thus positive (ne-
gative) values of m; and b,,, mean that the /og, (odds) of
the event occurring is enhanced (reduced). For instance, if
b,.=0.693, then the odds increase by a factor of exp (0.693)
= 2 for a unit increase in var.

m; and b, were fitted through the method of maximum
likelihood. Variables such as rainfall, windspeed, and wind
direction were not sufficiently related to low visibility to be
considered in Eq. (3). Similar to the multiple linear regres-
sion, regression variables were established by examining
AIC. Hours when visibility was < 3200 m, close to the
threshold of 1600 m, were selected for analysis. Thus the
AIC selects for variables that are statistically varying with
visibility at low values, identifying the variables that may
control the onset of extremely low visibility events.

3. OBSERVED PATTERNS

We first show general temporal and spatial features
identified in the data.

3.1 Observed Patterns in Visibility
3.1.1 Spatial Patterns in Visibility

The spatial distribution of mean visibility in each month
(average of years 2005 ~ 2007) is shown in Fig. 1. In most
months visibility along the western coast of Taiwan is no-
ticeably lower than that on the east. During the winter months
of November ~ January visibility is particularly low in the
southwestern region of the island, with average values dip-
ping to 6000 m or so. In contrast, visibility is significantly
higher during the summer months of June ~ August, with
mean values of approximately 9000 m throughout Taiwan.
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Note that these averages are biased toward lower values,
since the reported visibility had a ceiling of 9999 m.

3.1.2 Temporal Patterns in Visibility: Diurnal +
Monthly

As an example of the mean diurnal variation of visibil-
ity, Fig. 2 shows the average diurnal cycle at various months
for AY, close to the port city of Kaohsiung in southwest Tai-
wan. A distinct diurnal pattern can be observed in the non-
summer months, in which the visibility reaches the diurnal
maximum at 1500 LT and decreases afterwards throughout
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the night to especially low values at dawn, reaching the low-
est levels at 0700 LT. The same time of day was also reported
by Yuan et al. (2006) to be when the lowest visibility at
Kaohsiung was observed. The impact of rainfall on visibility
is particularly evident in the summer as witnessed in the
higher (gray points) visibility when hours with rainfall are
removed. The aforementioned pattern in AY is widely re-
peated in other west coast stations (not shown).

In contrast, the diurnal pattern for YU on the east coast
(Fig. 3) shows no distinct morning drop in visibility. There
appears instead to be a decrease in the afternoon, which is
not seen in the hours without rainfall (gray points). This pro-
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Fig. 2. Monthly averaged diurnal cycle of visibility (years 2005 ~2007) at AY (Gangshan). The x-axis is in local time (LT). The black points derive
from the entire dataset, while the gray points come from a dataset when hours with rainfall are filtered out. The percentage of hours in the month when

1/2

rainfall occurred is also indicated. The error bars indicate the standard error (which is the standard deviation divided by N, where N is the sample

size).
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nounced rainfall effect is observed throughout the year, in-
stead of being restricted to the summer months as it is for
AY and other west coast stations. The qualitative features
observed in YU are also observed for the other two east coast
stations - CS and ZN.

Due to the fact that the higher levels of visibility do not
cause significant impact on aviation, we focused on the
times with the most pronounced drop in visibility. Half of the
year (May ~ October), in which high visibility was observed
over most of Taiwan (Fig. 1), was excluded from subsequent
statistical analyses. Furthermore, we focused on the hours
0400 ~ 0800 LT, when especially low visibility is observed
over a majority of stations (e.g., Fig. 2).
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3.2 Observed Patterns in PM

The spatial distribution of mean PM, s concentrations in
each month (average of years 2005 ~2007) is shown in Fig. 4.
To some degree this figure shows semblance to the mean vis-
ibility (Fig. 1), in which low visibility often corresponds to
high PM concentrations (note flipped color scale). MQ was a
notable exception during January, March, and April, when
low visibility was not associated with particularly high PM
concentrations. MQ is situated at a higher elevation, at >200 m
asl on the eastern side of Mt. Dadu and separated from the
EPA’s PM station, which is only 5 km away but at a lower
elevation of < 100 m asl and to the west of Mt. Dadu. We
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Fig. 4. Monthly average concentrations of PM, s (years: 2005 ~ 2007) based on the 13 observational stations; similar to Fig. 1.

believe the lack of correspondence between PM and visibil-
ity at MQ to be primarily due to this spatial separation.

Concentrations of PM, 5 are lower in the summer (June
~ August), presumably due in part to rainfall serving as a
sink of PM through wet deposition. The highest average
PM, 5 concentrations are found in the southwestern part of
Taiwan, at stations such as AY, SQ, DC, KU, and NN. For
coarse particles (PM 5) the highest levels are found at the
same stations (Table 1), and the spatial distributions at va-
rious months are very similar, with significantly lower con-
centrations on the east coast.

