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ABSTRACT

A new spectral moist convection model that employs both the least as-
sumptions in moist physics and a very accurate solution method is pre-
sented. The temperature and pressure in the model are diagnostically de-
termined from thermodynamics. There is no need to predict water vapor
and condensate separately; rather, they are diagnostically separated from
the predicted total airborne water. The model allows a modular separation
of dynamics and thermodynamics; the link between dynamics and thermo-
dynamics is through the pressure gradient force. The modular separation
allows the possibility of having a detailed, fine resolution, nonhydrostatic
cloud model and a coarse resolution, hydrostatic model which can be run
side by side with the identical moist thermodynamics. The height coordi-
nate of the nonhydrostatic model can also extend into the hydrostatic re-
gime. The only differences between the hydrostatic and nonhydrostatic
models are spatial resolution and the way vertical motion is computed. We
have performed numerical experiments in the nonhydrostatic model for
acoustic adjustment and moist convection. The discontinuity in thermody-
namics due to phase change is modified in the model by the ‘“‘gradual satu-
ration” technique.

{Key words: Fourier-Chebyshev spectral method, Acoustic adjustment,
Lanczos filter)

1. INTRODUCTION

Global models have become important tools for weather and climate simulations. How-

ever, these models have simplified hydrostatic dynamics and coarse vertical and horizontal
resolution, so they are unable to explicitly simulate most of the cloud patterns that are crucial
to climate dynamics. Because of their important effects on radiative transfer, hydrological
cycles and apparent heat sources, moist convections must be more accurately treated in cli-
mate models. The real atmosphere contains a myriad of cloud structures which modulate ra-
diative fluxes and which modify atmospheric structure by condensing water at one level and

1Depanment of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan, ROC

651



652 TAO, Vol. 10, No. 4, December 1999

reevaporating it at another level. This deep and shallow moist convection can be modeled
more accurately with a nonhydrostatic model. Nonhydrostatic convection models can be based
on unfiltered or filtered systems. The filtered systems include the anelastic and Boussinesq
equations. Ogura and Phillips (1962) derived the anelastic system under the assumptions that
the percentage range of potential temperature is small and the time scale is set by the Brunt-
Viisild a frequency. The anelastic equations reduce to the Boussinesq equations under the
additional assumption that the vertical scale of motion is small compared with the depth of an
isentropic atmosphere. In an unfiltered system, one has to cope with the propagation of acous-
tic waves. Often the pressure is used as a prognostic variable of the model. Since pressure is
not a conservative property, the prognostic equation for pressure has been derived from other
conservation laws under some approximation of moist thermodynamics, which usually in-
volves a definition of equivalent potential temperature. This is also a problem with existing
general circulation models, since they are based on the quasi-static primitive equations in
sigma coordinates and have a host of thermodynamic approximations associated with the use
of equivalent potential temperature, moist static energy, etc.

With progress in computers and computational techniques, we have often experienced
that the return to the first principles of physics enables a model to cope more easily with the
complexity of the atmosphere. Ooyama (1990) proposed a “primitive” form of moist thermo-
dynamics. Instead of using pressure as a prognostic variable, Ooyama’s model uses the con-
servation of the entropy density, the momentum density and the total moisture density as
predicted variables. With an accurate definition of entropy density in the moist atmosphere,
Ooyama’s proposal involves the least assumptions in reversible moisture physics. Since the
pressure field no longer is a prognostic variable, Ooyama’s proposal also allows the extension
of a nonhydrostatic height coordinate model into the hydrostatic regime. This extension may
be useful in simulations of weather systems that involve a wide range of horizontal scales.

We have constructed a new spectral moist convection model that employs both the teast
assumptions in moist physics and a very accurate solution method. Our modeling effort in-
volves the Fourier-Chebyshev spectral discretization similar to thatin Kuo and Schubert (1988)
and the moist thermodynamics of the “primitive” form in Ooyama (1990). We believe a sound
basis for moist thermodynamics and an accurate treatment of discretization are important for
the improvement of cloud modeling. The goverming equations are presented in section 2. Sec-
tion 3 describes the solution method. Numerical results are covered in section 4. Section 5
contains the concluding remarks.

