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ABSTRACT 

A new spectral moist convection model that employs both the least as­
sumptions in moist physics and a very accurate solution method is pre­
sented. The temperature and pressure in the model are diagnostically de­
termined from thermodynamics. There is no need to predict water vapor 
and condensate separately; rather, they are diagnostically separated from 
the predicted total airborne water. The model allows a modular separation 
of dynamics and thermodynamics; the link between dynamics and thermo­
dynamics is through the pressure gradient force. The modular separation 
allows the possibility of having a detailed, fine resolution, nonhydrostatic 
cloud model and a coarse resolution, hydrostatic model which can be run 
side by side with the identical moist thermodynamics. The height coordi­
nate of the nonhydrostatic model can also extend into the hydrostatic re­
gime. The only differences between the hydrostatic and nonhydrostatic 
models are spatial resolution and the way vertical motion is computed. We 
have performed numerical experiments in the nonhydrostatic model for 
acoustic adjustment and moist convection. The discontinuity in thermody­
namics due to phase change is modified in the model by the "gradual satu­
ration" technique. 

(Key words: Fourier-Chebyshev spectral method, Acoustic adjustment, 
Lanczos filter) 

1. INTRODUCTION 

Global models have become important tools for weather and climate simulations. How­

ever, these models have simplified hydrostatic dynamics and coarse vertical and horizontal 
resolution, so they are unable to explicitly simulate most of the cloud patterns that are crucial 
to climate dynamics. Because of their important effects on radiative transfer, hydrological 
cycles and apparent heat sources, moist convections must be more accurately treated in cli­
mate models. The real atmosphere contains a myriad of cloud structures which modulate ra­
diative fluxes and which modify atmospheric structure by condensing water at one level and 
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reevaporating it at another level. This deep and shallow moist convection can be modeled 
more accurately with a nonhydrostatic model. Nonhydrostatic convection models can be based 
on unfiltered or filtered systems. The filtered systems include the anelastic and Boussinesq 

equations. Ogura and Phillips ( 1962) derived the anelastic system under the assumptions that 
the percentage range of potential temperature is small and the time scale is set by the Brunt­
Vaislilii a frequency. The anelastic equations reduce to the Boussinesq equations under the 
additional assumption that the vertical scale of motion is small compared with the depth of an 
isentropic atmosphere. In an unfiltered system, one has to cope with the propagation of acous­
tic waves. Often the pressure is used as a prognostic variable of the model. Since pressure is 
not a conservative property, the prognostic equation for pressure has been derived from other 
conservation laws under some approximation of moist thermodynamics, which usually in­
volves a definition of equivalent potential temperature. This is also a problem with existing 
general circulation models, since they are based on the quasi-static primitive equations in 
sigma coordinates and have a host of thermodynamic approximations associated with the use 
of equivalent potential temperature, moist static energy, etc, 

With progress in computers and computational techniques, we have often experienced 
that the return to the first principles of physics enables a model to cope more easily with the 
complexity of the atmosphere. Ooyama (1990) proposed a "primitive" form of moist thermo­
dynamics. Instead of using pressure as a prognostic variable, Ooyama's model uses the con­
servation of the entropy density, the momentum density and the total moisture density as 
predicted variables. With an accurate definition of entropy density in the moist atmosphere, 
Ooyama's proposal involves the least assumptions in reversible moisture physics. Since the 
pressure field no longer is a prognostic variable, Ooyama's proposal also allows the extension 
of a nonhydrostatic height coordinate model into the hydrostatic regime. This extension may 
be useful in simulations of weather systems that involve a wide range of horizontal scales. 

We have constructed a new spectral moist convection model that employs both the least 
assumptions in moist physics and a very accurate solution method. Our modeling effort in­
volves the Fourier-Chebyshev spectral discretization similar to that in Kuo and Schubert (1988) 
and the moist thermodynamics of the "primitive" form in Ooyama (1990). We believe a sound 
basis for moist thermodynamics and an accurate treatment of discretization are important for 
the improvement of cloud modeling. The governing equations are presented in section 2. Sec­
tion 3 describes the solution method. Numerical results are covered in section 4. Section 5 
contains the concluding remarks. 