The main sources of PM;, have been identified as ve-
hicle emissions, industry, secondary aerosols, crustal dust,
biomass burning, marine spray, and combustion from a pre-
vious study in central Taiwan (Chio et al. 2004). Most of
these sources arise from anthropogenic and industrial activ-
ity. Most of the Taiwanese population can be found along the
western plain region, particularly in the three urban regions
of Taipei, Taichung, and Kaohsiung in the northern, central,
and southern parts of the western plain, respectively (Chen

etal. 1999). More than 60% of Taiwan’s heavy industries are
found in Kaohsiung (Yuan et al. 2006), near which the sta-
tions AY, SQ, and DC are all found. The high level of PM
concentrations observed in southwestern Taiwan naturally
follows from these strong emissions. This is in accordance
with a prior observational study that showed Kaohsiung to
have the highest PM concentrations, on average, among the
three major urban regions (Chen et al. 1999).

4. RESULTS
4.1 Which Variables are Most Important?

Table 2 shows results from an attempt - based on the
AIC - to determine which variables are the most important (in
a statistical sense) in predicting visibility. “Important” is de-
fined here as the highest incurred “cost” (most increase in
AIC; see section 2.3.1) when a variable is removed from con-
sideration in a regression model. In all of the west coast sta-
tions the three most important variables are M;, PM; s, and
(100 - RH). For the majority of stations the monthly factor M;
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Table 2. The order of “importance™ of each potential explanatory variable, i.e., its usefulness in predicting visibility, to be incorporated into the
multiple regression. A variable was regarded as being more important in predicting visibility when a larger increase in Akaike Information
Criterion (AIC; section 2.3.1) resulted after the variable is removed from the regression. The shaded area marks out the variables in which the
regression coefficient for a variable cannot be rejected at the 0.01 significance level, based on an F-test. These results are derived for the subset of
data used in the multiple linear regression (0400 ~ 0800 LT in November ~ April during 2005 ~ 2006). The “wind sector’” denotes classification of

wind direction data into the four cardinal directions (N, E, S, W).

month RH.unsat PM, 5 rain PM, .25 windspd windsector

PO 1 2 3 4 5 6 7
GM 1 3 2 4 5 7 6
MQ 1 2 3 6 4 5 7
KU 1 3 2 6 4 5

NN 1 3 2 5 4 6

AY 2 3 1 4 5 6

SQ 3 2 1 4

DC 3 2 1 4

QC 1 3 2 4

YU 1 4 3 2

CS 1 4 3 2

ZN 1 4 2 3

LT 1 3 4 2

was the most significant, suggesting that systematic month-
to-month variation in visibility exists. Rainfall is more im-
portant on the east coast, coming in second at YU, CS, and LT
and third at ZN. The fine particles PM, 5 appear to be more
closely associated with visibility than the coarse particles
PMio.25.

The wind-related variables (wind sector and windspeed)
are generally less important. The “wind sector” refers to
classification of wind direction data into the four cardinal di-
rections (N, E, S, W). At 7 out of the 13 stations wind sector
is the least important variable; at 5 of them it was wind
speed. At 6 stations wind sector is not statistically significant
at the 0.01 level according to the F-test (null hypothesis: re-
gression coefficient =0). The same is true for windspeed at 7
stations.

We removed variables revealed as statistically insignifi-
cant in Table 2 from the multiple regression to be discussed
in the next Section. Furthermore, wind sector was removed
from consideration altogether. Other than the fact that wind
sector seemed lower in importance than most other factors,
the reasons are twofold. In some places almost all of the data
come from a single sector; in other cases the wind sector va-
ried systematically from month to month, suggesting strong
correlation and lack of independence from the month factor.

In addition, PM was not incorporated in the linear model
for LT, because PM measurements were carried out far away
from this off-shore island, at Taitung (Table 1). The large
separation distance likely contributed in PM being ranked
as only the fourth important variable, the lowest ranking
among all of the stations.

4.2 Regression Results

We discuss results from the multiple regression (shown
in Table 3), starting from diagnostics and then moving on to
values of the fitted regression coefficients.

4.2.1 Model Evaluation: R* and Residual Standard
Error

A rough assessment of the statistical model’s perfor-
mance can be determined by examining R” and residual
standard error. Both diagnostics were calculated by com-
paring 2007 observations versus simulated values. Be-
cause the regression coefficients were fitted with 2005 ~
2006 data, the 2007 observations provide an independent
dataset against which to evaluate the regression. By using
a separate year, the diagnostics also test the regression
model’s capability to extrapolate to years not used in the
fitting process.

The regression model accounted for roughly 30% to
60% of the variance, depending on location. The residual
standard error is roughly 1000 ~ 2000 m, indicating that the
regression-predicted visibility deviates from measurements
by this amount, on average.

The lower R* values on the east coast (YU, CS, ZN) sug-
gest that visibility at those locations is controlled by pro-
cesses that are captured only to a limited extent by the re-
gression model. The associated lower residual standard error
is a reflection of the fact that visibility on the east coast ex-
hibits less amplitude to begin with (Fig. 3).
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4.2.2 Month Factor M;

M, can be thought of as the “baseline visibility” when RH
=100% and when no PM, rain, or wind is present [Eq. (2)].
M; also reflects influences from variables missing from the
regression model that co-vary with the month. Examples in-
clude wind direction (section 4.1), synoptic conditions
(weather system), and cloudiness.