2. GOVERNING EQUATIONS

We consider the two-dimensional (x-z) case described below. The “primitive” form of
moist thermodynamics makes model predictions strictly in terms of conservative properties,
in particular the density of dry air &, density of total airborne moisture 1), entropy density o, the
momentum densities U=pu, W=pw, where p=£+17). Here we have included precipitation (or
drizzle) effects in Q, and diabatic (e.g., radiative) effects in Q_in our equations. The prognos-
tic equations for the conservative variables are



where

p=E&E+1, u=£, w=
: p

Hung-Chi Kuo & Chao-Tzuen Cheng

U JdUu) J(Uw)
ER

P _
+2&=0,

oW  Id(Wu) JI(Ww) - 8_p=
&+ Y + az€+gp+aZ 0,

do d(ow) 8(ow)=
ax x| &

Qa’

% ) W) _,

o ox & ’
an  d(mu)  dmw) _
o Ta e O

653

2.1)

2.2)

2.3)

2.4)

(2.5)

(2.6,2.7,2.8)

The above constitute eight equations for the five prognostic variables £, 1, ¢, U, W, and the
four diagnostic variables p, u, w and p. The system is closed by the thermodynamic diagnosis,
the input of which is £,7,0, and the output of which is temperature, pressure and the partition
of 1) into its vapor and condensate parts. This requires writing two formulas (depending on
whether the total airborne moisture 7] is entirely in the vapor phase or is partially condensed)
for the entropy o(&,n,T), iteratively solving for two temperatures (T, and T,) and then using

If T,>T, (unsaturated) p =nRT,

If T,>7, (saturated) p =E(T),

T=max(T,,T)

p=SR,T.p=p+p,

=1, n=0

=10, n=n-n,
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Here 77, and 7, are the densities of vapor and condensate respectively, p, and p, the partial
pressures of dry air and water vapor respectively, E(T) the saturation vapor pressure and
N.(D=E(D)}/(R T) the mass density of saturated vapor.

When the hydrostatic approximation is made, as described by Ooyama (1990) and DeMaria
(1995), (2.2) is replaced by a simple diagnostic equation

w0 B et Sy 0,
9 9 =12
az(”caz %2 PO ) o £ % 6 2 Q”ggﬂ’
2.9)
where
c* = gg ‘;gg (2.10)

is the Laplace adiabatic sound speed. Derivations of the vertical motion diagnostic equations
can be found in appendix A. The replacement of (2.2) with (2.9) is the only change necessary
to convert the nonhydrostatic equations to their hydrostatic form. This diagnostic equation is
a one-dimensional (height) second-order elliptic equation that can be solved efficiently using
a direct method. DeMaria (1995) found that hydrostatic solutions of (2.9) are very sensitive to
the method used to solve the diagnostic vertical velocity equation. The sensitivity can be elimi-
nated, as described by DeMaria (1995), by adding an extra term to the diagnostic equation that
ensures the solution does not drift away from the hydrostatic balance due to numerical ap-
proximation. With the diagnostic vertical velocity equation, Ooyama’s formulation allows us

to design a numerical model in height coordmates that can be used in hydrostatic and
nonhydrostatic regimes,

~ 3. SOLUTION METHODS

The simulation of moist convection places great demands on the spatial discretization
schemes used in numerical models. We will use a scheme which is spectral in both directions.
We shall solve the above system of equations on the domain0 < x < L,0 £z < H, with the
assumption that all variables are periodic in x and W= 0 on z = 0,H. In the x direction, Fourier
basis functions are used so that the periodicity is built into each basis function. In the z direc-
tion, Chebyshev polynomial basis functions are used; the top and bottom boundary conditions
are not satisfied by each basis function, but rather by the series as a whole. Details of the
Chebyshev tau method can be found in Fulton and Schubert (1987) and Kuo and Schubert
(1988). In the following we discuss the spectral method for solving the system.
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a. Fourier-Chebyshev method

~ The dependent variables (e.g., &) are approximated by the series expansions

M N .
Exz= 2, XE,. O™, 3.1)

m=-Mn=0

where the T (z”) are the Chebyshev polynomials defined on the interval -1 £2° < 1 by T (2")

= cos(n ¢) with z" = 2z/H-1 = cos ¢. Defining the Fourier-Chebyshev inner product of two
functions f{x,z) and g(x,z) as

_lp e f2)g 2,
(f’g)—ZI—]IO (-2 dxdz (3.2)

where the star denotes complex conjugate. The spectral coefficient g (#) is given by

