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AbstrAct

We perform a model-observation comparison and report on the state-of-the-
art cloud liquid water content (CLWC) and path (CLWP) outputs from the present-
day global climate models (GCMs) simulations in CMIP3/CMIP5, two other GCMs 
(UCLA and GEOS5) and two reanalyses (ECMWF Interim and MERRA) in compar-
ison with two satellites observational datasets (CloudSat and MODIS). We use two 
different liquid water observation products from CloudSat and MODIS, for CLWP 
and their combined product for LWC with a method to remove the contribution from 
precipitating and convective core hydrometeors so that more meaningful model-
observation comparisons can be made. Considering the CloudSat’s limitations of 
CLWC retrievals due to contamination from the precipitation and from radar clutter 
near the surface, an estimate CLWC is synergistically constructed using MODIS 
CLWP and CloudSat CLWC. The model-observation comparison shows that most 
of the CMIP3/CMIP5 annual mean CLWP values are overestimated by factors of 
2 - 10 compared to observations globally. There are a number of CMIP5 models, 
including CSIRO, MPI, and the UCLA GCM that perform well compared to the 
other models. For the vertical structure of CLWC, significant systematic biases are 
found with many models biased significantly high above the mid-troposphere. In the 
tropics, systematic high biases occur at all levels above 700 hPa. Based on the Taylor 
diagram, the ensemble performance of CMIP5 CLWP simulation shows little or no 
improvement relative to CMIP3.
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1. IntroductIon

Representing clouds and cloud climate feedbacks in 
global climate models (GCMs) remains a pressing challenge 
to reduce and quantify uncertainties associated with climate 
change projections (IPCC 2007, 2013). Vertical structures 
of clouds simulated by present-day models have not been 
extensively examined using vertically-resolved cloud hy-
drometers such as ice water content (IWC) and liquid water 
content (LWC). The rudimentary work done thus far sug-
gests significant biases that the Intergovernmental Panel on 
Climate Change (IPCC) models have in comparison to ob-
servational products in ice water path (IWP) (Waliser et al. 
2009) and LWP values (Li et al. 2008, 2011). There is a wide 
disparity in the cloud ice water path (CIWP) (Waliser et al. 

2009; Li et al. 2012) and cloud liquid water path (CLWP) 
(Li et al. 2008) among the Coupled Model Intercomparison 
Project phase 3 (CMIP3) models and the Coupled Model 
Intercomparison Project phase 5 (CMIP5) models.

Clouds strongly influence global climate through their 
effects on the Earth’s radiation budget (e.g., Randall and 
Tjemkes 1991). The importance of low clouds cannot be 
overstated as “cloud feedbacks remain the largest source 
of uncertainty” in determining Earth’s equilibrium climate 
sensitivity, specifically to a doubling of carbon dioxide 
scenario (IPCC 2007, 2013). Some evidence for this uncer-
tainty are given in Fig. A1 which illustrates a considerable 
model-to-model disagreement in the CMIP3 liquid water 
path (LWP; g m-2) in the GCM simulations contributed to 
the 4th Intergovernmental Panel on Climate Change (IPCC) 
Assessment Report (20c3m scenario) (Li et al. 2011) and 
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the 5th Assessment Report (AR5) (Boucher et al. 2013). As 
a matter of fact, LWP/LWC products are derived from ob-
serving systems that possess very different characteristics, 
such as different sensitivities to cloud and precipitation with 
different physical assumptions employed in the retrieval 
process (e.g., Stephens and Kummerow 2007). Despite sig-
nificant efforts to derive LWP measurements from passive 
and nadir-viewing techniques, the large optical thicknesses, 
multi-layer structure, and mixed-phase nature, including the 
presence of precipitating hydrometeors (e.g., drizzle), of 
many clouds make the estimates from these techniques very 
uncertain (e.g., Stephens et al. 2008) and therefore cannot 
be trusted under a precipitating condition and is removed 
from this study (see section 2). The ramifications of the 
poor constraints for cloud water mass, even in terms of total 
water path, are evident in the model-to-model disagreement 
for globally-averaged cloud LWPs shown in Fig. A1a. As 
expected, these differences are exacerbated when consider-
ing the spatial patterns of the time-mean values shown in 
Fig. A1b. The significant disagreement between models for 
such a fundamental quantity, that has important effects in 
the context of climate change, must be reduced to improve 
future model projections of climate.

Before CloudSat was launched in 2006, global obser-
vations of cloud water, particularly the vertically-resolved 
cloud liquid water content (CLWC; mg m-3), were not read-
ily available for model development and validation. The 
CloudSat mission now provides a considerable leap for-
ward in the information gathered regarding tropospheric 
cloud mass as well as other macrophysical and microphysi-
cal properties (e.g., Stephens et al. 2008). CloudSat’s cloud 
profiling radar capabilities provide a new view of the global 
and vertical structure of clouds, in particular, the vertical 
structure of cloud condensate. It is worth noting that, for 
both the passive and active satellite retrievals and for some 
models, it is understood that “liquid water content” (LWC) 
should represent all liquid hydrometeors, and should include 
suspended cloud liquid and liquid mass in precipitating 
forms such as rain or drizzle. However, these observations 
are an altogether new resource, albeit with uncertainties and 
limitation (e.g., Li et al. 2008).

Li et al. (2012) pointed out that, for improving GCM 
representation of clouds and cloud climate feedback, con-
siderable care and caution have to be taken in order to make 
judicious comparisons between the GCM representations 
of (typically only the) clouds and the satellite observations 
that are an inherent combination of the clouds and falling 
hydrometeors (e.g., rain or drizzle or cloud ice or falling 
snow). Such considerations include taking steps to make a 
sensible comparison for CLWC or CLWP and cloud ice wa-
ter content (CIWC) or path (CIWP) (e.g., Li et al. 2012) or 
taking the steps needed for a viable comparison in terms of 
reflectivity or radiance, which typically means to use satel-
lite “simulators” (e.g., Klein and Jakob 1999; Webb et al. 

2001; Delanoë and Hogan 2010; Bodas-Salcedo et al. 2011; 
Delanoë et al. 2011). However, such distinctions are often 
not clearly made, and certainly not always made consistent-
ly between satellite retrievals, model parameterizations and/
or output from models. Because there is no precipitating 
liquid particle included as a prognostic parameter in most 
GCMs, the direct comparison with observation may not be 
appropriate.

In this study, we take the approach in Li et al. (2012), 
and perform the evaluation in terms of the model represen-
tations of CLWC/CLWP utilizing the experience we have 
gained from cloud ice and liquid (e.g., Li et al. 2005, 2007, 
2008, 2011, 2012; Waliser et al. 2009). This includes devel-
oping a measure of observational uncertainty (discussed in 
section 2), and applying an illustrative and quantitative set 
of evaluation diagnostics. In particular, a new set of CLWC 
is acquired by the construction of vertical profiles of LWC 
from MODIS LWP combined with CloudSat LWC. The aug-
mentation with MODIS based LWC with CloudSat LWC is 
to overcome the limitations of CloudSat-derived LWC/IWC 
retrievals from radar clutter near the surface (lower two to 
four bins radar signal) and/or in the present of precipitation. 
A prominent goal of the study is to examine how the fidelity 
of the models may have changed from CMIP3 to CMIP5. 
Moreover, we attempt to discriminate CMIP5 models that 
achieve a threshold capability of model fidelity by using the 
Taylor diagram (Taylor 2001) and by taking into account 
the observational uncertainties (see section 2). In addition, 
as reanalysis products have become nearly synonymous, in 
some contexts, with “observations”, we also incorporate 
two recent reanalysis products in our study to provide some 
assessment of this tenuous perception - particularly for 
quantities such as CLWP and CLWC that are not strongly 
constrained by observations.

In sections 2 and 3, we describe the observational re-
sources used in this study, including their retrievals and 
the methodologies to obtain an observational estimate with 
some quantitative assessment on uncertainty. In section 4, 
we briefly describe the models and reanalysis data sets uti-
lized in this evaluation study. In section 5, we illustrate and 
discuss the results of our model evaluation. Section 6 sum-
marizes the results and draws conclusions.