From Table 3 we can see that the fitted values of M, are
lowest in the months of January and February, which are
also the months with the lowest average observed visibility
(Fig. 1). While the observed visibility can be thought of as
the baseline visibility, plus the additional impact of explana-
tory variables [similar to Eq. (2)], it is not surprising to see
the average visibility track the baseline.

4.2.3 Bpy

The regression coefficients B,,, in Table 3 represent the
sensitivity of visibility to each explanatory variable var; it is
the “leverage” different physical variables have on visibility.

Bpy, 1s negative: i.e., visibility declines with increasing
PM concentrations. The aerosols comprising particulate
matter scatter and absorb radiation (Malm 1999), thereby
reducing visibility. In other words, Bpy, encapsulates the
strength of aerosol light extinction due to absorption and
scattering. Previous studies have attributed reductions in vi-
sibility to high concentrations of particles with relatively
small diameter, ranging from 0.1 to 2 microns (Sloane et al.
1991). These particles are close in size to the wavelength of
visible light, hence the higher scattering efficiency (Malm
1999), and comprise most of the fine particles comprising
PM, 5. Indeed, Bpyp.s is more negative than Bpys0.2.5. Bryio-2.s
ranges from -6 to -34 m per pg m™ of coarse particles but in-
creases in magnitude to -31 ~ -63 in the case of PM,s. The
sole exception was MQ, where Bpyp s and Bpyjg.2.5 are com-
parable, at ~-30 m per ug m™. This is likely because of the
spatial mismatch and effect from Mt. Dadu separating the
visibility and PM observations at MQ (see section 3.2), with
errors propagating into the derived Bpy,.

The variability observed in Bpy, at various sites may be
due, to a large extent, to the varying chemical composition of
particles. Among fine particles the light scattering coeffi-
cient is a strong function of chemical composition, with sul-
fate and nitrate species being particularly efficient scatterers
(Sloane etal. 1991). The same result was confirmed in a pre-
vious study in Taiwan, based in Kaohsiung (Yuan et al. 2006).

On the other hand, the magnitudes of Bpy, 5 and Bpy0.2.5
derived in this study are significantly less - by an order of
magnitude - than that from a previous study in Kaohsiung
(Yuan et al. 2006), which was ~-200 m per pg m™. We sus-
pect that the reason for this large difference is not just be-
cause of variability in chemical composition, but because the
visibility observations in this study were reported with ma-

ximum values imposed at 9999 m, while the observations
in Yuan etal. (2006) had no such ceiling. So any reduction of
visibility above 9999 m (e.g., from 15 to 12 km) would be
neglected.

4.2.4 B(l()l] - RH)

The values of Byiqo - r) are positive, suggesting that as
the atmosphere becomes drier (lower RH), visibility in-
creases. The lowering of visibility with higher RH is likely
because fog formation (also see section 4.4) requires satura-
tion conditions for water vapor to condense to the liquid
phase, a fundamental principle of atmospheric thermody-
namics (Bohren and Albrecht 1998). Furthermore, aerosol
production is known to be accelerated at high humidity con-
ditions (Tang et al. 1981). For instance, high humidity en-
ables SO, to more readily dissolve in droplets and oxidize to
produce sulfate aerosols (Tsai and Cheng 1999). Further-
more, inorganic salts such as ammonium sulfate and nitrate
are hygroscopic, undergoing conversion from solid particles
to solution droplets at higher levels of RH and reaching a
size that is especially effective in scattering light and reduc-
ing visibility (Malm 1999).

Previous localized studies in Taichung (Tsai and Cheng
1999) and Kaohsiung (Yuan et al. 2006) have both re-
ported visibility reduction when RH increases. The re-
ported coefficients of -190 m/% (Tsai and Cheng 1999)
and -150 m/% (Yuan et al. 2006) are very much compara-
ble to the values for west coast stations in this study. This
suggests that unlike Bpy, B(i00 - Ry Was not significantly
affected by the 9999 m ceiling. We believe this implies
that under high visibility (> 9999 m) conditions, RH af-
fects visibility less than PM, which scatters/absorbs radia-
tion regardless.

4.2.5 B,in

The values of B,,;, indicate that the presence of rainfall
decreases visibility on average by hundreds of meters, up to
2000 m (at GM and YU). The rainfall-induced fall in visibil-
ity appears to be large at all of the east coast stations and at
LT, with magnitudes all greater than 1500 m. The impact of
rainfall can also be discerned in Figs. 2 ~ 3, with the rain-
fall-induced visibility reduction being much more pronounced
at YU (B4, = -1902) than at AY (B, = -1100) during the
months of November ~ April.

The factors controlling B,,;, have been known at least
since the early 1920s. Preston (1920), using a simple physi-
cal model, showed that the amount of visibility attenuation
during rainfall is “simply proportional to the number of
(drops falling onto a unit area of the earth’s surface) per
second.” This work is updated in Achour (2002). These au-
thors showed that the degree to which rainfall decreases
visibility is magnified when more raindrops are found in
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the atmosphere scattering sunlight. Given the same amount
of precipitation accumulating over an hour, the visibility at-
tenuation would be less if the raindrops are larger (less num-
ber of droplets in the atmosphere). Since observations of
raindrop size distributions are not available, we can only
speculate on this point and not attempt to verify the corre-
spondence between B,,;, and rain drop sizes.