2
TTc

n

E ()= ——(E(x, 2.0, T,(2)e?™™'1) (3.3)

1 n>0

Chebysheyv spectral space and (3.1) is the transformation back. The evaluation of (3.2) can be
done by the fast Fourier transform and the fast Chebyshev transform. The total N, collocation
points for the fast Chebyshev transform in the vertical are determined as

n=0 .
with ¢, = { } Equation (3.3) is the transformation from physical space to Fourier-

Hl =& .
Z,=—|cos(=>)+1|, j=0,1,2,..N,,
Z; 2_[°°S(N) ] J :

4

With the nonlinear terms defined by,

A=Uu; B= Wu , (3.4a)
C=Uw; D=Ww, (3.4b)
E=zou; F= ow , (3.4¢c)

G=¢%u, H= &éw , (3.4d)
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I=nu; J=1nw, (3.4¢)

and to be computed by the transform method. To eliminate aliasing error in the quadratic
nonlinear terms in the transform method, 3M points in the x direction and 3N/2 points in the z
direction are needed in the physical domain. The tau equations for {2.1}—(2.5) are

A

du

o ALY+ B+ B0 =0, (3.52)

Mo g0 2 B0+ G a5 =0, G
dG,, | a0, pow

— +E+ FOP =0, (3.5¢)

Lo 609 4 S0 =0, 650
dil,, | 200, 00

dt +Imn +‘Imn =0 ’ (3.3¢)

where the x derivative of the spectral coefficients is denoted by the superscript (1,0) and the z
derivative of the spectral coefficients is denoted by the superscript (0,1). The time integration
of (3.5) is done with the fourth-order Runge-Kutta scheme for all the modes -M <m < -M and
0 < n < N with the exception of the spectral coefficients W, ,_; and W,, 5. According to the
7method, the last two vertical modes of W,,, are to be obtained from the vertical boundary
conditions (W (0) = W(H) = 0). Namely, we solve W, ., and W, , by

N
N (-y'w,, =0, (3.62)
p=0
and
) -
S W, =0, (3.6b)
p=0

The relation between Aﬂ,’,m and fimn (the spectral coefficient of A) is
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A0 (27£m)Am ’ 3.7)

while the relation between BO and I§ (the spectral coefficient of B) is

mn

},3,"—— Zp - (3.8)

n p=n+l
p+nodd

Althoﬁgh the spectral evaluation of z derivatives by (3.8) looks at first sight more difficult than

the spectral evaluation of x derivatives by (3.7), such is not the case. Equation (3.8) yields the
{backward) recurrence formula

¢, BOY - BO) = %nﬁ' (n=12,..,N-1) (3.9)

m.n

with the starting values B,(,,0 = B(0 ~ =0. For fixed m, the use of (3.9) allows the N values of
B(0 ' to be computed in O(N) operations.

b. Pressure gradient across a cloud edge

The pressure field is diagnosed from the equation of state in our model. The fields of
temperature and liquid water density can have discontinuities in the first derivative across a
cloud edge due to phase change. With a sufficiently smooth density field, the first derivative
discontinuity in the temperature field causes the first derivative discontinuity in the pressure
field across a cloud edge. To avoid the Gibb’s phenomena in a spectral model, we need to
adapt the “graduation saturation” technique. Since the temperature and the liquid water den-
sity fields do not explicitly appear in (3.5), only treatment for the pressure field is required.
The basic idea is presented in equations (3.10) and (3.11) in this section. The numerical results
are presented in section 4 (i.e., Figs. 1, 2, and 3).

At any spatial point, p=P(& 7,6), thus we have

Vp=FVE+FVn+FVo. (3.10)

The P-coefficients are lnown functions of (x,4,s) so that (3.10) for Vp could now be used for
the pressure gradient force in the momentum equations in the spectral model. However, Ooyama
discusses how this can cause Gibbs’ phenomena near cloud edges. As a solution he proposes
weighted averages of the P-coefficients for saturated and unsaturated conditions. The overlap
of the weighting coefficients is adjusted to the model spatial resolutlon The weighting coeffi-

cients are
Q, _1 1+ tanh L-5 o (3.11a)
2 AT;,
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Q,=1-9,, (3.11b)

If the P;” and P§(2) are computed from T, (temperature in unsaturated region) and T, (tem-

perature in saturated region) respectively, then the weighted average of Pg across cloud edge is
given by