2. observed estImAtes of LWc And LWP

The cloud liquid water observations employed in this 
study are derived from visible and the near infrared passive 
observations of the A-Train MODIS and the active space 
borne radar observations of the A-Train CloudSat (Stephens 
et al. 2002). Each LWP product considered are derived from 
observing systems that possess very different characteristics, 
such as different sensitivities to cloud and precipitation, dy-
namic range, representativeness and different physical as-
sumptions and other model data employed in the retrieval 
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process (e.g., Stephens and Kummerow 2007). As a conse-
quence, the liquid water content information inferred from 
each system is distorted by the retrieval process itself and 
interpretation of these products and their comparison war-
rants a note of caution. Despite the differences, under ideal-
ized conditions (e.g., warm, homogeneous, single-layered, 
fully overcast clouds with no precipitation) there is a high 
degree of agreement among the products used at least over 
the range of liquid water path between 20 g m-2 and about 
200 g m-2 (e.g., Lin and Rossow 1994, 1997; Borg and Ben-
nartz 2007).

2.1 modIs cloud LWP

LWP data used are from the MYD06_L2 product. The 
MODIS LWP is estimated from cloud optical thickness and 
droplet effective radius, which are inferred from solar re-
flectance at 0.64 μm visible band and at one of the water-ab-
sorbing near-infrared bands located at 1.6, 2.2, and 3.7 μm 
(Platnick et al. 2003). The MODIS measurement is based 
on reflected sun light both over land and ocean and only 
available for daytime. Details of uncertainties and limita-
tions for MODIS LWP retrieval are described in Appendix 
A section 1.

The MODIS LWP retrievals are collocated to the 
CloudSat profiles by finding the nearest neighbor MODIS 
measurement for each CloudSat footprint location. See Ap-
pendix A section 2 for details of the co-location data gen-
eration process. The collocation was performed in order to 
apply the CloudSat-based precipitation and cloud condition 
flags to the MODIS LWP data to partition these data into the 
suspended (cloud-only), convective and precipitating por-
tions. The time period of this data used in this study is from 
May 2008 to April 2010.

2.2 cloudsat cPr LWP and LWc

CloudSat provides vertical profiles of radar reflectivity 
measured by a 94 GHz cloud profiling radar (CPR) with a 
minimum sensitivity of ~ -30 dBZ. The profiles extend be-
tween the surface and 30 km altitude with a vertical resolu-
tion of 240 m and having a footprint of about 2.5 km along 
track and 1.4 km cross track. To date, two official retrieval 
products for LWC/LWP are available from the CloudSat 
data processing center: 2B-CWC-RO and 2B-CWC-RVOD. 
While 2B-CWC-RO uses only measured radar reflectivity, 
2B-CWC-RVOD uses both the radar reflectivity and the 
visible optical depth retrieved from CloudSat and MODIS 
measurements together (Austin et al. 2009). For this study, 
the 2B-CWC-RO4 (Austin et al. 2009) data are used and 
the detailed sensitivity and uncertainty of this retrieval algo-
rithm are discussed in Austin et al. (2009). The time period 
of the data used in this study is from January 2007 to Decem-
ber 2010. The interpretation of reflectivity as cloud liquid 

water is straightforward in the absence of precipitation. But 
when present larger particle such as precipitation, it grossly 
distorts the estimate of LWC due to the high sensitivity of 
radar reflectivity to the presence of large particles. Other 
shortcomings of the CloudSat data include (1) the effects of 
ground clutter that mask the lowest kilometer and thus the 
liquid water content of a significant fraction of low clouds 
is undetected, (2) the ambiguity of mixed phased clouds and 
deep convection on radar reflection makes interpretation of 
reflectivity in terms of liquid water content problematic.

3. synergIstIcALLy constructed LWc  
usIng modIs LWP And cLoudsAt LWc

Each of the different cloud liquid water data products 
described above has particular limitations especially when 
precipitation is present. For a meaningful comparison be-
tween the satellite-estimated and model-simulated LWP, 
the LWP observation information derived for convective/
precipitating liquid water clouds should be rejected and re-
moved. Convective clouds and precipitation were identified 
using an approach referred to as the FLAG method (Li et al. 
2008, 2012; Waliser et al. 2009) that rejects all the retriev-
als in any profile that are flagged as precipitating (and driz-
zle) at the surface (from CloudSat 2C-PRECIP-COLUMN 
data) and exclude any retrieval within the profile whose 
cloud type is classified as “deep convection” or “cumulus” 
(from CloudSat 2B-CLDCLASS data). By excluding these 
portions of the liquid mass, we obtain an estimate of the 
cloud-only portion of the LWP/LWC (hereafter, referred to 
as CLWP/CLWC). This methodology of estimating CLWP/
CLWC and CIWC/CIWP was used in our previous CMIP3 
model-data comparisons on LWC and IWC (e.g., Li et al. 
2008, 2011, 2012; Waliser et al. 2009).

MODIS and CloudSat CLWP are further filtered out 
mixed-phase cloud condition because its partitioning of 
cloud water into liquid and ice is unreliable as described 
above. For CloudSat, a collocated ECMWF tempera-
ture profile (from CloudSat ECMWF-AUX data) is used 
to determine whether a given cloud water content profile 
contains mixed-phase clouds. If the temperature profile 
contains a section with temperature higher than -20°C and 
lower than 0°C, we use the CloudSat LWC retrieval algo-
rithm to partition the cloud water content into liquid and ice. 
Since the reliability of the partitioning method is question-
able, we filter CloudSat retrieved LWC profiles that con-
tain a section with temperature higher than -20°C and lower 
than 0°C. For MODIS, the cloud phase is determined by 
utilizing distinct differences in bulk absorption character-
istics between water and ice at infrared wavelengths. This 
method allows MODIS to distinguish supercooled clouds 
from mixed-phase clouds or ice containing clouds. Because 
of this distinction, the MODIS CLWP filtered for no-mixed 
phase cloud condition captures the supercooled liquid water 
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path, while the CloudSat CLWP filtered for no-mixed phase 
cloud condition does not.

The filtered CLWP of MODIS and CloudSat are shown 
in Figs. 1c and d. Under these conditions of non-convective, 
non-precipitating clouds, the liquid water path data from 
MODIS and CloudSat broadly agree with each other except 
in regions of low stratiform clouds and mixed-phase clouds 
(mid-latitude storm tracks and high latitudes). Also shown 
in Fig. 1 is the MODIS LWP retrieved under all conditions 
(Fig. 1a) and under the conditions of precipitation and con-
vective clouds (Fig. 1b). Since CloudSat does not provide 
meaningful information in the presence of precipitation, 
only data from MODIS are shown. Since MODIS is rela-
tively insensitive to precipitation, the difference between 
the non-precipitating and precipitating LWP shown is inter-
preted as a measure of the increased cloud LWP associated 
with precipitating clouds. Precipitating clouds tend to be 
deeper and contain more cloud liquid than non-precipitating 
clouds (Stephens et al. 2008). The small difference between 
MODIS all condition LWP (Fig. 1a) and MODIS filtered 
LWP (Fig. 1c) confirms that MODIS is relatively insensi-
tive to precipitation.

Figure 2 shows annual, zonally averaged LWP quan-
tities obtained from the three observational estimates: (1) 
MODIS all condition LWP, (2) MODIS non-convective 
non-precipitating no-mixed phase cloud LWP, (3) CloudSat 
non-convective non-precipitating no-mixed phase cloud. 
The CLWP estimates, in general, agree relatively well be-
tween CloudSat and MODIS in the tropical and subtropical 
regions but they differ significantly in the mid- and high-lat-
itudes due to the differences in the corresponding no-mixed 
phase cloud conditions as mentioned above.

Another observational reference we prepare for this 
study is a liquid water content profile that is synergistically 
constructed using MODIS LWP and CloudSat LWC. As 
illustrated in Figs. 1 and 2, CloudSat filtered CLWP is a 
small portion of MODIS filtered CLWP globally (12.7 g m-2  
versus 35.8 g m-2 in global averages) and especially in high 
latitudes and in stratocumulus regions because it missed 
supercooled clouds and low topped clouds. Figure 1 also 
shows that the contribution from precipitating clouds is ex-
pected to be about 10% of the cloud liquid water path in all 
conditions (5.4 g m-2 out of 41.1 g m-2 in global averages). 
Therefore, CloudSat LWC by itself is not sufficient enough 
to provide the vertical profile of CLWC for the compari-
son with models. We complement the CloudSat LWC with 
LWC derived from MODIS LWP values in the CloudSat 
missing conditions. Namely, we construct CLWC for pre-
cipitating clouds, LWC for low-topped clouds, and LWC 
for supercooled clouds. All of the clouds are missed in 
CloudSat filtered LWC we discussed above.