4.2.6 Bina

Other than AY, the values of B,,;,; were positive at the 5
other stations where windspeed was deemed statistically
significant. This suggests that visibility increases along
with windspeed, a result also previously observed in south-
ern (Yuan et al. 2006) and central (Tsai and Cheng 1999)
Taiwan.

Higher wind induces mechanical production of turbu-
lence, leading to dispersion as well as a higher boundary
layer height (Stull 1988). Conversely, low wind conditions
lead to buildup of moisture and PM in a shallower boundary
layer, resulting in low visibility events. Indeed, one of the
worst pollution episodes in southern China was associated
with stagnant, low wind conditions (Fu et al. 2008).

B,ina was negative at AY, making it an exception to the
above. We suspect this is due to fog being advected to AY,
which was the explanation given for the negative correspon-
dence between visibility and wind at some sites in Finland
(Hyvdérinen et al. 2007).

4.3 Uncertainty Analysis

In this section we examine errors in visibility that arise
from different sources, particularly if the regression model is
used in a forecast setting. The total error o, (i.e., the stan-
dard deviation of the total deviation between observed ver-
sus regression-simulated visibility) is partitioned into the
sum of error in measuring (0,,,,) and modeling (0y;,) visibil-
ity. Ogn, In turn, incorporates inadequacies in the fitted statis-
tical model (o) as well as uncertainties in the values of dif-
ferent explanatory variables (0,,,). Hence the error terms are as
follows:

Nyar
2 2 2 2 2 2
O tor = O msm + O sim = O msm + O fit + O var (4)

var=1

where N,,, is the number of explanatory variables, and var
refers to RH, PM, ... etc. Equation (4) assumes that the dif-
ferent error terms are independent of one another (Taylor
1997). oy arises from the statistical model’s limitations.
For instance, for the multiple linear regression adopted here
[Eq. (2)] such restrictions would include the deviation from
linearity and the missing impact of omitted variables. o,,,
can be distinguished between the case of a) visibility “hind-

casts”, in which measurements of explanatory variables are
used; b) visibility “forecasts”, in which predictions of the
explanatory variables are used (0,4, ss:). The total forecast
error when using the regression (T, o) 15, then:

Ny

z O-z\ur,_fc,\‘t (5)

var=1

2 2
O sim, fest = O fit +

To solve for 0y, sesr, the value of oy, needs to be first estab-

N,
lished by rearranging Eq. (4): 0% = 0% = Con— 3.0

var=1
0, 18 set to the values of the residual standard error shown
in Table 3. 0,,, is estimated to be approximately 10% of the
measured visibility, as a rough estimate of the measure-
ment error following personal communication with per-
sonnel in the Taiwanese Air Force familiar with the mea-
surements. One non-negligible contribution to o,, in the
case of hindcasts is the error due to the fact that temperature
and dewpoint are reported without decimal points. We es-
timated this round-off error cause uncertainties of roughly
2% in RH. This 2% is then multiplied with B(190 - zs) in Ta-
ble 3 to calculate 0,

We derived errors in forecasted predictor variables from
the published literature, and this error is multiplied by values
of B, as specified in Table 3 to calculate 0, ;5. We calcu-
late errors of forecasts 24 hours into the future, since this is a
typical timeframe with which flight decisions are made. The
24-hour forecast error of RH and windspeed are taken to be
17.5% and 3 m s, respectively, following the results of an
ensemble mesoscale modeling study over the Taiwan area
by Chien et al. (2006). The forecast error of hourly PM, 5 is
11 pg m>, as seen in a US study based on a state-of-the-art
air quality modeling system (Yu et al. 2008). We are not
aware of published values for forecast errors in coarse frac-
tion PM (PM,o.,5). The forecast error of daily averaged
PM), in a European study (Honore et al. 2008), however,
was identical to that reported for daily averaged PM, 5 (Yu et
al. 2008). This suggests that the hourly forecast error for
coarse fraction PM is likely similar to that for PM, 5. In the
absence of further information, we take the error of PM (.5
to be equal to that of PM, s, at 11 pug m™.

Results of the uncertainty analysis are shown in Fig. 5.
Ogru, fes 18 by far the largest source of error in regression-
predicted visibility on the west coast of Taiwan, with values
> 1500 m and even up to 3000 m. The contribution from un-
certainties in predicting PM, 5 is next in importance, fol-
lowed by PM., 5 and windspeed, which are comparable in
magnitude. The much lower sensitivity to PMjq.,5 (Table 3)
clearly caused the lower contribution from these coarser PM.

Due to the lack of suitable estimates of uncertainties in
predicting rainfall events, we currently do not have a quanti-
tative estimate of 0,4, 1. However, it is clear that the values
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of B, in Table 3 provide an upper bound for this uncer-
tainty.