2. GOVERNING EQUATIONS 

We consider the two-dimensional (x-z) case described below. The "primitive" form of 
moist thermodynamics makes model predictions strictly in terms of conservative properties, 
in partiCular the density of dry air �. density of total airborne moisture 1J, entropy density a, the 
momentum densities U=pu, W=pw, where p;=�+7J. Here we have included precipitation (or 
drizzle) effects in Q

11 
and diabatic (e.g., radiative) effects in Qa in our equations. The prognos­

tic equations for the conservative variables are 



where 
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au CJ(Uu) CJ(Uw) (}p O at+ ax +  ik 
+

ax= · 

aw CJ(Wu) CJ(Ww) dp _ O 
at+ ax + ik f + gp + ik - · 

aa d(au) d(O'W) -

Q iJt + --a;- + (k - a •  

dTJ + a(17u) + a(17w) 
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at ax ik � · 
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(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6,2.7,2.8) 

The above constitute eight equations for the five prognostic variables �. 1], <1, U, W, and the 
four diagnostic variables p, u, w and p. The system is closed by the thermodynamic diagnosis, 
the input of which is �.f/,<1, and the output of which is temperature, pressure and the partition 
of 17 into its vapor and condensate parts. This requires writing two formulas (depending on 
whether the total airborne moisture 11 is entirely in the vapor phase or is partially condensed) 
for the entropy a(,�,17,T), iteratively solving for two temperatures (T1 and T2) and then using 



654 TA O, Vol. JO, No. 4, December 1999 

Here 77v and rte are the densities of vapor and condensate respectively, Pa and Pv the partial 
pressures of dry air and water vapor respectively, E(T) the saturation vapor pressure and 
1J.(T)=E(T)l(RvT) the mass density of saturated vapor. 

When the hydrostatic approximation is made, as described by Ooyama (1990) and DeMaria 
(1995), (2.2) is replaced by a simple diagnostic equation 

a 2 aw a CJp 2 av; apvi a ap ap . -(pC -) =--(v;-+ pC -)- - g+-(-Qa-+-!4r)+ g!4rz = 1,2 dz dz dz dx; dx; dx; dz aa CJp . 
(2.9) 

where 

(2.10) 

is the Laplace adiabatic sound speed. Derivations of the vertical motion diagnostic equations 
can be found in appendix A. The replacement of (2.2) with (2.9) is the only change necessary 
to convert the nonhydrostatic equations to their hydrostatic form. This diagnostic equation is 
a one-dimensional (height) second-order elliptic equation that can be solved efficiently using 
a direct method. DeMaria (1995) found that hydrostatic solutions of (2.9) are very sensitive to 
the method used to solve the diagnostic vertical velocity equation. The sensitivity can be elimi­
nated, as described by DeMaria (1995), by adding an extra term to the diagnostic equation that 
ensures the solution does not drift away from the hydrostatic balance due to numerical ap­
proximation. With the diagnostic vertical velocity equation, Ooyama's formulation allows us 
to design a numerical model in height coordinates that can be used in hydrostatic and 
nonhydrostatic regimes . 

. 3. SOLUTION METHODS 

The simulation of moist convection places great demands on the spatial discretization 
schemes used in numerical models. We will use a scheme which is spectral in both directions. 
We shall solve the above system of equations on the domain 0 $ x $ L, 0 $ z $ H, with the 
assumption that all variables are periodic in x and W = 0 on z = O,H. In the x direction, Fourier 
basis functions are used so that the periodicity is built into each basis function. In the z direc­
tion, Chebyshev polynomial basis functions are used; the top and bottom boundary conditions 
are not satisfied by each basis function, but rather by the series as a whole. Details of the 
Chebyshev tau method can be found in Fulton and Schubert (1987) and Kuo and Schubert 
(1988). In the following we discuss the spectral method for solving the system. 
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a. Fourier-Chebyshev method 

The dependent variables (e.g., c;) are approximated by the series expansions 

M N "  
e<x.z,t) = L :Lemn(t):Z:(z')e2mmx/L' (3.1) 

m=-Mn=O 

where the Tn( z') are the Chebyshev polynomials defined on the interval -1 $; z' $; 1 by Tn( z') 
= cos(n </J) with z' 

= 2z! H-1 = cos </J. Defining the Fourier-Chebyshev inner product of two 
functions j(x,z) and g(x,z) as 

(f ) = lJ1 Ji f(x,z')g*(x,z') dxdz' 
,g L -1 o (l - z'2)112 (3.2) 

where the star denotes complex conjugate. The spectral coefficient t (t) is given by 
l:>mn 

" 2 ( . ) emn(t) = - e(x,z,t),:Z:(z')e2mmx/L 
7ren 

(3.3) 

wiili c, = {� n=O} . 
. Equation (3.3) is the transformation from physical space to Fourier-

n > 0 
Chebyshev spectral space and (3.1) is the transformation back. The evaluation of (3.2) can be 
done by the fast Fourier transform and the fast Chebyshev transform. The total Nz collocation 
points for the fast Chebyshev transform in the vertical are determined as 

With the nonlinear terms defined by, 

A = Uu; B= Wu, (3.4a) 

C=Uw; D= Ww, (3.4b) 

E = au; F = aw , (3.4c) 