In order to construct LWC from MODIS LWP, we 
need to define the cloud top height, cloud base height, and 
cloud water content vertical structure. We use the cloud top 

height determined by CALIPSO lidar and CloudSat radar 
combined retrieval algorithm (from CloudSat GEOPROF-
LIDAR data). Details for finding LCL are described in Ap-
pendix A section 4.

We select cloud pixels that are not included in the 
CloudSat CLWC filtering condition. For the cloud pixels, 
we use MODIS LWP to construct LWC using the method 
described above. The MODIS derived LWC are decom-
posed into several conditions so that the relative contribu-
tions from the different conditions can be quantified. The 
MODIS LWC data are first divided into two groups: (1) 
low-topped clouds with the cloud top height less than 1 km 
and (2) mid-topped clouds with the cloud top height larger 
than 1 km. This division is to test how much the low-topped 
clouds are missed by CloudSat and the contribution of the 
low-topped clouds to the overall CLWC. The mid-topped 
clouds are further divided into two groups: (1) precipitating 
clouds and (2) non-precipitating clouds. This division shows 
the relative contribution from precipitating clouds, which are 
less well constrained by both MODIS and CloudSat satellite 
observations than non-precipitating clouds. The uncertainty 
of the overall CLWC is largely affected by the amount of 
water content from the precipitating clouds. Knowing the 
relative contribution of the precipitating clouds even though 
the absolute values are not reliable, that is very helpful in 
the uncertainty estimation.

Note that we use MODIS as complementary data to 
CloudSat by adding MODIS data when CloudSat data 
are not available or unreliable. This means that the three 
MODIS cloud conditions considered are clouds that are not 
detected or reliably retrieved by CloudSat. Therefore, each 
of the three MODIS cloud conditions is not the same as all 
clouds detected by MODIS in that condition. For example, 
MODIS non-raining mid-level clouds in this study does not 
represent all MODIS detected non-raining mid-level clouds. 
It instead represents MODIS detected but CloudSat non-de-
tected/non-retrieved non-raining mid-level clouds.

Figure 3a shows the annual mean and global average of 
LWC quantities obtained with the method described above. 
In order to see the relative contribution of the different cloud 
conditions to the overall CLWC, the CLWC of each cloud 
condition is separately plotted. Globally, the contribution of 
CloudSat CLWC is about 25% of the total estimated CLWC 
(black line, the sum of all the CLWCs from the subgroups). 
The low cloud contribution missed by CloudSat is sig-
nificant near 900 hPa. The contribution from precipitating 
clouds is relatively small but is a measurable amount that 
can give a systematic negative bias to the observational es-
timation if neglected. Finally, the non-precipitating clouds 
that are missed by the CloudSat filtered CLWC contribute 
significantly. The non-precipitating clouds are mainly com-
posed of the supercooled clouds that CloudSat cannot re-
trieve well because of its retrieval algorithm of artificially 
partitioning cloud water contents into liquid and ice when 
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the temperature is between -20 and 0°C, even though the 
clouds are supercooled.

Figure 3b shows the annual, zonal mean of relative 
contributions of LWC quantities by comparing the corre-
sponding LWP values in the subgroups. Figure 3c shows 
the relative occurrence frequency (ROF) of the cloud sub-
groups. All the three MODIS cloud subgroups show the in-
creased contribution to liquid water path (therefore content 
as well) in the higher latitudes. This is a direct consequence 
of the no mixed-phase condition used to filter the Cloud-

Sat clouds. The largest contribution missed by CloudSat is 
no-rain mid-level clouds, followed by low clouds, and rain 
mid-level clouds. Comparing Figs. 3b and c, the order of 
the relative size of the liquid water path does not always fol-
low the order of its ROF. For example, the CloudSat cloud 
ROF is lower than the MODIS no-rain mid-level cloud; the 
CloudSat cloud LWP is larger than the MODIS no-rain mid-
level cloud LWP in the tropics. This suggests that the no-
rain mid-level clouds missed by CloudSat are mainly tropi-
cal low-value LWP clouds.

(a) (b)

(c) (d)

Fig. 1. Annual mean maps of (a) MODIS-based cloud liquid water path (CLWP) under all conditions, (b) MODIS CLWP under convective and 
precipitating conditions, (c) MODIS CLWP under non-convective and non-precipitating conditions, and (d) CloudSat CLWP under non-convective, 
non-precipitating, and non-mixed-phase conditions. The unit for these values is g m-2. All the retrievals are used only over the oceans.

Fig. 2. Zonal average of cloud liquid water path (CLWP) quantities associated with the three observational estimates shown in Fig. 1: the CloudSat 
warm liquid cloud only with no rain and convection conditions (red), MODIS no rain and no convection conditions CLWP (black), and MODIS 
with all conditions CLWP (green). The unit is g m-2.
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Overall, it is very clear that the complementary use 
of CloudSat and MODIS is critical in estimating the LWC 
because many subgroups of clouds are not well retrieved 
by CloudSat alone. The contributions of the clouds missed 
(meaning either non-detected or not retrieved reliably) by 
CloudSat are not negligible in all latitudes and especially 
at high latitudes. The method we used to construct the liq-
uid water content using MODIS is not perfect because the 
information available in these conditions is limited (i.e., no 
direct information about vertical distribution of the cloud 
mass). However, the zero-th order estimation of LWC from 
all cloud types is a useful observational reference to use for 
comparisons with models.

Apart from the uncertainty of the retrieval method, an 
additional uncertainty to consider in light of making model-
observation comparisons concerns the differences in the 
spatial and temporal sampling between the observations and 
the GCMs, such as those in the CMIP archives.

Li et al. (2012) and Guan et al. (2013) found that the 
bias introduced by the satellite sampling of cloud water 
is negligible, which is within 3% of the standard deviation 
of the unsampled data. It is plausible to compare the ob-
served, satellite-sampled, liquid water estimates to those 

from the GCMs without the need to sample the GCMs along 
the A-Train satellite track (cf. Jiang et al. 2012).

4. modeLed vALues of LWc And LWP

On the modeling side, LWC is usually a prognostic 
variable based on a balance equation contributed by large-
scale advection and parameterizations of subgrid-scale con-
vective cloud, shallow cumulus, and stratocumulus. LWP 
is obtained as the vertical integral of LWC. The models ex-
amined in this study, except for GFDL-CM3, do not include 
liquid water mass from precipitating rain and/or convective-
type clouds in their LWC. Therefore, we consider the model 
LWP/LWC as CLWP/CLWC. Following Li et al. (2012) and 
using the observations described in section 2, we evaluate 
CLWP/CLWC in ECMWF (ERA-Interim, Dee et al. 2011) 
and NASA MERRA reanalyses, coupled atmosphere-ocean 
GCMs (CGCMs) from CMIP3 (for CLWP only), CGCMs 
from CMIP5, and two additional state-of-the-art GCMs: the 
UCLA GCM (Ma et al. 2013) and the NASA GEOS5 GCM. 
The CMIP3 simulations are the same as those described in 
Li et al. (2008, 2011, 2012) - although excluding the two 
UKMO models which we have learned that the provided 

(a)
(b)

(c)

Fig. 3. (a) Liquid water content prepared from CloudSat and MODIS retrievals (black), partitioned into four cloud conditions: CloudSat-based 
warm non-precipitating, non-convective clouds (blue); MODIS-based non-convective, low-topped clouds (red); MODIS-based precipitating, non-
convective, mid-topped clouds (green); and MODIS-based non-precipitating, non-convective, mid-topped clouds (yellow). (b) Liquid water path 
of each of the four cloud conditions contributing to the liquid water content. (c) Relative occurrence frequency of each of the four cloud conditions 
partitioned.
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output on CLWP was incompatible with the CMIP3 output 
specifications (cf. Li et al. 2011). In CMIP3 and CMIP5, the 
intended meaning of “clwvi” is total water path, i.e., ice plus 
liquid. Our investigation (Li et al. 2011; referred to LET) 
has determined that thirteen of the CMIP3 GCMs (labeled 
in LET as: ccc_ma63, cnrm, csiro, gfdl, iap, ipsl, mirochr, 
gisseh, gisser, inmcm, mpi, ukmogem, and ukmocm) pro-
vided output that was consistent with the intended inter-
pretation [i.e., the total water path (TWP)], while three of 
the GCMs (labeled in LET as: bccr, csiro, ncar) provided 
the output with the interpretation that the quantity was just 
associated with cloud liquid water path (i.e., CLWP). Two 
GCMs output from ukmocm3 and ukmogem, the total water 
path (TWP) to all CMIP3 did not include water associated 
with the convection scheme.