The smallest forecast errors are found at the three east
coast stations of YU, CS, and ZN. This follows from the fact
that visibility is generally high on the east coast (Fig. 1), with
smaller variability and thus smaller residual error oy, Fur-

Sources of Error in Visibility Forecast

O Fit
z RH
g | m PM25
PMcoarse
O Wind
301
8 g _| 151
=
T -
| a0d
#1500
™ _|
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Al |
Al
T T T T
119 120 121 122
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Fig. 5. Sources of uncertainties in forecasting visibility 24 hours into
the future, based on the multiple linear regression at various stations
around the Taiwan region. The various bars refer to uncertainties
arising from inadequacies in the fitted statistical model (“Fit”) and er-
rors in the forecasted values of explanatory variables (“RH”, “PM,s”,
“PMcoarse”, and “Wind”). Variables deemed statistically unrelated to
visibility at a station are not included within the uncertainty analysis.
Values are in units of meters and refer to the standard deviation (rather
than variance) 0, . for explanatory variable var.

thermore, visibility covaries to a lesser extent with RH on the
east coast (Table 3), so even with the large error in forecast-
ing RH, a smaller error in visibility would result.

4.4 Logistic Regression: What Controls Probability of
Extremely Low Visibility?

Results of the logistic regression are shown in Table 4.
The east coast stations and off-shore islands (YU, CS, ZN,
LT, QC) were not included in the analysis, since frequencies
of occurrence of visibility < 1600 m were too low (Table 1).
Also, from analyses of AIC (section 2.3.2) we see that nei-
ther rain nor wind speed appears to be related significantly to
occurrence of low visibility.

We can see that values of exp (m;) vary greatly, ranging
from below 1.0 to even over 3.0. This means that the “base-
line probability” of low visibility varies significantly from
month to month. However, at almost every site the largest
values occur during the months of January and February,
which are also the months when the lowest average visi-
bilities are observed around Taiwan (Fig. 1), simply indicat-
ing that fog events contribute significantly to the low visi-
bilities in January and February.

Values of exp[boo - rir] at the different stations are less
than 1.0 and vary within a relatively tight range of 0.7 ~ 0.8.
Thus as the atmosphere becomes drier, i.e., increased (100 -
RH), the odds of a low visibility event decreases. This can be
seen in Fig. 6 for AY. The estimated dependence of p with
respect to (100 - RH) is also shown as the solid line. High
RH is certainly a requisite condition for fog formation; for
instance, Croft et al. (1997) found that the best statistical
predictor for dense fog in southern US was the surface-
level RH. Likewise, Tsai and Cheng (1999) pointed out that
the high RH in central Taiwan caused the presence of early

Table 4. Results from the logistic regression [Eq. (3)]: logit(p) = log.[p/(1 - p)]=m;i + baoo - rery * [100 - RH] + bpaps * [PMas] + bpanoas *
[PM,o.25], where p is the probability of occurrence of extremely low visibility events (< 1600 m). The regression coefficients are shown as exp (m;) or
exp (bvar), which is the change in odds [= p/(1 - p)] for a unit increase in RH, PM,s, or PMj¢.25 (see section 2.3.2). Thus values > 1.0 indicated
increased p when the variable under consideration is increased, and vice versa. The east coast stations and off-shore islands (YU, CS, ZN, LT,
QC) were not included in the analysis, since frequencies of occurrence of visibility < 1600 m were too low (Table 1).

Station exp(my) exp(my,) exp(my) exp(moy) exp(my) exp(myy) exp(bioo-rr) exp(bpyns) exp(bpano-as)
PO 1.900 2.291 0.957 0.292 0.595 0.360 0.773 - -
GM 1.333 0.463 0.493 0.077 0.082 0.018 0.711 - 1.070
MQ 2.196 3.136 1.125 0.679 0.500 0.508 0.832 - -
KU 0.137 0.175 0.039 0.025 0.046 0.028 0.692 1.035 1.015
NN 0.333 0.207 0.053 0.162 0.135 0.110 0.693 - 1.063
AY 0.103 0.057 0.028 0.032 0.051 0.105 0.716 1.027 1.034
SQ 1.564 1.464 1.250 0.220 0.768 1.199 0.764 - -
DC 2.019 1.760 1.060 0.253 1.068 1.173 0.752 - -
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Fig. 6. Variation of p, the probability of occurrence of low visibility
events (< 1600 m) with the departure from saturation (100 - RH) at AY.
The curve is the fitted dependence from the logistic regression. The
gray points indicate the observed probabilities.

morning fog in the late winter and early spring.

PM, s and PM,, s are statistically significant at some
locations and increase p. PM is known to affect the micro-
physical properties of fog. A larger number of particles lead
to smaller, but higher number of droplets (Twomey 1977).
Because the opacity of fog increases with droplet concentra-
tion, the visibility would also decrease with PM (Croft et al.
1997), thus increasing p.

5. CONCLUSIONS

Through statistical analyses, this study has revealed the
following:

e Visibility exhibits systematic variation from month to
month, with lowest values during the winter months;

o On the West Coast of Taiwan, PM, 5 and RH are related most
to visibility, and to a lesser extent, PM., s and windspeed;

e On the East Coast, rainfall plays a more significant role in
reducing visibility;

e Wind direction was found to be a poor predictor of vi-
sibility;

e PM, 5 causes a larger drop in visibility than PM;; 5.