G=;u; H= ;w, (3.4d) 
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I=11u; J =Tfw , (3.4e) 

and to be computed by the transform method. To eliminate aliasing error in the quadratic 
nonlinear terms in the transform method, 3M points in the x direction and 3N/2 points in the z 
direction are needed in the physical domain. The tau equations for (2.1 )-(2.5) are 

dU mn +A (1,0) + fJCO.I) + p"(l,0) = 0 
dt mn mn mn ' 

dWmn + ('0,0) + fJ<O•l) + (� + ry" )g + p"(0,1) = 0 
dt mn mn ':>mn mn m11 • 

d8 A h -----1!!!!.. + Ec1,o> + p<o.1) = o 
dt mn mn ' 

" 

dJ! " . " � + G(l,0) + H(O,l) = 0 
dt mn mn ' 

dry" " " _JI:!!!.+ /(l,0) + fO,l) = Q 
dt mn mn ' 

(3.5a) 

(3.5b) 

(3.5c) 

(3.5d) 

(3.5e) 

wh.ere the x derivative of the spectral coefficients is denoted by the superscript (1,0) and the z 
derivative of the spectral coefficients is denoted by the superscript (0,1). The time integration 
of (3.5) is done with the fourth-order Runge-Kutta scheme {or all the mo"des -M '5.m '5, -Mand 
0 '5, n ::::; N with the exception of the spectr� coefficients wm,N-1 and wm,N. According to the 
'r method, the last two vertical modes of wmn are t� be obtaineq from the vertical boundary 
conditions (W (0) = W(H) = 0). Namely, we solve wm, N-1 and wm,N by 

N 
L,C-IYWmp = o, (3.6a) 
p=O 

and 

(3.6b) 

The relation between A��oi and Amn (the spectral coefficient of A) is 
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A_c1.o) = ·(2mn)A. 
mn l L mn' 

while the relation between B��I) and Bmn (the spectral coefficient of B) is 

B(O,I) = ___±___ � pB mn H ..i..J mp • 

en p=n+l 
p+nodd 
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(3.7) 

(3.8) 

Although the spectral evaluation of z derivatives by (3.8) looks at first sight more difficult than 
the spectral evaluation of x derivatives by (3.7), such is not the case. Equation (3.8) yields the 
(backward) recurrence formula 

"(0,I) "(0,1) _ 4 " 
cn_IBm,n-1 - Bm,n+I -

H 
nBm,n (n = 1,2, .. . ,N -1) (3.9) 

"(O I) "co I) �ith the starting values Bm,N+I = Bm,N = 0. For fixed m, the use of (3.9) allows the N values of 
B���) to be computed in O(N) operations. 

b. Pressure gradient across a cloud edge 

The pressure field is diagnosed from the equation of state in our model. The fields of 
temperature and liquid water density can have discontinuities in the first derivative across a 
cloud edge due to phase change. With a sufficiently smooth density field, the first derivative 
discontinuity in the temperature field causes the first derivative discontinuity in the pressure 
field across a cloud edge. To avoid the Gibb's phenomena in a spectral model, we need to 
adapt the "graduation saturation" technique. Since the temperature and the liquid water den­
sity fields do not explicitly appear in (3.5), only treatment for the pressure field is required. 
The basic idea is presented in equations (3.10) and (3.11) in this section. The numerical results 
are presented in section 4 (i.e., Figs. l, 2, and 3). 

At any spatial point, p=P(.;, 17,cr), thus we have 

(3.10) 

The P-coefficients are known functions of (x,h,s) so that (3.10) for V p could now be used for 
the pressure gradient force in the momentum equations in the spectral model. However, Ooyama 
discusses how this can cause Gibbs' phenomena near cloud edges. As a solution he proposes 
weighted averages of the ?-coefficients for saturated and unsaturated conditions. The overlap 
of the weighting coefficients is adjusted to the model spatial resolution. The weighting coeffi­
cients are 

(3.1 la) 
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(3.1 lb) 

If the �o> and �(Z) are computed from T1 (temperature in unsaturated region) and T2 (tem­

perature in saturated region) respectively, then the weighted average of P� across cloud edge is 
given by 

(3.llc) 

Equation (3.11) can also apply to the calculations of P11 and Pa· The fonnula for P1/1l, P 11(2), Pt» 
p�<2>, P001 and P0l2J can be found in Ooyama (1990). The derivation of the fonnula is given in 
appendix B. 

4. NUMERICAL RESULTS 

a. One-dimensional experiment 

Our first experiment (EXPl) is the calculation of the pressure gradient across a cloud 
edge in one dimension. We consider a domain of 0 � x � 2000m. Let 

f(x) = a+bexp[-( x�x, )'], (4.1) 

where x0 = lOOOm and A. x = 250m. The thermodynamic variables are specified according to 
(4.1) with different constants a and b. We take b = 65 m2s·2K1 and a= 220 m2s-2K1 for the 
entropy density a. Similarly, we take b = 0.01 kg m-3, a= 0.0078 kg m·3 for total water density 
1J and take b=0.0095 kg m3, a=l.1135 kg m-3 for dry air density �. 