B=QFB"+Q,B”. (3.11c)

Equation (3.11) can also apply to the calculations of P, and P,. The formula for P, P"“’, P 5‘”,
Pg(z), P and P_® can be found in Ooyama (1990). The derivation of the formula is given in
appendix B,

4. NUMERICAL RESULTS

a. One-dimensional experiment

Our first experiment (EXP1) is the calculation of the pressure gradient across a cloud
edge in one dimension. We consider a domain of 0 < x < 2000m. Let

f(x)=a+bexp[—(x;xx°) ], @.1)

where x, = 1000m and A x = 250m. The thermodynamic variables are specified according to
(4.1) with different constants a and b. We take b = 65 m’s?’K-! and a = 220 m?*s2K"! for the
entropy density 0. Similarly, we take b = 0.01 kg m3, @ = 0.0078 kg m for total water density
7 and take 5=0.0095 kg m?, a=1.1135 kg m> for dry air density &.

The profiles of g, & and 7 are shown in Fig. 1. The profiles of the diagnosed temperature
T, pressure p and condensed water density 77, are shown in Fig. 2. There are discontinuities in
the first derivative of the T, p and n_ fields across the cloud edge. Figure 3 shows the pressure
gradient calculated from (a) direct differentiation of the p profile of Fig. 2b by 48 grid points
Fourier spectral method and from (b) Fourier spectral method by (3.10) and (3.11) with 48
grid points. The A 7|, used here is 107 X. The Chebyshev method yields results similar to Fig.
3, and thus is not shown here. It is concluded from Fig. 3 that the pressure gradient calculation
by (3.10) and (3.11) greatly reduces the Gibbs phenomenon in the Fourier-Chebyshev spectral
method.

b. Two-dimensional experiments

For the two-dimensional experiments, we have used L = H =2500m, M = 16, N = 32 and
A t = 0.075s in our calculation. To improve time integration efficiency, the subgrid diffusion
process in the model is handled in spectral space by applying the Lanczos filter to the tendency
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of the spectral variables. To evaluate the quadratic term exactly, 48 X 48 collocation points
are used. The Lanczos filter used is

o= (sin(mﬂ:/M)] (sin(mt/N))
N mrlM niN )

The second experiment (EXP2) is a dry hydrostatic adjustment experiment. We consider
a basic state of
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T(z)=293.15-L 7, (K) (4.22)
Rl'

E(z)=1.1478 (kgm™), (4.2b)

=0 (kgm"3) . (4.2¢)

The basic state satisfies hydrostatic balance. Superimposed on the basic state is a temperature
anomaly defined by

2 2
T = ATexp{—(%zs—OJ ]cxpl:—(z—_zg')ﬂ) } . (K) 4.3)

We have also set the £ equal to zero in our initial condition. Thus only the p” and 6’ anomaly
exist along with the T’ anomaly. Since €’ = 0, the anomaly (bubble) has no buoyancy and
will not rise. Moreover, hydrostatic balance is violated because we havea p” butnota &’
superimposed on the hydrostatic basic state.

Figure 4 shows the U, W, ¢’, &', p’ and T” in physical domain at time 0.3s for the
calculation with AT =2.5K in (4.3). The perturbation temperature in Fig. 4d is given by T”
=T- T - T’, the difference between T and the initial T. Figures S and 6 are similar to Fig. 4
except at time 1.8s and 30s respectively. Figure 6 reveals the motion and density fields associ-
ated with a rising bubble. This rising bubble (now &’ < 0) can be viewed as the result of the
hydrostatic adjustment by the acoustic waves. In contrast, Figs. 4 and and 5 indicate the mo-
tion and density fields associated with the transient acoustic waves.

To see how fast the acoustic wave can make the hydrostatic adjustment, we have plotted
the time series at the center of the domain for the variables of divergence, T’, & and p’ in
Fig. 7. Figure 7 indicates that it takes about 3 to 4 seconds for these variables to reach a steady
state, Figure 8 is similar to Fig. 7 except for an experiment with AT = 7.5K in (4.3). Interest-
ingly, the time series in both cases are very similar. This indicates the atmosphere reaches the
“anelastic balance” (Jdp’/ ot =0 and dU / dx + oW / dz = 0) or converts a zero &’ to a finite
value of &’ in 3 to 4 seconds, regardless of the size of AT. In other words, anelastic models
are just as good as compressible models if the transient acoustic waves are not the focus of
modeling. Discussions on one-dimensional acoustic adjustment with an isothermal basic state
can be found in Bannon (1995). Duffy (1997) examined hydrostatic adjustment through the
generation of acoustic-gravity waves.