In CMIP5, twelve GCMs (bcc, bccesm, CanESM2, in-
mcm4, inmcm4_esm, CNRM, GISSE2R, GISSE2H, MRI, 
NorESM1, GFDL-CM3) provided output that was consistent 
with the intended interpretation of “clwvi” (i.e., TWP), eight 
of the CMIP5 GCMs (CCSM4, CSIRO, IPSL, MPI, MI-
ROc4h, MIROC5, MIROC-ESM, MIRO-ESM-CHEM) pro-
vided the output with the interpretation that the quantity was 
just associated with cloud liquid water (i.e., CLWP). Given 
this situation, we derived unfiltered CLWP for those models 
in CMIP3 and CMIP5 that provided TWP using the following 
relationship: LWP = TWP - IWP (Cloud Ice Water Path).

Table 1a lists the CMIP5 simulations included in this 
study, and Table 1b describes a summary of cloud micro-
physics parameterizations used in the selected CMIP5 mod-
els. As mentioned in Li et al. (2012), the performance of 
simulated warm cloud properties in CMIP5 models arises 
from a highly coupled system (land, ocean, atmosphere etc.) 
and the behavior is not likely to be simply explained by any 
single component/scheme, but rather by details of the mod-
el’s specific schemes and the coupling among schemes re-
lated with a particular process such as clouds, aerosols and 
turbulence for boundary layer clouds, and clouds and con-
vection for deeper clouds, as well as the interactions with 
sea surface temperatures (SSTs). However, we attempt to 
explain the causes in the behavior of some of the best/worst 
performing models in section 5.

The specific experimental scenario is the historical 20th 
century simulation, which used the observed 20th century 
greenhouse gas, ozone, aerosol, and solar forcing. The time 
period used for the long-term mean is 1970 - 2005, and if 
a model provided an ensemble of simulations, only one of 
them was chosen for this evaluation.

One cautionary remark for the model-observation 
comparison is regarding the difference between the water 
mass from cloud particles in precipitating conditions and 
the water mass from precipitating particles in precipitating 
conditions. These two water mass sources are different in 
terms of contributing particle sizes. In the observation side, 
both water mass sources are removed because any retrievals 

from the precipitating condition are filtered out in the FLAG 
filtering method described in section 2. In the model side, all 
of the models examined in this study include the water mass 
from cloud particles in precipitating conditions but only the 
two GFDL models include the water mass from precipitat-
ing particles in addition to that from cloud particles.

Ideally, for the comparison with the non-precipitating 
CloudSat and MODIS observational estimates, precipitating 
profiles from the model should also be excluded. However, 
at this stage it is not feasible because model precipitation is 
parameterized and “averaged” in time and grid box (contrast 
to a snapshot CloudSat cloud profile) over a physical mod-
el time step (~30 mins to hour) with significantly coarser 
resolution (~50 - 100 km) than the size of the instantaneous 
“snapshot” CloudSat footprint (~1 - 2 km) or MODIS pixel 
(1 km). Thus, in a GCM, the determination of a threshold for 
non-precipitation and/or convective mass that is equivalent 
to CloudSat footprint/MODIS pixel resolution is difficult.

Given this situation, we use the filtered MODIS and 
CloudSat observational estimates of LWP as a lower limit. 
At the same time, the MODIS unfiltered CLWP can serve 
as a upper limit since it includes cloud liquid water (i.e., 
no precipitating particle) in precipitating conditions but 
MODIS retrievals in the condition are known to be less 
reliable and overestimate LWP in comparison with in situ 
measurements (King et al. 2013 and see section 2 for dis-
cussion). Additionally, we have combined the MODIS and 
CloudSat cloud retrievals to construct the CLWC profile for 
all conditions (see section 2 for discussion), which include 
cloud water profiles in the precipitating conditions. These 
estimates should be used with caution because the uncer-
tainty/errors in the retrievals from the precipitating condi-
tions is large (> 100%).

Unlike all the other models examined in this study, 
which do not include liquid mass from precipitating rain 
and convective-type clouds in their CLWC, the two GFDL 
models include the liquid mass by adding grid means over 
shallow cumulus, deep cumulus cells, and convective me-
soscale clouds, weighted by their respective area fractions. 
Thus, the GFDL models should be considered somewhat 
carefully with respect to the other models, and their CLWC/
CLWP fields would be more commensurate with the total 
liquid water content (TLWC)/ and total liquid water path 
(TLWP), which include water mass from both cloud par-
ticles and precipitating particles. Currently, we do not have 
reliable global observational datasets to estimate TLWP be-
cause available observation instruments are either sensitive 
to only cloud particles (as in MODIS) or are more sensitive 
to the precipitating particles so that the contribution from 
cloud particles is not retrievable reliably (as in CloudSat).

For both the GCM and observational data sets, all fields 
have been re-gridded to 40 levels in vertical (with a constant 
pressure interval of 25 hPa) and mapped onto common 8° × 
4° longitude by latitude grids.
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5. resuLts

Figure 4 shows the long-term annual mean spatial 
distributions of simulated values of CLWP from eighteen 
conventional CMIP5 CGCMs (see Table 1; 1 - 18: bcc, bcc-
esm, CanESM2, CCSM4, CNRM, CSIRO, GISSE2H, GIS-
SE2R, Inmcm4, Inmcm4esm, IPSL, MIROC4h, MIROC5, 
MIROCCHEM, MIROC, MPI, MRI, and NorESM1), 
the multi-model ensemble mean (MMM) from the eigh-
teen CMIP5 models (Fig. 4s), and UCLA GCM (Fig. 4t), 
GEOS5 (Fig. 4u), two analyses MERRA (Fig. 4v) and 
ECMWF-Interim (Fig. 4w), as well as observed estimates 
of (Fig. 4y) CloudSat filtered CLWP, (Fig. 4z) MODIS fil-
tered CLWP, and (Fig. 4aa) MODIS unfiltered CLWP. We 
use the MODIS filtered CLWP (Fig. 4z) as the reference, 
the CloudSat filtered CLWP (Fig. 4y) as a “lower” limit, 
and the MODIS unfiltered CLWP as an upper limit for the 
model evaluations of CLWP. In addition, Fig. 4 shows the 
TLWP distributions from GFDL CM3 (Fig. 4x).

Overall, the multi-model mean CMIP5 CLWP values 
(Fig. 4s) are similar to observations in terms of spatial dis-
tribution, but they are biased high globally even when com-
pared against the MODIS unfiltered CLWP. Individually, 
most models tend to qualitatively capture the global and 
regional CLWP patterns. This includes the relatively high 
values of CLWP in the storm tracks from the subtropics to 
high latitudes. However, they all overestimate CLWP over 
ITCZ and warm pool. Note that the relative magnitudes be-
tween tropical and mid-latitude values can be quite different 
across models.

None of the CMIP5 models provides a good represen-
tation of both the magnitude and spatial pattern of CLWP. 
The three that perform relatively better are CSIRO, Inmcm4, 
and Inmcm4esm but even these have significant shortcom-
ings relative to the observation data. Most of the models 
overestimate (~a factor of 2 or more) tropical CLWP. The 
MIROC, MIROCCHEM, and CCSM4 GCMs greatly over-
estimate (~a factor of 5) tropical and storm track CLWP. 
The IPSL, CSIRO, MIROC5, MIROC4h, and the two GISS 
GCMs moderately overestimate CLWP in the extra-tropics. 
For the non-CMIP5 GCMs, the GEOS5 atmospheric GCM 
(AGCM) overestimates (~a factor of 2) CLWP in the storm 
tracks while the UCLA GCM does relatively well over most 
of the globe except over the northeast of South America. 
The two analyses, ECMWF and MERRA, show relatively 
good spatial patterns of CLWP patterns, with both being 
biased high (factor ~1 - 2). The GFDL model simulates 
and provides output on TLWP. When compared with the 
observational estimates of CLWP (Figs. 4y - aa), GFDL 
exhibits in a relatively good agreement in the extra-tropics 
storm track regions but its TLWP is larger than the obser-
vational CLWP in the tropical ITCZ and warm pool. Since 
the observational CLWP does not include water mass from 
deep convective cores and precipitating hydrometeors, it is 

uncertain whether it indicates the model biases of GFDL 
TLWP estimations.