The occurrence of low visibility (< 1600 m) events such
as fog is shown to:

e be rare on the East Coast and off-shore islands;

e increase with RH at all stations;

e increase with PM at some locations;

e be unrelated to other variables such as windspeed, wind

direction, and rainfall.

A quantitative analysis of uncertainties shows that large
errors still exist if the regression model is used to forecast
visibility 24 hours into the future. The largest error source is
the forecast error in RH (Ogy, est), Which can reach values as
large as 3000 m. Next is the error in the statistical model
(07), which is approximately 1500 m. Given such large er-
rors, the resulting predictions in visibility would have uncer-
tainties (assuming each term being uncorrelated) of approxi-

mately v1500> + 3000% =3350 m.

These large uncertainties directly point to future steps to
improve visibility forecasts. o can be easily reduced by
adopting a more sophisticated statistical model. Separate co-
efficients for each month can be fitted. Also, instead of rely-
ing entirely on 24-hour forecasts of explanatory variables,
the statistical model can make use of observed values of
these variables within the 24-hour window in a time-lagged
correlation regression. Additional predictor variables can be
incorporated that would likely have relevance for visibility,
such as synoptic patterns (e.g., positions of pressure sys-
tems), turbulence strength, or cloud cover.

Reducing ogy, 1os is much more difficult. The significant
error in RH of 17.5% reported by Chien et al. (2006) derives
from an advanced, ensemble simulation of mesoscale mo-
dels over Taiwan. Additional improvements may require
significant investment in assimilating into mesoscale models
different humidity observations - e.g., from radiosondes and
satellites such as AIRS (Aumann et al. 2003). It is clear that
without accurate predictions of RH, precise visibility fore-
casts are not possible. Determining the amount of liquid
water suspended in the atmosphere attenuating light - the
reason behind severe visibility reductions under foggy con-
ditions - requires knowledge of RH.

The uncertainty due to PM, s (0pup s, o) 1S on the order
of several hundred meters, much less than that due to RH but
larger than the errors due to the other explanatory variables.
The 24-hour forecast error of 11 pg m™ for PM, s (Yu et al.
2008), based on state-of-the-art air quality modeling system
in the US, is likely larger for Taiwan, where the population
density (642 people km™) is vastly higher than in the US
(31 people km™) (http:/www.wikipedia.org; accessed Au-
gust 2008) and where strong emissions associated with po-
pulation centers are expected to translate into higher mag-
nitudes and gradients of PM concentrations (Fig. 4), increas-
ing the difficulty of PM prediction. Even in the US, where
significant effort has been invested into compiling accurate
inventories of PM sources, considerable uncertainties still
exist (Simon et al. 2008).

PM forecasts can be improved by improving the PM
emission inventories by combining the PM concentration
observations with a model of atmospheric transport. Known
as “inverse analysis”, this method has been widely applied to
other atmospheric species such as CO, (Lin et al. 2004), CO
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(Miller et al. 2008), or CFCs (Hurst et al. 2006).

Ultimately, visibility should be a forecast variable di-
rectly predicted by numerical prediction models, bypassing
the need to use statistical models. Towards this end the mo-
dels need to incorporate more mechanistic descriptions of
processes such as microphysics and radiative transfer, i.e.,
the transformation of hydrometeors plus the scattering/ab-
sorption of radiation by aerosols and water droplets. How-
ever, this is clearly beyond the capability of most models,
with the large uncertainty in predicting RH being sympto-
matic of such deficiencies. Moreover, most numerical mo-
dels inadequately resolve details of relevance for visibility,
which are at the sub-gridscale (Hansen 2007). In the absence
of direct numerical prediction capabilities for visibility, the
statistical approach exemplified by the one described in this
paper will continue to be of value, and the considerable un-
certainties identified above need to be overcome.

Acknowledgements We thank the Taiwan Environmental
Protection Administration in carrying out the PM measure-
ments and graciously making available the dataset. We ap-
preciate the dedicated and sleep-deprived personnel of the
Weather Wing of the Taiwan Air Force in making possible
the 24-hour, year-round measurements of visibility and
meteorological variables.

REFERENCES

Achour, M., 2002: Simulating atmospheric free-space optical
propagation: Part I, rainfall attenuation. Proc. SPIE, 4635,
192-201, doi: 10.1117/12.464100. [Link]

Akaike, H., 1974: A new look at statistical model identification.
IEEE Trans. Autom. Control, AU-19, 716-723, doi: 10.
1109/TAC.1974.1100705. [Link]

Arpino, R., 1994: Automated weather observation systems find
increasing acceptance at major airports. /CAO J., 49, 15-
16.

Aumann, H. H., M. T. Chahine, C. Gautier, M. D. Goldberg, E.
Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkrag,
W. L. Smith, D. H. Staelin, L. L. Straw, and J. Susskind,
2003: AIRS/AMSU/HSB on the Aqua Mission: Design,
science objectives, data products, and processing systems.
IEEE Trans. Geosci. Remote Sensing, 41, 253-264, doi:
10.1109/TGRS.2002.808356. [Link]

Bohren, C. F. and B. A. Albrecht, 1998: Atmospheric Thermo-
dynamics. Oxford University Press, 416 pp.