The profiles of a, � and 1J are shown in Fig. 1. The profiles of the diagnosed temperature 
T, pressure p and condensed water density 11c are shown in Fig. 2. There are discontinuities in 
the first derivative of the T, p and 1J,. fields across the cloud edge. Figure 3 shows the pressure 
gradient calculated from (a) direct differentiation of the p profile of Fig. 2b by 48 grid points 
Fourier spectral method and from (b) Fourier spectral method by (3.10) and (3.11) with 48 
grid points. The A. T12 used here is 10-1 K. The Chebyshev method yields results similar to Fig. 
3, and thus is not shown here. It is concluded from Fig. 3 that the pressure gradient calculation 
by (3 .10) and (3 .11) greatly reduces the Gibbs phenomenon in the Fourier-Chebyshev spectral 
method. 

b. Two-dimensional experiments 

For the two-dimensional experiments, we have used L = H = 2500m, M = 16, N = 32 and 
A. t = 0.075s in our calculation. To improve time integration efficiency, the subgrid diffusion 
process in the model is handled in spectral space by applying the Lanczos filter to the tendency 
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Fig. 1. The profiles of (a) a, (b) g and 
(c) 1J for the pressure gradient 
calculation experiment. The 
profiles are computed from 
(4.1). 
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Fig. 2. The diagnosed (a) temperature T 
(unit K), (b) pressure p (unit hPa) 
and (c) liquid water density (unit 
kg m3) from the profiles of Fig. 
1. The refined Newton method is 
used for the iteration. 
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Fig. 3. The corresponding pres­
sure gradient V p of Fig. 
2b from (a) direct differ­
entiation of the p profile 
of Fig. 2b by 48 points 
Fourier spectral method 
and from (b) Fourier spec­
tral method with 48 points 
by (3.10) and (3.11). 

of the spectral variables. To evaluate the quadratic term exactly, 48 X 48 collocation points 
are used. The Lanczos filter used is 

f, 
= 

(sin(mtr IM)) (sin(ntr/ N))
· � mtr/M ntr/N 

The second experiment (EXP2) is a dry hydrostatic adjustment experiment. We consider 
a basic state of 
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T(z)=293.15-_!_z, (K) 
Rd 

�(z) = 1.1478 (kgm-3) , 

(4.2a) 

(4.2b) 

(4.2c) 

The basic state satisfies hydrostatic balance. Superimposed on the basic state is a temperature 
anomaly defined by 

T' � dTexp[-( x ��50 )'}xp[-( z-2��50 n (K) (4.3) 

We have also set the e' equal to zero in our initial condition. Thus only the p' 
and u' anomaly 

exist along with the T' anomaly. Since ;' = 0, the anomaly (bubble) has no buoyancy and 
will not rise. Moreover, hydrostatic balance is violated because we have a p' but not a �' 
superimposed on the hydrostatic basic state. 

Figure 4 shows the U, W, a', f, p' and T" in physical domain at time 0.3s for the 

calculation with .6. T= 2.5K in (4.3). The perturbation temperature in Fig. 4d is given by T" 
= T - T - T', the difference between T and the initial T. Figures 5 and 6 are similar to Fig. 4 
except at time 1.Ss and 30s respectively. Figure 6 reveals the motion and density fields associ­
ated with a rising bubble. This rising bubble (now e' < 0 ) can be viewed as the result of the 
hydrostatic adjustment by the acoustic waves. In contrast, Figs. 4 and and 5 indicate the mo­
tion and density fields associated with the transient acoustic waves. 

To see how fast the acoustic wave can make the hydrostatic adjustment, we have plotted 
the time series at the center of the domain for the variables of divergence, T', ;1 and p' 

in 
Fig. 7. Figure 7 indicates that it takes about 3 to 4 seconds for these variables to reach a steady 

state. Figure 8 is similar to Fig. 7 except for an experiment with .6. T = 7 .5K in (4.3). Interest­
ingly, the time series in both cases are very similar. This indicates the atmosphere reaches the 
"anelastic balance" ( CJp' I dt :;:::: 0 and au I CJx + aw I ()z :;:::: 0) or converts a zero ;' to a finite 
value of ;' 

in 3 to 4 seconds, regardless of the size of .6. T. In other words, anelastic models 
are just as good as compressible models if the transient acoustic waves are not the focus of 
modeling. Discussions on one-dimensional acoustic adjustment with an isothermal basic state 

can be found in Bannon (1995). Duffy (1997) examined hydrostatic adjustment through the 
generation of acoustic-gravity waves. 