Figure 5 shows the long-term annual zonal average 
of CLWP quantities associated with CMIP5 displayed in  
Fig. 4. Figure 5a represents the multi-model mean (blue 
line), the one standard deviations for upper and lower bound 
(red line). The latitudinal distributions clearly illustrates a 
wide spread of CLWP in the CMIP5 models. Figure 5b 
shows the observational estimations of CLWP from Cloud-
Sat and MODIS. The green/black line is the MODIS un-
filtered/filtered CLWP which includes/excludes the cloud 
water mass from both convective cores and precipitating 
clouds. The magenta line is the CloudSat filtered CLWP 
which excludes the cloud water mass from convective cores 
and precipitating clouds. The multi-model mean (the blue 
line) and the model standard-deviation added and removed 
to the mean (the red lines) are also plotted for comparison 
with the observational estimates. It is evident that the multi-
model mean CLWP is one standard deviation larger than the 
observational MODIS unfiltered CLWP and filtered CLWP. 
Since the MODIS unfiltered CLWP is the upper limit of the 
observational CLWP, this model-observation comparison 
illustrates the model CLWP means are significantly larger 
than the observational CLWP.

To summarize the multi-model performance of CMIP3 
and CMIP5 in representing the time-mean pattern of CLWP, 
Fig. 6 illustrates the multi-model mean biases against the ob-
served estimate calculated across the model ensembles. The 
observational estimate used in this calculation is the MODIS 
CLWP filtered for no rain and no convection conditions. 
Note that the MODIS filtered CLWP is provided only over 
oceans so the ensemble mean is obtainable only over oceans. 
The patterns of CLWP bias in CMIP3 (Fig. 6a) and CMIP5 
(Fig. 6b) are systematically similar: CLWP is overestimated 
globally. In CMIP3, the ITCZ/SPCZ, high latitudes, and 
storm tracks are significantly biased high (65.2 g m-2), while 
in CMIP5 the bias (78.3 g m-2) is even higher. Therefore, 
based on this initial comparison, the fidelity of CMIP5 mod-
els in representing cloud liquid mass exhibits no progress 
relative to CMIP3.

The CMIP3 and CMIP5 multi-model biases against the 
observational estimates of CLWP have implications on ra-
diative flux calculations in the models. The radiative fluxes 
are affected by LWP from all types of hydrometeors, but all 
the models in CMIP3 and CMIP5 (except GFDL) include 
only the contribution from cloud particles excluding the 
contribution from precipitating and deep convective hydro-
meteors. Therefore, the underestimation of water mass by 
including only cloud-only water mass can lead to system-
atic biases in radiative fluxes. The present study run shows 
that the cloud-only water mass in the model is significantly 
overestimated, which may be induced to compensate the er-
ror of excluding the water mass from the precipitating and 
deep convective hydrometeors since the models are better 
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constrained to achieve the correct radiative fluxes.
To summarize the multi-model performance of CMIP5 

in representing the time-mean pattern of CLWP, all the 
models are biased high (more than factor of 2 and even 3) 
in mid- and high-latitudes except for some CMIP5 models 
like CNRM, CSIRO, two GISS models, MPI and MRI as 
well as all the uncoupled models (UCLA and GEOS5) and 
reanalyses (MERRA and ECMWF-Interim) are comparable 
to the MODIS unfiltered CLWP. CMIP5 models show that 
mid- and high-latitude regions have stronger biases than 
tropical regions.

To further quantify and synthesize the comparative in-
formation discussed above, we use a Taylor diagram (Taylor 
2001) as we did early for the IWC (Li et al. 2012). The Tay-
lor diagram used in this study is a very commonly used sta-
tistical metric that relates two statistical measures of model 
fidelity: the spatial correlation and the spatial standard de-
viations (Taylor 2001). These statistics are calculated for the 

long-term time mean and over the global ocean-only domain 
(area-weighted). The reference dataset is plotted along the 
x-axis at the value 1.0. The radial distance from the origin 
is proportional to the ratio of the standard deviations of the 
given dataset relative to the reference dataset. The azimuthal 
angle represents the spatial correlation between the given 
dataset and the reference dataset. The ratio of the standard 
deviation exhibits the relative amplitude of the simulated 
and the “reference” variations, whereas the correlation indi-
cates the degree of similarity of variation between the two.

We use the MODIS filtered CLWP as the reference for 
the Taylor diagram analysis. The Taylor diagram shown in 
Fig. 7 summarizes both the degree of agreement in the over-
all spatial pattern correlations and the standard deviations 
for the individual CMIP5 CGCMs, their multi-model mean, 
two analyses, three other GCMs. MODIS unfiltered CLWP 
is used as another observational estimation to give a range 
of the observational uncertainties.

(a) (b)

Fig. 5. (a) Zonal average of LWP quantities associated with each CMIP5 model (thin black solid, dotted, and dashed lines), multi-model mean (blue 
line), one standard deviation subtracted from and added to the mean for lower and upper bound (red line). (b) Zonal average of the three observation-
ally estimated CLWP shown in Fig. 4: CloudSat CLWP (magenta), MODIS CLWP (black), and MODIS CLWP under all conditions (green). The 
CMIP5 multi-model mean and its upper and lower bounds are also plotted for direct comparison. The units: Cloud liquid water path (g m-2).

(a) (b)

Fig. 6. (a) Multi-model mean CLWP bias (g m-2) for the CMIP3 GCMs shown in Fig. A1; (b) multi-model mean CLWP bias associated with the 
eighteen CMIP5 GCMs shown in Figs. 4a - r with MODIS no rain and no convection cloud only LWP (Fig. 4z) used as a reference.
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The two reanalyses (ECMWF and MERRA; see  
Table 1b) and AGCM simulations (i.e., specified SST; 
GEOS5, see Table 1b) perform as a group considerably bet-
ter than the CMIP coupled GCMs in terms of the standard 
deviation ratio. The former have correlations between 0.2 
and 0.4 and standard deviation ratios of between 0.8 and 
1.1. The AGCM simulations are expected to perform bet-
ter in various ways (such as spatial distribution of ITCZ, 
SPCZ, and SACZ) compared to CGCM simulations due to 
the use of prescribed SSTs. In a coupled GCM, the horizon-
tal spatial distribution of surface ocean heat fluxes (radia-
tion, latent and sensible as well as surface wind stress etc.) is 
important in driving model ocean dynamics (in particular in 
a long climate run) and therefore the distribution/values of 
the SSTs which determines the locations of the warm pool, 
ITCZ/SPCZ as well as the distribution/values of LWP/IWP 
and cloud fraction etc. In an uncoupled AGCM, on the other 
hand, prescribed SSTs are used, such that its surface heat 
fluxes, PBL, cloud-topped PBL and convection with cloud 
rooted from the PBL are strongly constrained by these pre-
scribed SSTs, resulting in more realistic precipitation, deep 
convection and cloud and their associated LWC/LWP and 
IWC/IWP.

For the group of CMIP5 values (red), most of them 
have correlations between from about 0.3 to 0.8 with stan-
dard deviation ratios above 1 and up to 4 except for the two 
Inmcm4 models with values of 0.44. Two bcc models and 
the two MIROC models (MIROC and MIROC-CHEM) as 
well as CCSM4 have the standard deviation ratios that are 
highest among all with values of 2.7 - 3.6. Other poorly rep-
resented CLWP fields with extremely weak standard devia-
tion by this metric are exhibited by the CMIP5 Inmcm4 and 

Inmcm4ESM models. In terms of the distance to the refer-
ence point, the two best performing CMIP5 models by this 
metric are CSIRO (F) and MPI (Q) with the correlation and 
standard deviation ratios of about 0.4 - 0.6 and 1.0 and 1.4, 
respectively. Since the precipitating LWP is not considered 
here, so we do not include the GFDL model in this compari-
son. In principle, GFDL should be compared with observa-
tional TLWP with contributions from precipitating particles 
since GFDL LWC includes both precipitating and non-
precipitating particles. Currently, the observational TLWP 
estimations are not available as discussed in section 3.