Chang, S.-C. and C.-T. Lee, 2007a: Evaluation of the trend of
air quality in Taipei, Taiwan from 1994 to 2003. Environ.
Monit. Assess., 127, 87-96, doi: 10.1007/s10661-006-
9262-1. [Link]

Chang, S.-C. and C.-T. Lee, 2007b: Assessment of PM;, en-
hancement by yellow sand on the air quality of Taipei, Tai-
wan in 2001. Environ. Monit. Assess., 132, 297-309, doi:
10.1007/s10661-006-9534-9. [Link]

Chen, M.-L., I.-F. Mao, and I.-K. Lin, 1999: The PM, s and PM;,

particles in urban areas of Taiwan. Sci. Total Environ., 226,
227-235, doi: 10.1016/S0048-9697(98)00407-0. [Link]

Chien, F.-C., Y.-C. Liu, and B. J.-D. Jou, 2006: MMS5 ensemble
mean forecasts in the Taiwan area for the 2003 Mei-Yu sea-
son. Weather Forecast., 21, 1006-1023, doi: 10.1175/
WAF960.1. [Link]

Chio, C.-P., M.-T. Cheng, and C.-F. Wang, 2004: Source appor-
tionment to PM,, in different air quality conditions for
Taichung urban and coastal areas, Taiwan. Atmos. Environ.,
38, 6893-6905, doi: 10.1016/j.atmosenv.2004.08.04 1. [Link]

Croft, P. J., R. L. Pfost, J. M. Medlin, and G. A. Johnson, 1997:
Fog forecasting for the Southern Region: A conceptual
model approach. Weather Forecast., 12, 545-556, doi:
10.1175/1520-0434(1997)012<0545:FFFTSR>2.0.CO;2.
[Link]

Dalgaard, P., 2002: Introductory Statistics with R. Springer, 267
pp-

Fu, Q., G. Zhuang, J. Wang, C. Xu, K. Huang, J. Li, B. Hou, T.
Lu, and D. G. Streets, 2008: Mechanism of formation of
the heaviest pollution episode ever recorded in the Yangtze
River Delta, China. Atmos. Environ., 42, 2023-2036, doi:
10.1016/j.atmosenv.2007.12.002. [Link]

George, J. J., 1960: Weather Forecasting for Aeronautics. Aca-
demic Press, 637 pp.

Hansen, B., 2007: A fuzzy logic-based analog forecasting sys-
tem for ceiling and visibility. Weather Forecast., 22, 1319-
1330, doi: 10.1175/2007WAF2006017.1. [Link]

Honor¢, C., L. Rouil, R. Vautard, M. Beekmann, B. Bessagnet,
A. Dufour, C. Elichegaray, J.-M. Flaud, L. Malherbe, F.
Meleux, L. Menut, D. Martin, A. Peuch, V.-H. Peuch, and
N. Poisson, 2008: Predictability of European air quality:
Assessment of 3 years of operational forecasts and analy-
ses by the PREV’AIR system. J. Geophys. Res., 113,
D04301, doi: 10.1029/2007JD008761. [Link]

Horng, C.-L. and M.-T. Cheng, 2008: Distribution of PM,;,
acidic and basic gases near highway in central Taiwan.
Atmos. Res., 88, 1-12, doi: 10.1016/j.atmosres.2007.09.
002. [Link]

Hurst, D., J. C. Lin, P. A. Romashkin, B. C. Daube, C. Gerbig,
D. M. Matross, S. C. Wofsy, B. D. Hall, and J. W. Elkins,
2006: Continuing global significance of emissions of
Montreal Protocol-restricted halocarbons in the United
States and Canada. J. Geophys. Res., 111, D15302, doi:
10.1029/2005JD006785. [Link]

Hyvirinen, O., J. Julkunen, and V. Nietosvaara, 2007: Climato-
logical tools for low visibility forecasting. Pure Appl. Geo-
phys., 164, 1383-1396, doi: 10.1007/s00024-007-0224-5.
[Link]

ICAO (International Civil Aviation Organization), 2007: An-
nex 3: Meteorological Service for Internation Air Naviga-
tion, 16" Edition. Montreal, Quebec, Canada, 202 pp.

Lin, J. C., C. Gerbig, S. C. Wofsy, A. E. Andrews, B. C. Daube,
C. A. Grainger, B. B. Stephens, P. S. Bakwin, and D. Y.
Hollinger, 2004: Measuring fluxes of trace gases at regional
scales by Lagrangian observations: Application to the CO,


http://dx.doi.org/10.1117/12.464100
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1109/TGRS.2002.808356
http://dx.doi.org/10.1007/s10661-006-9262-1
http://dx.doi.org/10.1007/s10661-006-9534-9
http://dx.doi.org/10.1016/S0048-9697(98)00407-0
http://dx.doi.org/10.1175/WAF960.1
http://dx.doi.org/10.1016/j.atmosenv.2004.08.041
http://journals.ametsoc.org/doi/full/10.1175/1520-0434%281997%29012%3C0545%3AFFFTSR%3E2.0.CO%3B2
http://dx.doi.org/10.1016/j.atmosenv.2007.12.002
http://dx.doi.org/10.1175/2007WAF2006017.1
http://dx.doi.org/10.1029/2007JD008761
http://dx.doi.org/10.1016/j.atmosres.2007.09.002
http://dx.doi.org/10.1029/2005JD006785
http://dx.doi.org/10.1007/s00024-007-0224-5