The third experiment (EXP3) is a rising dry bubble in a hydrostatic atmosphere. We con­

sider a basic state 

T(z) = 293.15-Lz, (K) 
cpd 

(4.4a) 



(a) 

,...... 
:::21 

..._. 

N 

Hung-Chi Kuo & Chao-Tzuen Cheng 

2500. 

2000. 

1500. 

1 000. 

500. 

0. 

L 
010 

U,W & a" 0.30 sec 

.. ·L· .. 
. : : :.:!irn:9: : : . 

::::···""�·.::: 
. . . . .. .. . .. . 
. . . .  - .. . . .  . 

. . . . .. 
-

. . . . 
. . . . ... - . .. . 
. . . . .. .. . . . . 

. . . . " ... . . . . 
• ' ' ' ' r I I \ � • ' ' ' ' 

L 
L H .01 

.010 .010 

0. 500. 1000. 1500. 2000. 2500. 

X (M) 
D.7�0&+00 

CClH10UR F'AOi'I O.Ql0ill�UE•U9 10 a.1i0ee CONTOUR [HTERYAL or ; . illllld0 pfjJ< :JI• 'II, qqe'lJ�uM VECTOR 

f 0.30 sec 

(b) 2500. 

2000. 

1500. 

N 
1000. 

500. L 

0. 

0. 500. 1 000. 1 500 . 2000. 2500. 

X (M) 

Fig. 4. The numerical results of EXP2 in x-z domain at t::::0.3s for (a) the U, W 
(the maximum vector is 0.756 kg m·2s·1) and a' (unit J m·3K1, contour 
interval 1 J m·3K1), (b) �', (unit 10-5 kg m·3, contour interval 3 x 10-4 kg 
m·3), (c) p' (unit hPa, contour interval 0.9 hPa) and (d) T", the differ­
ence between T and the initial T, (unit 10·3 K, contour interval 0.02 K). 
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Fig. 5. Same as Fig. 4 except at t=l .8s with (a) the U, W (the maximum vector is 
0.61 kg m·2s-1) and CJ' (unit J m·3K1 , contour interval 1 J m·3K1), (b) f, 
(unit 10·5 kg m·3, contour interval 1 X 10-3 kg m-3), (c) p' (unit hPa, 
contour interval 0.5 hPa) and (d) T", the difference between T and the 
initial T, (unit K, contour interval 0.1 K). 
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Fig. 7. The time series of EXP2 for (a) momentum density divergence (unit kg 
m·3s·1), (b) T' (unit K), (c) ;1 (unit kg m·3) and (d) p' (unit hPa) at the 
center of domain with a d T = 2.5 K in ( 4.3). 

(4.4b) 

(4.4c) 

Superimposed on (4.4) is a temperature anomaly given by 

T'( ) 2 5 [ (x-1250)2] [ (-x-625)2] x,z = . exp - 200 exp - 200 (K) (4.5) 
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Fig. 8. Same as Fig. 7 except with ad T = 7.5 K in (4.3). 

Namely, we have the initial condition for our third experiment 

T(x,y) = T(z) + T'(x,z) , 

(4.6) 

r((x,z) = 0. 

The experiment is designed so that p' <= 0 in the initial condition. Thus, contrary to the 
second experiment, we do not experience significant acoustic wave radiation in this experi-
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ment. Figures 9 and 10 are the U, W, a', T', p' and ;1 in physical space for t=150s and 
t=300s respectively. We observe strong updraft in the center of the warm bubble and relatively 
weak downward motion in a broad area adjacent to the rising bubble. On top of the rising 
bubble there is high pressure while below the bubble top is a slightly broad area of low pres­
sure. 

Figure 1 1  shows the time series in the first stage of EXP3 (t <7 .5s) at the point (x = 

1250m, z = 780m) for divergence of momentum density, the difference between T and the 
initial T (i.e., T" ), the difference between ; and the initial � (i.e., �11 ), and the perturbation 
pressure p'. The point (x=l 250m, z=780m) is above the rising warm bubble where we expect 
a region of high pressure. Figure 1 1  indicates the presence of acoustic waves in that ;11 is out 
of phase with the momentum density divergence. The formation of a high pressure region 
above a warm rising bubble is associated with a series of transient acoustic waves. 

The fourth experiment (EXP4) is a rising moist bubble experiment in a hydrostatic atmo­
sphere. W � consider a basic state of 

. 