The third experiment (EXP3) is a rising dry bubble in a hydrostatic atmosphere. We con-
sider a basic state

T(z)= 293'15_58_2’ (K) (4.4a)

pd
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Fig. 4. The numerical results of EXP2 in x-z domain at t=0.3s for (a) the U, W
(the maximum vector is 0.756 kg ms') and 0 (unit J m”K"!, contour
interval 1 J m3K"), (b) &’, (unit 105 kg m?, contour interval 3 X 10 kg
m), (c) p’ (unit hPa, contour interval 0.9 hPa) and (d) T, the differ-
ence between T and the initial T, (unit 103 K, contour interval 0.02 K).
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is 1 kg m?') and ¢’ (unit J m*K!, contour interval 1 J m>K') and (b)
&’, (unit 10° kg m3, contour interval 1 X 103 kg m?).
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Time Series of Divergence : Time Series of ¢’
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Fig. 7. The time series of EXP2 for (a) momentum density divergence (unit kg
m?s'), (b) T’ (unit K), (c) &’ (unit kg m?) and (d) p’ (unit hPa) at the
center of domain with a AT = 2.5 Kin (4.3).

Cvd

- T Ry -
E(z)=1.275(29;Z1)5} , (egm™) (4.4b)
M=0. (kgm™) (4.4¢c)

Superimposed on (4.4) is a temperature anomaly given by

2 2
T'(x,z) =2.5exp [_(_x__z_(l)%S_(_)) }cxp [_(x ;06025) } (K) 4.5)
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Fig. 8. Same as Fig. 7 except witha AT =7.5K in (4.3).
Namely, we have the initial condition for our third experiment
T(x,y)=T(2) + T'(x,2),
= T(z)
Fx2)=8@+——=, (4.6)
T(x,z)

n'(x,2)=0.

The experiment is designed so that p” = 0 in the initial condition. Thus, contrary to the
second experiment, we do not experience significant acoustic wave radiation in this experi-
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ment. Figures 9 and 10 are the U, W, ¢’, T’, p’ and &’ in physical space for t=150s and
1=300s respectively. We observe strong updraft in the center of the warm bubble and relatively
weak downward motion in a broad area adjacent to the rising bubble. On top of the rising
bubble there is high pressure while below the bubbie top is a slightly broad area of low pres-
sure.

Figure 11 shows the time series in the first stage of EXP3 (¢ <7.5s) at the point (x =
1250m, z = 780m) for divergence of momentum density, the difference between T and the
initial 7 (i.e., T"), the difference between & and the initial £ (i.e., £&”), and the perturbation
pressure p’. The point (x=1250m, z=780m) is above the rising warm bubble where we expect
a region of high pressure. Figure 11 indicates the presence of acoustic waves in that £” is out
of phase with the momentum density divergence. The formation of a high pressure region
above a warm rising bubble is associated with a series of transient acoustic waves.

The fourth experiment (EXP4) is arising moist bubble experiment in a hydrostatic atmo-
sphere. We consider a basic state of

T(z)=293.15—ciz, (X) 4.7a)

pd

7 =0.0135 —— 4.7
g P ( 1500) (*.70)

Evg
hrnd T Rd R

=1.275 —(0.0135-7)|, (kgm™ 4,
&(2) (239_15) exp[Rd( n)} (kgm™)  (4.7c)

T=7E, (kgm™) (4.7d)

where 7, is the mixing ratio of total water density with respect to the dry air density &. The
basic state dry air density in (4.7c) is computed from the equation of state. Now we consider a
moist bubble with temperature perturbation T’ given by (4.5)