For the non-CMIP5 models (black in Fig. 7), the EC-
Interim (B), MERRA (C), and GEOS 2.5 (A) perform well 
relative to the others in this group in terms of standard de-
viation ratio but it has the advantage in this case of being 
an AGCM-only run, and thus uses specified SSTs and with 
assimilation for MERRA and ERA-Interim, while all other 
models examined here are fully coupled. Noteworthy in this 
regard is the relatively good performance of the UCLA GCM 
(non-CMIP5) with values of 1.2, with metric values much 
better than most of the CMIP5 GCMs [except the models 
of MPI (Q) and CSIRO (F)]. In most cases, the correlation 
values are poor except NorESM1 (0.74), two BCC models 
(0.8). Two MIROC models even have negative correlations 
and CCSM4 and MRI have almost no correlation.

Next, we examine the fidelity of the model CLWC ver-
tical structure using the synergistically constructed observa-
tional CLWC shown in Fig. 3. Such a comparison may pro-
vide clues as to where the model CLWP values are most awry. 
A comparison is given in Fig. 8, which shows the CLWC 
zonal and annual mean values from seventeen CMIP5 CGC-
Ms (Figs. 8a - q; note that the CNRM-CM5 CGCM CLWC is 

Fig. 7. Taylor diagram for GCM annual mean (80°N - 80°S) cloud liquid water path (CLWP; g m-2) where the reference value is the observed 
estimate MODIS CLWP shown in Fig. 4z (see section 2). The diagram includes the CMIP5 GCMs (red), their multi-model mean (green), GEOS5 
GCM, UCLA GCM, MERRA, EC Interim analyses (black), and MODIS CLWP under all conditions (blue).
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not available from the CMIP5 data portal at the time), UCLA 
GCM (Fig. 8r) and GEOS5 AGCM (Fig. 8s), as well as MER-
RA (Fig. 8t), ERA-Interim (Fig. 8u). These models provide 
output specifically on CLWC only. The GFDL-CM3 shown 
in (Fig. 8w), on the other hand, provides output for TLWC 
including precipitating LWC. Overall, there are significant 
disparities above 800 hPa among the CMIP5 CGCMs against 
the observational CLWC with overall discrepancies ranging 
from multiplicative factors of about 0.2 of the observations 
(e.g., Inmcm4) to factors of 10 (e.g., MIROC-CHEM, MI-
ROC GCMs).

Moreover, the general structure of their vertical distri-
butions with respect to pressure levels is considerably dif-
ferent among the models. The large model spread might be 
due to the mixed phase and supercooled phase uncertainty. 
Each model has a different way to determine the thermo-
dynamic phases of clouds and partition the cloud water 
mass into LWC and IWC. The different thermodynamic 
phase determination method can lead to a large variation in 
LWC in the low pressure levels in particular. About six of 
the CMIP5 models do a fair job in representing the vertical 
structure and magnitude of CLWC [i.e., CSIRO (Fig. 8e),  
IPSL (Fig. 8j), MIROCH4 (Fig. 8k), MIROC5 (Fig. 8l), 
MPI (Fig. 8o), MRI (Fig. 8p)]. Some models [bcc (Fig. 8a), 
bccesm (Fig. 8b), CanESM1 (Fig. 8c), CCSM4 (Fig. 8d), 
NorESM1 (Fig. 8q)] generally tend to qualitatively capture 
the patterns of CLWC over mid- and high-latitudes below 
800 hPa. The GEOS5 model and two analyses from ECM-
WF and MERRA analyses, on the other hand, tend to slight-
ly overestimate CLWC in the tropics above 600 hPa. The 
UCLA GCM shows relatively underestimated CLWC val-
ues vertically compared to the observational CLWC values. 
However, it is reasonable to exercise caution when consid-
ering the fidelity of the observed values in these mid-lower 
tropospheric regions, or anywhere around the freezing level 
as the observational data from both CloudSat and MODIS 
retrievals are filtered for no mixed-phase clouds. Therefore, 
any liquid contributions from the mixed-phase clouds are 
not counted in the observational CLWC. Compared to the 
observed CLWC (Fig. 8x), the GFDL model captures the 
ITCZ in tropical regions, the extra-tropical storm track and 
polar regions pretty well but slightly overestimates CLWC 
above 600 hPa. To summarize, for many CMIP5 models, it 
is apparent from Figs. 6, 7, and 8 that significant disparities 
exist not only horizontally in CLWP but also in the vertical 
structure of CLWC.

Figure 9 summarizes some of the basic features of  
Fig. 8 by showing the global model mean vertical profiles 
(80°N - 80°S), against the global observed mean CloudSat 
CLWC (the thick blue line) and CloudSat+MODIS com-
bined CLWC (the thick red line). Some models, in particu-
lar, the MIROC and MIROC-CHEM models, significantly 
overestimate CLWC with sharp increases below 500 hPa, 
while the two Inmcm4 models significantly underestimate 

CLWC at all levels. Most of the models, in particular, the 
CCSM4, bcc, NorESM1, MIROCh4, and MIROC-ESM 
models, significantly overestimate CLWC with sharp in-
creases above 600 hPa, The best simulated CLWC vertical 
profile is from CSIRO, followed by the MIROC5, MRI, and 
MPI, CanESM2 models (although keep in mind that CNRM-
CM5 CGCM is not available for CLWC). Both MERRA 
and GEOS5 well capture CLWC in the lower troposphere.

By decomposing the global averages into various belt 
averages, we show in Figs. 9b, c, and d the average verti-
cal profiles from tropical convectively active regions (30°N 
- 30°S) and mid- and high-latitudes of both hemispheres (30 
- 60°N and 30 - 60°S). Over the tropical convectively ac-
tive regions (Fig. 9b), the models except MIROC5 generally 
do not capture the correct CLWC peak, but CLWC values 
vary greatly from model to model and they all significantly 
overestimate CLWC at all levels except for GEOS5, two 
reanalyses and UCLA GCM. From Figs. 8c and d, we find 
that a large model bias exists in mid- and high-latitudes of 
both hemispheres and below 700 hPa, especially over the 
southern high-latitudes, similar to that in IWC reported in 
Li et al. (2012). Besides the two Inmcm4 models, which are 
biased low relative to the observed estimate throughout the 
troposphere, the other models are biased high at all levels 
in tropics. However, it is important to keep in mind that the 
observed estimate of CLWC excludes the contribution from 
mixed-phase clouds. The GFDL-CM3, which includes water 
mass from precipitating particles, does not have a counter part 
of observational TLWC, so no comparison can be made.

Finally, in order to determine if there are systematic 
biases across the models in the vertical structure of their 
CLWC fields, we examine the spatial correlation and stan-
dard deviation at each level, including 900, 850, 800, 700, 
600, 500, and 400 hPa, for all the models and the multi-
model mean against the observed CLWC values (i.e., Tay-
lor Diagram analysis). A Taylor diagram representing each 
pressure layer of the annual mean CLWC for the CMIP5 
multi-model mean (red), MERRA (blue), and ECMWF-In-
terim (green) are shown in Fig. 10. The CMIP5 multi-model 
mean shows poor correlations, even with some having zero 
and negative values, with observations at all levels consid-
ered, while it shows reasonable standard deviation ratios for 
900, 850, and 800 hPa levels. The large ratios for 700, 600, 
and 500 hPa levels are partly due to the exclusion of the 
mixed-phase cloud mass in the observational estimate of 
CLWC since the observational partitioning of the mixed-
phase cloud into liquid and ice is not reliable.