T(z) = 293.15-....Lz, (K) 
cpd 

r. = 0.0 1 35exp (--2-) r 1500 ' 

- ( T )�:; [R ] � (z) = 1.275 exp _v (0.0135- �) , (kgm-3) 239.15 Rd 

(4.7a) 

(4.7b) 

(4.7c) 

(4.7d) 

where " is the mixing ratio of total water density with respect to the dry air density g. The 
basic state dry air density in (4.7c) is computed from the equation of state. Now we consider a 

moist bubble with temperature perturbation T' given by (4.5) 

T(x,z) = T(z) + T'(x, z) , 

- f -
�'(x,z) =; T(x,z) -; 

' 

17'(x, z) =cg+ �'(x,z))� . 

(4.8a) 

(4.8b) 

(4.8c) 
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Fig. 9. The numerical results of EXP3 in x-z domain at t=150s for (a) the U, W 
(the maximum vector is 6.1 7 kg m·2s-1) and a' (unit J m·3K1, contour 
interval I J m·3K1), (b) �',(unit 1 04 kg m·3, contour interval 10-3 kg m-3), 
(c) p' (unit 10-3 hPa, contour interval 0.02 hPa) and (d) T' (unit K, 
contour interval 0.3 K). 
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Fig. 10. Same as Fig. 9 except at t=300s with (a) the U, W (the maximum vector 
is 6.73 kg m-2s-1) and a' (unit J m·3K-1, contour interval 1 J m-3K1), (b) 
i;1, (unit lff5 kg m-3, contour interval 10-3 kg m-3), (c) p' (unit 10-3 hPa, 
contour interval 0.04 hPa) and (d) T' (unit K ,  contour interval 0.3 K). 
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Fig. 11. Time series in the first stage ofEXP3 (t <7.5s) at the point (x=1250m, 
z=780m) for (a) divergence of momentum dens ity (unit kg m-3 s-1) (b) 
T", the difference between T and the initial T (unit K), (c) �,,,the dif­
ference between � and the initial � (unit kg m-3) and (d) perturbation 
pressure p' (unit hPa). 

Equation (4.8) gives positive values of a', T' and r( and a negative value of �, (positive 
buoyancy) for the bubble. Figures 12 and 13 are the results at t=150s and t=240s respectively 
for EXP4. With the initial maximum T of 2.SK, the results indicate that the perturbation tem­
perature T' decreases with time before the condensation takes place (i.e., t=150s). From Fig. 
13 we see that the maximum perturbation temperatilre T' is about 4K which is higher than the 
initial value of 2.5K. This is due to the release of the latent heat . Figure 13 also indicates a very 
small warming (0.0lK) and drying ( r( 

= -0.0128 kgm·3) outside the cloud as a result of forced 
downward motion in a constant 8 atmosphere. The perturbation pressure distribution is more 
complicated than the pressure distribution in Figs. 9 and 10. This is probably also due to the 



676 

(a) 

TAO, Vol. 10, No. 4, December 1999 

250121. 

200121. 

1500. 

'i' 
.._.. 

N 
1000. 

500. 

121. 

U,W & a' 150.00 sec 

0. 500, 1000. 1500. 2000. 2500. 

X (M) 
0.875£.f.0$ 

COMTOIJR F'ROH "''5.He• 10 :J .... , C::�TOUA JHTlFHA ... °' 5.HG9 l'tE:J.::11• -t. nnwAXJwUN°YEC'l'OR 

(b) 2500. 

2000. 

1500. 

i' ....... 

N 
1000. 

500·. 

0. 

�· 150.00 sec 

H H 
1 1 

.,__ ____ 0 __ 0 ___ _,, 

0. 500. 1000. 1500. 2000. 2500. 

X (M) 
CO�TO\IR fROrt •t.\48DIE·I, -TO t.1"9Ut"'H CON.fDUR !NTERlAL Of 1.;iH11aE•l2 lA8£lS tiC.ALt:O Ill UUIH, 

Fig. 12 The numerical results of EXP4 in x-z domain at t=l50s for (a) the U, W 
(the maximum vector is 6.75 kg m-2s-1) and cr' (unit J m3K -1 ,  contour 
interval 5 J m-3K1), (b) �' , (unit 10-4 kg m-3, contour interval 2x10-3 kg 
m-3), (c) p' (unit hPa, contour interval 0.1 hPa), (d) T' (unit K, contour 
interval 0.3 K ), (e) 17' (unit 10-s kg m·3, contour interval 4x 104 kg m-3) 
and (f) liquid water density (unit 10-6 kg m·3, contour interval 3 x 10-s kg 
m-3), 
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latent heat effect. The general pattern of the high (low) pressure region above (below) the 
rising bubble in Fig. 1 3  is similar to the pattern of perturbation pressure in Figs. 9 and 10. 