7(x,2)=T()+T'(x,2) , (4.82)
Exz)=E _r_ -& (4.8b)
’ T(x,2) ’ '

n(x.2)=E+&(x2)F . (4.8¢)
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Fig. 9. The numerical results of EXP3 in x-z domain at #=150s for (a) the U, W
(the maximum vector is 6.17 kg m?™) and ¢’ (unit ] m3K", contour
interval 1 J m3K™"), (b) &’, (unit 10* kg m?, contour interval 102 kg m?),
(c) p’ (unit 10 hPa, contour interval 0.02 hPa) and (d) T’ (unit K,
contour interval 0.3 K).
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Fig. 10. Same as Fig. 9 except at #=300s with (a) the U, W (the maximum vector
is 6.73 kg m?™") and 6’ (unit ] m?®K-!, contour interval 1 ] m*K™), (b)
&', (unit 10° kg m3, contour interval 10 kg m?), (c) p’ (unit 10? hPa,
contour interval 0.04 hPa) and (d) T (unit K, contour interval 0.3 K).
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Fig. 11. Time series in the first stage of EXP3 (¢ <7.5s) at the point (x=1250m,
z=780m) for (a) divergence of momentum density (unit kg m-s!) (b)
T”, the difference between T and the initial 7 (unit K), (c) £”, the dif-
ference between £ and the initial £ (unit kg m'3) and (d) perturbation
pressure p’ (unit hPa).

Equation (4.8) gives positive values of ¢, T7° and 1’ and a negative value of £’ (positive
buoyancy) for the bubble. Figures 12 and 13 are the results at t=150s and t=240s respectively
for EXP4. With the initial maximum 7 of 2.5K, the results indicate that the perturbation tem-
perature T’ decreases with time before the condensation takes place (i.e., z=150s). From Fig.
13 we see that the maximum perturbation temperature 7 is about 4K which is higher than the
initial value of 2.5K. This is due to the release of the latent heat. Figure 13 also indicates a very
small warming (0.01K) and drying (1" =-0.0128 kgm?) outside the cloud as a result of forced
downward motion in a constant & atmosphere. The perturbation pressure distribution is more
complicated than the pressure distribution in Figs. 9 and 10. This is probably also due to the
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Fig. 12 The numerical results of EXP4 in x-z domain at #=150s for (a) the U, W
(the maximum vector is 6.75 kg m?') and ¢’ (unit J m?3K", contour
interval 5 J m2K™), (b) &, (unit 10 kg m?, contour interval 2X 102 kg
m?), (c) p’ (unit hPa, contour interval 0.1 hPa), (d) T’ (unit K, contour
interval 0.3 K), (¢) 1" (unit 10° kg m?, contour interval 4 X 10 kg m'3)

and (f) liquid water density (unit 10 kg m™, contour interval 3 X 1

m?3),
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Fig. 13. Same as Fig, 12 except at t=240s with (a} the U, W (the maximum vector
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latent heat effect. The general pattern of the high (low) pressure region above (below) the
rising bubble in Fig. 13 is similar to the pattern of perturbation pressure in Figs. 9 and 10.

Our final experiment (EXPS) is related to condensation with a specified updraft. We con-
sider the initial conditions of

— Z

=0.01275exp(———), .
L exp( 1 500) (4.9a)
T(2)=293.15-2_2, (K) (4.9b)

C,

E(z)=1.275 r R_v:exp &(O 01275-7) |, (kgm™) (4.9¢)
IR P T R 0 (8 o
A=rE, (kgm™) (4.9d)
U(x,2) = 5xsing X sin —z—n)exp[—(x—xo)z] (kgm™ms™)  (49)

’ 250 200 |’ ‘

X

W(x,z) =5Xcosp X Sin( n)exp[-—(x——;)—%-)z} , (kgm>ms™y  (4.90)

where
x, =1250 +(z-1250)tan¢ , (4.9g)

and where ¢ is the tilt angle from the vertical.

Figure 14 presents the time series of the maximum value of &’, W, 17, and T’ for the ¢ =
0 and ¢ = 7/6 cases. The results from Fig. 14 are expected in that the tilted updraft (¢ = 7/
6) produced less condensed water, T’, and W in the later stage. The numerical results of the
perturbation fields in the x-z domain at t=240s with the initial momentum density condition
computed with ¢ = 77 /6 are presented in Fig. 15. Because of the vertical gradient of 1, ¢and
& in the initial conditions, there are positive anomalies of 77 and o which are brought up by the
updraft. In addition, the positive anomaly of T and the negative anomaly of £’ are associated
with the condensation of liquid water. Rotunno et al. (1988) viewed the no tilted updraft situ-
ation as the “optimal state” for the squall line. Moreover, they argued that the tilted updraft
may be stemmed from the imbalance of the vorticity across the low level gust front. On the
other hand, Seitter and Kuo (1983) argued the tilted updraft may be stemmed from the liquid
water loading effect in the updraft/downdraft interface. The study of tilted updraft is of funda-
mental importance in understanding long-lived mesoscale convection. EXP5 suggests that our
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Fig. 14. The time series in EXPS5 for (a) maximum &’ (unit kg m3), (b) maxi- -
mum vertical momentum density W (unit kg m2s™), (c) maximum liquid -
water density (unit kg m) and (d) maximum 7" (unit K). The dashed
curve is for the case of updraft with tilt angle ¢ =7z /6 and the solid
curveis forcase of ¢ =0.