6. summAry And dIscussIon

To assess the fidelity of GCMs in simulating cloud liq-
uid water, liquid water path (LWP) retrieved from one pas-
sive satellite sensor, MODIS and the vertically-resolved liq-
uid water content (LWC) estimates from the satellite radar, 
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CloudSat, are combined synergistically. We find that the pat-
terns of CLWP bias in CMIP3 and CMIP5 are systematically 
similar with most models being biased high (Fig. 6). When 
MODIS filtered CLWP is used as a metric, there is overall a 
fairly wide disparity in the fidelity of CLWP representations 
in the CMIP5 models examined. Even for the annual mean 
maps considered, there are easily factors of 2, and nearly up 
to 10, for the differences between observations and mod-
eled values for most of the GCMs over a number of regions 
(Figs. 4 - 7). There is only one model, CSIRO, among the 
CMIP5 ensemble examined here that performs rather well 
in regard to the Taylor diagram metrics (i.e., standard devia-
tion ratio and pattern correlation) for CLWP. The following 
fair performers are MPI and MRI. The models that perform 
particularly poorly include MIROC, MIROC-CHEM, bcc, 
bcc-esm, INMCM4, and INMCM4-ESM, with the former 
(latter) four (two) being biased high (low) significantly in 
terms of overall CLWP magnitude. The remaining models 
exhibit intermediate performances.

As expected, the two reanalyses examined perform rela-
tively well compared to the GCM group as a whole due to the 
incorporation of a wide array of constraining observations. 
This is still notable though since they do not assimilate cloud 
liquid observations and thus rely on (parameterized) model 
physics to represent this quantity. However, even with the 
assimilation of many other/related quantities, neither MER-
RA’s nor ECMWF-Interim’s performance was within the un-
certainty of the observations for the pattern correlation. The 
UCLA GCM is one of the best performing CGCMs along 
with the three identified above (i.e., CSIRO, MPI, and MRI).

Considering the large disparities between the observa-

tions and modeled values of CLWP, it is evident that while 
the models may be providing roughly the correct radiative 
energy budget, many are accomplishing it by means of un-
realistic cloud characteristics of cloud liquid mass, which 
in turn likely indicates unrealistic cloud particle sizes and 
cloud cover (e.g., Norris and Weaver 2001; Zhang et al. 
2003; Lin and Zhang 2004; Schmidt et al. 2006; Cole et al. 
2011; Franklin et al. 2012; Kay et al. 2012).

The CloudSat and MODIS combined CLWC (Fig. 3) 
is generated by complementing CloudSat CLWC by adding 
the MODIS derived CLWC based on the moist adiabatic 
assumption with the MODIS CLWP and CALIPSO deter-
mined cloud top height. The CloudSat and MODIS com-
bined CLWC is used as a reference for model evaluations. 
Examination of the vertical structure of CLWC in terms of 
global, zonal and large-region averages (e.g., high, mid, 
and tropical latitudes) indicates similar findings in terms of 
overall performance across the models and reanalyses exam-
ined here. Most of the systematic errors in the global-mean 
vertical profile of CLWC occur below the mid-troposphere 
where the models tend to significantly overestimate CLWC 
compared to the observed estimate. No model (except 
CSIRO in tropics) generates reasonable spatial variability at 
all levels, in particular, above 800 hPa.

Given that there have been viable observed estimates 
of CLWP from MODIS and CLWP/CLWC for about 4 - 
5 years from CloudSat yet still GCMs exhibit such large 
biases, the large disparity between the models and observa-
tions indicates challenges of utilizing the observations by 
all the modeling groups. These challenges likely include the 
uncertainty of CloudSat LWC below 900 hPa and the failure 

Fig. 10. Taylor diagram for GCM annual mean (80°N - 80°S) cloud liquid water content (CLWC; g kg-1) where the reference value is the observed 
estimate CloudSat CLWC combined with MODIS-derived CLWC (All-LWC shown in Fig. 8a). The diagram includes the CMIP5 GCM multi-
model mean (red), MERRA (blue), and EC Interim analyses (green) at 900, 850, 800, 700, 600, and 500 hPa.
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of retrieval under precipitating/convective conditions that 
limits the development and improvement of the model PBL 
cloud and convection parameterizations. The complexity of 
the present study in using the observational data is an evi-
dence of the difficulty of utilizing the observational data.

Beside the conventional CGCMs, no counterpart of 
TLWC/TLWP observations that include drizzle and rain 
is available for evaluating the performance of the GFDL-
CM3. The lack of the TLWC/TLWP observational data is 
because that it is difficult to quantify the drizzle and rain 
from measurements of remote sensors.

In this study, we mainly focused on CLWC/CLWP 
comparisons between models/analyses and satellite re-
trievals. It is beyond the scope of this study to probe the 
causes of the observation-to-observation, model-to-model 
differences and model-to-observation biases. However, 
highlighting a few outstanding questions is instructive to 
help keep in mind the complexity associated with model-
ing atmospheric liquid water. This includes representing/
parameterizing PBL clouds, shallow and deep convection, 
evaporation processes, autoconversion, cumulus detrain-
ment, the overall interplay between these different physical 
parameterizations (and the large scale dynamics).

While the observations exhibit considerably better 
agreement in CLWP values than the CMIP5 models shown 
in the Taylor plot, there is a clear disagreement over the 
tropical western Pacific (i.e., warm pool), ITCZ/SPCZ and 
mid-latitude storm track. Several factors could contribute to 
the disagreement between these observational estimates. The 
deficiencies from passive detection include the presence of 
multi-level, mixed-phase, and thick clouds as well as surfac-
es that are bright and/or that have variable emissivity, each 
of which can represent a significant challenge for passive 
techniques, and are limited to estimates of CLWP with no/
poor profiling capabilities. The main problem of CloudSat 
CLWC/CLWP retrievals is that they fail whenever there are 
drizzle and rain conditions and therefore the CLWC retrieval 
is difficult and often fails below PBL top and convective core 
under heavy rain. In addition, CloudSat CLWC/CLWP in 
PBL low clouds (normally lower than 900 - 1000 m) is often 
not retrieved because of the radar clutter issue near the sur-
face. The PBL stratocumulus clouds, deep convective clouds, 
and shallow cumulus clouds are critical for the model cloud 
representations of the regions off the coasts of California and 
Peru in CGCMs but the CloudSat CLWC/CLWP has a lim-
ited use in evaluating the clouds in the regions.

In addition, at the time of this study we used existing 
flags for precipitation in the CloudSat 2C PRECIP-COL-
UMN product to distinguish precipitating (including driz-
zle) from non-precipitating clouds, which have valid flags 
over only oceans. Recent research has more systematically 
addressed the identification (Haynes et al. 2009) and quanti-
fication (Lebsock and L’Ecuyer 2011) of precipitation from 
CloudSat data leading to the development of experimental 

precipitation data products. As of this date, there remain 
inconsistencies between the various CloudSat products re-
garding the identification of precipitation, resulting in the 
existence of highly uncertain cloud water content retrievals 
in the presence of precipitation. An effort is under way to 
reconcile these inconsistencies for future product releases; 
however, determining quantitative information regarding 
cloud water content in the presence of precipitation will re-
main a challenge for some time to come.

Finally, the ability to explicitly represent both the 
cloudy, convective core and precipitating components of the 
liquid (and ice) mass has important physical considerations 
apart from just having additional observational constraints. 
While more work needs to be pursued in this area, there 
is a strong suggestion that GCMs should strive to explic-
itly represent a broader range of ice (Waliser et al. 2011; 
Li et al. 2012) and liquid hydrometeors, namely the larger 
falling hydrometeors (rain, snow) and include their effects 
in the radiative heating calculations which for the mo-
ment, although indirectly taken into account in many cases, 
is largely ignored from an explicit point of view (Li et al. 
2013). Moreover, along with the evaluation results of this 
study, this consideration of the radiative impacts provide an 
additional evidence that the radiation balance in the CMIP 
class of GCMs which matches observations is still under-
constrained and in many cases achieved in unrealistic ways. 
Taken together, these points indicate the need for (1) much 
improved retrieval algorithms that include observations 
from multiple platforms; (2) data-assimilation of space-
based observations of cloud properties (something which 
is currently remarkably absent); and (3) additional obser-
vational resources to adequately characterize and constrain 
cloud-precipitation-radiation interactions. This is likely to 
include multi-channel radar/lidar information to charac-
terize the profile and spectrum of cloud and precipitation 
particle sizes as well as Doppler radar capability to provide 
information on cloud and precipitation dynamics.
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APPendIx A
(1) the uncertainties and Limitations of modIs cloud 

LWP

Platnick et al. (2003) summarize most of (although 
not all) errors associated with the retrieval of cloud optical 
properties and thus by inference liquid water path inferred in 
this way. Their analysis indicates that the characteristic opti-
cal depth error of low clouds is about 10% over most of the 
range of optical depths with much larger errors occurring for 
smaller optical depths especially for clouds over land due to 
the creeping influence of the surface albedo uncertainties in 
these cases. The errors on effective radius for low clouds are 
similar in the range from 10 - 20% but are substantially more 
uncertain for ice clouds. Platnick et al. (2003) omit contribu-
tions from model errors that are discussed in details in Ste-
phens and Kummerow (2007) and for certain retrieval prob-
lems [such as broken clouds with three-dimensional (3D) 
effects] these omitted errors dominate the error budget.