374 Lin et al.

Budget and Rectification Airborne (COBRA) study. J. Geo-
phys. Res., 109, D15304, doi: 10.1029/2004JD004754. [Link]

Malm, W. C., 1999: Introduction to Visibility. Report from Air
Resources Division, National Park Service, Fort Collins,
Colorado, USA, 70 pp.

Martin, M. D. and P. W. Suckling, 1987: Winter fog and air tran-
sportation in Sacramento, California. Climatol. Bull., 21,
16-22.

Miller, S., D. M. Matross, A. E. Andrews, D. B. Millet, M.
Longo, E. W. Gottlieb, A. I. Hirsch, C. Gerbig, J. C. Lin, B.
C. Daube, R. C. Hudman, P. L. S. Dias, V. Y. Chow, and S.
C. Wofsy, 2008: Sources of carbon monoxide and formal-
dehyde in North America determined from high-resolution
atmospheric data. Atmos. Chem. Phys., 8, 7673-7696.

Miiller, M. D., C. Schmutz, and E. Parlow, 2007: A one-dimen-
sional ensemble forecast and assimilation system for fog
prediction. Pure Appl. Geophys., 164, 1241-1264, doi:
10.1007/s00024-007-0217-4. [Link]

Preston, F. W., 1920: Visibility of the landscape during rain.
Nature, 106, 343-344, doi: 10.1038/106343d0. [Link]

R Development Core Team, 2005: R: A language and environ-
ment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org. [Link]

Simon, H., D. T. Allen, and A. E. Wittig, 2008: Fine particulate
matter emissions inventories: Comparisons of emissions
estimates with observations from recent field programs. J.
Air Waste Manage. Assoc., 58, 320-343.

Sloane, C. S., J. G. Watson, J. C. Chow, L. C. Pritchett, and L.
W. Richards, 1991: Size-segregated fine particle measure-
ments by chemical species and their impact on visibility
impairment in Denver. Atmos. Environ., 25A, 1013-1024.

Stull, R. B., 1988: An Introduction to Boundary Layer Meteo-

rology. Kluwer, 680 pp.

Tang, I. N., W. T. Wong, and H. R. Munkelwitz, 1981: The rela-
tive importance of atmospheric sulfate and nitrates in vi-
sibility reduction. Atmos. Environ., 15, 2463-2471, doi:
10.1016/0004-6981(81)90062-7. [Link]

Taylor, J. R., 1997: An Introduction to Error Analysis: The
Study of Uncertainties in Physical Measurements (Second
Edition). University Science Books, 327 pp.

Teixeira, J. and P. M. A. Miranda, 2001: Fog prediction at Lis-
bon Airport using a one-dimensional boundary layer mo-
del. Meteorol. Appl., 8, 497-505, doi: 10.1017/S135048
270100411X. [Link]

Tsai, Y. I. and M. T. Cheng, 1999: Visibility and aerosol che-
mical compositions near the coastal area in Central Taiwan.
Sci. Total Environ., 231, 37-51, doi: 10.1016/S0048-9697
(99)00093-5. [Link]

Twomey, S., 1977: The influence of pollution on the shortwave
albedo of clouds. J. Atmos. Sci., 34, 1149-1152.

Venables, W. N. and B. D. Ripley, 2002: Modern Applied Sta-
tistics with S. Springer, 495 pp.

Yu, S., R. Mathur, K. Schere, D. Kang, J. Pleim, J. Young, D.
Tong, G. Pouliot, S. A. McKeen, and S. T. Rao, 2008:
Evaluation of real-time PM2.5 forecasts and process an-
alysis for PM2.5 formation over the eastern United States
using the Eta-CMAQ forecast model during the 2004
ICARTT study. J. Geophys. Res., 113, D06204, doi:
10.1029/2007JD009226. [Link]

Yuan, C.-S., C.-G. Lee, S.-H. Liu, J.-C. Chang, C. Yuan, and
H.-Y. Yang, 2006: Correlation of atmospheric visibility
with chemical composition of Kaohsiung aerosols. Atmos.
Res., 82, 663-679, doi: 10.1016/j.atmosres.2006.02.027.
[Link]


http://dx.doi.org/10.1029/2004JD004754
http://dx.doi.org/10.1007/s00024-007-0217-4
http://dx.doi.org/10.1038/106343d0
http://cran.r-project.org/doc/manuals/refman.pdf
http://dx.doi.org/10.1016/0004-6981(81)90062-7
http://dx.doi.org/10.1017/S135048270100411X
http://dx.doi.org/10.1016/S0048-9697(99)00093-5
http://dx.doi.org/10.1029/2007JD009226
http://dx.doi.org/10.1016/j.atmosres.2006.02.027