Our final experiment (EXP5) is related to condensation with a specified updraft. We con­
sider the initial conditions of 

where 

r, = 0.01275exp(--z-), 1 500 
- g T(z) = 293. I 5 - - z, (K) 

cpd 

- ( T )�:: [ R ] 3 � (z) = L275 exp _v (0.01275 - P,) , (kgm- ) 239. 1 5  Rd rr = r,r. (kgm-3 ) 

U(x, z) = 5 x sin ¢ x sin(-z-n)exp[-( - x0 )2 ] , (kgm-3ms-1 ) 2500 200 

W(x,z) = 5 x cos¢ x sin(-z-n)exp[-(x - Xo )2] , (kgm-3ms-1 ) 
2500 200 

x0 :::: 1250 + (z - 1250)tan¢ , 

and where ¢ is the tilt angle from the vertical. 

(4.9a) 

(4.9b) 

(4.9c) 

(4.9d) 

(4.9e) 

(4.9f) 

(4.9g) 

Figure 14 presents the time series of the maximum value of �', W, 1Jc and T' for the ¢ = 

0 and ¢ = 1C 16 cases. The results from Fig. 14 are expected in that the tilted updraft ( </> = 1C I 
6) produced less condensed water, T' , and W in the later stage. The numerical results of the 
perturbation fields in the x-z domain at t=240s with the initial momentum density condition 
computed with ¢ = 1C 16 are presented in Fig. 15. Because of the vertical gradient of 17, er and 
� in the initial conditions ,  there are positive anomalies of fl and er which are brought up by the 
updraft. In addition, the positive anomaly of T' and the negative anomaly of �' are associated 
with the condensation of liquid water. Rotunno et al . (1 988) viewed the no tilted updraft situ­
ation as the "optimal state" for the squall line. Moreover, they argued that the tilted updraft 
may be stemmed from the imbalance of the vorticity across the low level gust front. On the 
other hand, Seitter and Kuo (1983) argued the tilted updraft may be stemmed from the liquid 
water loading effect in the updraft/downdraft interface. The study of tilted updraft is of funda­
mental importance in understanding long-lived mesoscale convection. EXP5 suggests that our 
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Fig. 14. The time series in EXP5 for (a) maximum �' (unit kg m-3), (b) maxi- · 

mum vertical momentum density W (unit kg m-2 s·1), (c) maximum liquid · 

water density (unit kg m-3) and (d) maximum T' (unit K). The dashed 
curve is for the case of updraft with tilt angle </> = 1C 16 and the solid 
curve is for case of ¢ = 0. 

model is capable of simulating condensation associated with a tilted updraft. 

5. CONCLUDING REMARKS 

Some points of the model worth noting are as follows. 

l .  The temperature and pressure are diagnostically determined from thermodynamics.  
2. There is no need to predict water vapor and condensate separately; rather, they are 

diagnostically separated from the predicted total airborne water. 
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Fig. 15. The numerical results of the perturbation fields in x-z domain at t=240s 
with the initial momentum density condition computed with </J = 7r /6 
for (a) rJ' (unit 10·5 kg m·3, contour interval 5 x 104 kg m-3), (b) �,, (unit 
10·4 kg m·3, contour interval 2 X 10-3 kg m·3), (c) liquid water density 
(unit 10-s kg m-3, contour interval 104 kg m·3) and (d) T' (unit K, contour 
interval 0.4 K). 
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3. There is a modular separation of dynamics and thennodynamics; the link between dy­
namics and thennodynamics is through the pressure gradient force. When the hydrostatic ap­
proximation is made, the only change in the model is how the vertical motion is computed. 

4. The discontinuity in thennodynamics due to phase change can be modified to a "gradual 
saturation" in order to make the moist thermodynamics match the spatial resolution of the 
model. 

· 

We have not included the ice phase or the precipitating processes in our experiments. As 
discussed in Ooyama ( 1 990) , the ice phase can be handled by a hypothetical single phase 
condensate that behaves like liquids at warm temperatures and like ice at cold temperatures, 
with a gradual transition at intennediate temperatures. Ooyama ( 1 995) tested warm rain mi­
crophysics in the formation of squall lines. One advantage of Ooyama' s  approach is that it 
allows us to have a detailed, fine resolution, nonhydrostatic cloud model and a coarse resolu­
tion, hydrostatic (GCM-like) model which can be run side by side with identical moist thermo­
dynamics. The height coordinate of the nonhydrostatic model can also extend into the hydro­
static regime. The only differences between the two models are spatial resolution and the way 
vertical motion is computed. This allows us to analyze in detail what physics is lost (and h ence 
needs to be parameterized) as model resolution coarsens and nonhydrostatic dynamics is re­
placed by hydrostatic dynamics. 