model is capable of simulating condensation associated with a tilted updraft.

5. CONCLUDING REMARKS
Some points of the model worth noting are as follows.
1. The temperature and pressure are diagnostically determined from thermodynamics.

2. There is no need to predict water vapor and condensate separately; rather, they are
diagnostically separated from the predicted total airborne water.
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Fig. 15. The numerical results of the perturbation fields in x-z domain at ¢=240s
with the initial momentum density condition computed with ¢ = 7 /6
for (@) N’ (unit 10° kg m, contour interval 5 X 10 kg m'®), (b) £’, (unit
10 kg m?3, contour interval 2 X 10 kg m), (c) liquid water density
(unit 10° kg m™, contour interval 10 kg m®) and (d) T” (unit K, contour
interval 0.4 K).
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3. There is a modular separation of dynamics and thermodynamics; the link between dy-
namics and thermodynamics is through the pressure gradient force. When the hydrostatic ap-
proximation is made, the only change in the model is how the vertical motion is computed.

4. The discontinuity in thermodynamics due to phase change can be modified to a “gradual
saturation” in order to make the moist thermodynamics match the spatial resolution of the
model. ‘ '

We have not included the ice phase or the precipitating processes in our experiments. As
discussed in Ooyama (1990), the ice phase can be handled by a hypothetical single phase
condensate that behaves like liquids at warm temperatures and like ice at cold temperatures,
with a gradual transition at intermediate temperatures. Ooyama (1995) tested warmn rain mi-
crophysics in the formation of squall lines. One advantage of Ooyama’s approach is that it
allows us to have a detailed, fine resolution, nonhydrostatic cloud model and a coarse resolu-
tion, hydrostatic (GCM-like) model which can be run side by side with identical moist thermo-
dynamics. The height coordinate of the nonhydrostatic model can also extend into the hydro-
static regime. The only differences between the two models are spatial resolution and the way
vertical motion is computed. This allows us to analyze in detail what physics is lost (and hence
needs to be parameterized) as model resolution coarsens and nonhydrostatic dynamics is re-
placed by hydrostatic dynamics.

The work presented here is considered a building block for the theoretical studies which
employ both least assumptions in moist physics and a very accurate numerical solution method.
We are currently improving the efficiency of time discretization. The convection model will
be used in the future to study the interaction of radiative, convective, and drizzle effects.
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Appendix A
Diagnostic Equations for Vertical Motion

We consider the diagnostic equations for vertical motion in two forms. The main results
are in (A.6) and (A.11). The first one is the Richardson vertical motion equation in differential
form. We start with the dry equation of state p=p R T (here R=R, p=¢, €, =Cy andc,=c )
to get o :

dinp_ dlnp + dint
dt a  drt’

(A.1)

From the continuity equation

2 AL =12 (A2)
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and the first law of thermodynamics

dinT __l{dlnp Q (A3)

dt c dt cT

we obtain

P__ o & I . O
o o, oz c,,p(axi+9z)+pch’ A4

Note that (Cp /¢ )pin (A.4) can be written as (cp le)p= {c, fc)p R T=pC*where C*is the
Laplace adiabatic sound speed. '
With the help of the time differentiated hydrostatic equation

ap _ p 3(pV) (pw) |
o 6‘1.‘ = ( ox, Y )g, (A5)

(A.4) can now be written as

D, adw 9 b L Q. Fov _i[ - 319]-
2P R T T Y TP % TP T S RN Y
or
O, 2w __ 9 . _ Q. o,
P T by e

Equation (A.6) is the Richardson vertical motion equation in differential form.
We now derive the vertical equation based on Ooyama (1990) moist thermodynamics in
0-z vertical coordinate. The derivation is similar to that in the height coordinate by DeMaria