The work presented here is considered a building block for the theoretical studies which 
employ both least assumptions in moist physics and a very accurate numerical solution method. 
We are currently improving the efficiency of time discretization. The convection model will 
be used in the future to study the interaction of radiative, convective, and drizzle effects. 
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Appendix A 

Diagnostic Equations for Vertical Motion 

We consider the diagnostic equations for vertical motion in two fonns. The main results 
are in (A.6) and (A. 1 1  ). The first one is the Richardson vertical motion equation in differential 
fonn. We start with the dry equation of state p = p R T  (here R = R", p = ;, cP = cP" and cv = c.) 
to get 

From the continuity equation 

dlnp dinp dlnT -- = -- + -. -dt dt dt , 

dlnp dvi aw - i = 1 , 2  
� - - axi - a;· 

(A. 1 )  

(A.2) 



Hung-Chi Kuo & Chao-Tzuen Cheng 687 

and the first law of thermodynamics 

dlnT R dlnp Q 
-- = --- + - ' dt cP dt cPT 

(A3) 

we obtain 

Note that (c I c )p in (A.4) can be written as (c I c )'P = (c I c )p R T = p C2 where C2 is the p v 1>. · v p v 

Laplace adiabatic sound speed . 

With the help of the time differentiated hydrostatic equation 

(A.5) 

(A.4) can now be written as 

a 2 aw · a ap · 
2 avi · Q apvi a [ ap J · 

-(pC -) = --(v; - + pC - - p-) - -g - - w(pg + -) 
()z ()z ()z ax, Jxi c,T Jxi Ck Ck 

or 

Equation (A.6) is the Richardson vertical motion equation in differential form. 
We now derive the vertical equation based on Ooyama (1990) moist thermodynamics in 

a-z vertical coordinate. The derivation is similar to that in the height coordinate by DeMaria 
(1995). The a-z coordinate is defined by 

z' = H( Z - Zs J . ·, 

H - z  s 

where z, is the topographic height. The conservation equations after the coordinate transform 
can be written as 

aa' + ac a'vi ) ac a'w') = Q at ax� 
. 

+ Ck' er' ' 

r 
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dr/' d(1J'v;) d(17'w') n 
ar + ax� + dz' = �· · 

I 

and the hydrostatic equation can be written as 

dp 
' dz' = -p g, 

where �' = �  (H - z,)IH, r(=1J (H - z)IH, p' =1]' + �', a' = a (H - z)IH, and 

, H [ ( z' i) dzs ] w = w + -- vi-, 

. 
H - z5 H dx; 

Similar to the definition of adiabatic sound speed in (2. 10), we define C'2 by 

By taking d I dt of the hydrostatic equation to give 

l__(CJp) = -
dp' 

g . ()z' dt at 

(A.7) 

(A.8) 

(A.9) 

(AlO) 

Eliminating dp I dt in (A.10) and eliminating time derivatives with (A.7) yields the Ooyama 
vertical diagnostic equation in cr-z vertical coordinate 

(A. 1 1) 
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Appendix B 

Derivation of pressure coefficients 

We consider both saturated and unsaturated states of the air in the derivation of pressure 
coefficients. The derived pressure coefficients are in (B .4) and (B.8). The variables take the 
usual meteorological meanings. 

For the unsaturated air we start with the equation of state p = (�Ra + 17 R) T and obtain 

(B.la) 

(B. lb) 

(B.lc) 

The entropy density for the unsaturated air is 

By using dCJ I dCJ = 1, da I � = 0, and dCJ I dry = 0, we have 

(B.3a) 

(B.3b) 

(B.3c) 

From (B.1)  and (B.3) we get pressure coefficients for the unsaturated air 
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For the saturated air we start with the equation of state p = (�a + 77* R,, )T = eR.aT + E(T) 
and obtain 

The entropy density for the saturated air is 

a = 17cv)n I_ _  �)n ; + 17C(T) + D(T) . 
To ':ro 

Similar to the derivation of (B.3), we derived 

ilI' = (ecva + dC + dD)_, 
Ja T 11 dT dT ' 

dr = [R (l + ln_f_) - c In !_](
�cva + 17 dC + dD)-1 . 

a� a �o VV I'o T dT dT ' 

JT _ C(T)(ecva dC dD)_, - - - - + 11- + - . aa T dT dT 

(B .5a) 

(B.5b) 

(B.5c) 

(B.6) 

(B.7a) 

(B .7b) 

(B.7c) 
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From (B.5) and (B.7) we get pressure coefficients for the saturated air 

where 

and 

p(2) = [J!R + D(T)](�cva + dC + dD)-1 a I:> a T Tl dT dT ' 

�"' = R,.T + [ Il,.(1 + In l, ) - c�ln ;, JP�" , 

p_(2> = -C(T)P(2> 
q a ' 

T • 

C(T) = cv)n y; - �In 1J. - A(T) + A(I'o ) , 
o 110 

D(T) = Tf*A(T) = d��) , 
A(T) = le (T) 

= 
f} T dlnE(T) 

T '"'v dT ' 

• E(T) 
1J = - . �T 
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