(1995). The o-z coordinate is defined by

’ z2—2Z, |
= H i,

where z is the topographic height. The conservatlon equations after the coordinate transform
can be wrltten as

A WEICAS.

aw aw o
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o9&’ d(&v)  dEW)
x e &
M oy  dmw)_

o T T &

=0, (A7)

and the hydrostatic equation can be written as

%

= ) A8
% -P’g (A.8)

where &' =& (H-z)/H, '=N(H-2)/H, p’' =0’ + &', 0’ =0 (H - z)/H, and

w' = H w+ (Z—’—lj %,
H-z H '3x' '

Similar to the definition of adiabatic sound speed in (2.10), we define C’ 2 by

% o P
. A9
3,0 p’ do’ (A3)
By taking d/d of the hydrostatic equation to give
9 (k)__%
&'(&)— Y g. (A10)

Eliminating dp /J¢ in (A.10) and eliminating time derivatives with (A.7) yields the Ooyama
vertical diagnostic equation in 0~z vertical coordinate

i C’zﬂ — a ap rcr2av;) apv - ap

4 P
o’ EVRAE VA VA X ° az(ac'Q“’+ap'Q"')+gQ""
(A.11)
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Appendix B
Derivation of pressure coefficients

We consider both saturated and unsaturated states of the air in the derivation of pressure
coefficients. The derived pressure coefficients are in (B.4) and (B.8). The variables take the
usual meteorological meanings.

For the unsaturated air we start with the equation of state p = (§ R, + 7 R ) T and obtain

EP= 35 =(&R, + nRv)£ : (B.1a)
PV="%= E4RT, B.1b
y ag (ER, +nRv)85+ (B.1b)
P“J=EJE=(§Ra+n )—+RT. (B.1c)
T SR TIRIG TR
The entropy density for the unsaturated air is

S R
0 = (€, +116, I+ 1A, — ER Jn 2~ MR In L | (B.2)

T, . So T

By using dof do =1, do/ € =0, and do/ dnp =0, we have

aI =T(&c,, +1c,)" , ‘ (B.3a)
do |
oT _ & T
— =T, +nc,) (R, +RIn=—c In~), (B.3b)
o & .
oT o n T
=T, +1c,,) (R +RIn——c In—)—A, . (B.3c)
on & R, +R, m ) M

From (B.1) and (B.3) we get pressure coefficients for the unsaturated air
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B = (&, +1e, )" (R, +IR)T B4
F= R,,T+[R [1+1n-§~]—c In— T]P‘”, (B.4b)
0
P(l) = R’T_*_ [Rv[l + lnﬂ_]_ c lnz-—-A j|P(1) (B.4c)
) n * w T 0 o *
0 0

For the saturated air we start with the equation of state p= (R, +1 R,)T =¢&R,T + E(T)

and obtain

@ _ Op _yn O  OE(T) T
P = TR =[&R, +D(T)]—-—- (B.5a)
o _ %P Jr , JE(T) IT
B? = % =RT+ER — a!; T 5 —RaTj-[éRa+D(T)]—-ag , (B.5b)
@ _ 0P _pp OT  JE(T)IT
P® = o~ o Tor o =[¢R, +D(T)]— (B.5¢)

. The entropy density for the saturated air is

o= ncwlnF —-£&R, lné +nC(T)+ D(T) . (B.6)

0 0

Similar to the derivation of (B.3), we derived

ar &, ., dC dD
56 Cr +ndT+dT) ’ B-7
ar & &, ~_dC dD_,
R l 1 I 2 va —_— e — . .
9 [ (+“§0) e “2;,] T Mar T B
o _ _C(T)(écva +7 dC +_dL) , (B.7¢c)

Jo dT dar
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From (B.5) and (B.7) we get pressure coefficients for the saturated air

ac d—D) : (B.8a)

(2) _ écva
P® =[¢R, +D(T)]( +ndT o

P;”=Rar+[Ra<l+1“g£)-cmm§']f’;”, (B.3)
.0

Q-

B® =-C(T)P?, (B.8c)

where

CT)=c, nL— RIn - AT+ AT ,
T o
dE(T)
dT
dInE(T)
ar '

D(T)=n"AT)=

k]

[ (T)

A(T) = =RT

and

J26a)
n—RVT-
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