There are also other limitations of these data that are 
not considered in Platnick et al. (2003). The MODIS opti-
cal measurement loses sensitivity for large LWPs since the 
reflected sunlight saturates to almost constant values at large 
optical depths. The optical methods cannot retrieve mean-
ingful water paths in mixed-phased clouds or clouds masked 
by high level ice clouds. Thus, optical methods cannot sam-
ple the full distribution of liquid water paths and are limited 
primarily to warm single layered cloud systems. The method 
also is subject to uncertainties introduced by the existence 
of undetected high clouds that occur overlying low clouds. 
These events are not negligiblele and appear as problematic 
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biases in current radiance based climatology, (e.g., Haynes 
et al. 2011; Mace and Wrenn 2013). The third limitation of 
these optical measurements is that they tend to be weighted 
high in the cloud and contain restricted information about 
the liquid water path associated with precipitation.

These limitations are confirmed by a comparison study 
with in situ observations from VOCALS-Rex (King et al. 
2013). The MODIS retrieved effective radius of the droplet 
size distribution overestimates the in situ measurements on 
average by 13% with largest overestimation coinciding with 
the presence of the drizzle sized droplets. The optical depth 
retrieved from MODIS also overestimate in situ values. 
These two high biases lead to an overestimation of liquid 
water path in MODIS. Although these limitations have to 
be kept in mind in considering the results to follow, we con-
clude that under the most ideal conditions (no precipitation, 
no high cloud, fully overcast without any significant 3D ef-
fects) the MODIS LWP uncertainty is expected to be in the 
range of 10 - 30% (King et al. 2013).

(2) the collocation of cloudsat-modIs-Amsr-e

The MODIS-collocated-to-CloudSat and AMSR-E-
collocated-to-CloudSat datasets are a part of the CloudSat-
centric Co-location Data Products for A-Train data and 
ECMWF analysis outputs available at http://csyotc.cira.
colostate.edu/index.php. The data products are generated 
for the Year of Tropical Convection (YOTC) study (http://
www.ucar.edu/yotc). Specifically, the data products con-
tain convection and cloud related A-Train satellite retriev-
als that are collocated to CloudSat footprints for the period 
May 2008 to April 2010. Products include quantities from 
CALIPSO, MLS, AIRS, AMSR-E, CERES, MODIS, and 
a number of fields from the specialized YOTCO analysis 
produced by ECMWF. The co-location data products are 
produced to facilitate the synergistic use of the multi-source 
datasets by providing them in common geo-location param-
eters and a common data format.

The co-location process is done by finding the near-
est neighbor footprint in the source data (i.e., A-Train or 
ECMWF data) for a given footprint in the target data (i.e., 
CloudSat data). For A-Train co-location, if the distance be-
tween the nearest-neighbor footprint and the target footprint 
is smaller than 1.5x (the sum of the two footprint sizes) and 
the time difference between the two data is smaller than 
about 15 minutes (which is the largest time span of the A-
Train instruments), we accept the nearest-neighbor footprint 
and co-locate it onto the target footprint. Neither spatial av-
eraging nor interpolation is applied in the co-location pro-
cess. The value from the accepted nearest-neighbor foot-
print is simply copied over to the target footprint. We take 
this simple nearest-neighbor copying approach because an 
appropriate averaging and interpolation varies from instru-
ment to instrument and from variable to variable and re-

quires detailed and individual analyses.
The purpose of the collocation was performed in order 

to apply the CloudSat-based precipitation and cloud condi-
tion flags to the MODIS LWP data to partition these data 
into the suspended (cloud-only), convective and precipitat-
ing portions for reasons discussed below. This collocation 
process reduces the size of temporal and spatial resolutions 
of the MODIS data significantly. The collocated and parti-
tioned MODIS LWP retrievals are mapped onto 1 × 1 degree 
grid and averaged for all sky conditions. Note that MODIS 
MYD06_L2 product includes only LWP values from cloudy 
conditions and treats the LWP retrievals from a clear sky con-
dition as invalid. In order to make the all sky averaged LWP, 
we set the LWP retrieval from the clear sky condition to be 
zero and add it to the averaging. This process is effectively 
the same as averaging the cloudy-condition LWP values only 
and multiplying it by the cloud fraction in each grid.

(3) cloud detection capabilities of cloudsat and 
modIs

Apart from the retrieval uncertainty, the cloud detec-
tion capabilities of CloudSat and MODIS are an important 
factor in assessing the observational uncertainty. When the 
CALIPSO lidar measurements are combined with the Cloud-
Sat radar measurements, they provide the most accurate mea-
surement of cloud detection and height structure available 
among all satellite-based measurements today because their 
complementary features. The radar can probe optically thick 
layers better than the lidar while the lidar can sense opti-
cally thin layers and tenuous cloud tops better than the radar. 
CloudSat 2B-Radar-Lidar GEOPROF product is a retrieval 
product, which uses the synergy of the radar and lidar.

Given that the radar and lidar combined detection is 
superior to other measurements, however, the radar-only 
measurement misses most low clouds, which is attributed 
to the radar surface cluttering issue. This is consistent with 
previous observational studies such as Marchand et al. 
(2008) and Kubar et al. (2011). While MODIS misses some 
clouds compared to the lidar and radar combined detection 
level, MODIS detection capability is overall within 10% er-
ror. These detection deficiencies will unavoidably lead to 
systematic biases in the annual means of CLWC and CLWP 
retrieved from the CloudSat and MODIS measurements. 
Quantifying the systematic biases is difficult because there 
is little information about the cloud water mass (CLWC/
CLWP) of the clouds that are missed by MODIS. However, 
the clouds missed by MODIS are expected to be mainly 
optically thin clouds and thus have low liquid cloud water 
mass. Therefore, the effect of missed clouds on the annual 
means of CLWC/CLWP should be much less than 10%, 
which is the MODIS cloud detection missing frequency as 
mentioned above.

The majority of the CMIP5 model outputs of cloud 

http://csyotc.cira.colostate.edu/index.php
http://csyotc.cira.colostate.edu/index.php
http://www.ucar.edu/yotc
http://www.ucar.edu/yotc
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liquid water path (CLWP) is available from 1850 - 2005. 
However, the CloudSat is only available starting from June 
2006. Due to the battery failure of CloudSat cloud profiling 
radar, the data after 2011 is daytime only. In this study, we 
use data from January 2007 to December 2010 to include 
daytime and night time. The MODIS LWP we use (May 
2008 to April 2010) has more profiles collocated path along 
with CloudSat track.

Since the data period is too short to compute the trend, 
we compute the annual mean LWP of MODIS data from 
January 2001 to December 2005 (Fig. A1a) which is closer 
to the CMIP5 data period, against the annual mean LWP 
from May 2008 to April 2010 (Fig. A1b), to examine their 
difference (Fig. A2c) and their changes relative to the  
annual mean in 2001 - 2005 (Fig. A1d). The changes of 
LWP is within 10% (Fig. A2d), and their difference (Fig. 
A2c) is about 4 - 6 (g m-2), which is well below the biases in 
CMIP3/CMIP5 (values of 20 up to 100 g m-2) shown in Fig. 
6. In addition, we compute the annual mean LWP of CMIP5 
data from January 1970 to December 2005 against the an-
nual mean LWP from January 2001 to December 2005, and 

their changes relative to the annual mean of 1970 - 2005 
(figure not shown) is within 2 - 4%, which are also well 
below the biases in CMIP3/CMIP5.

(4) determination of Lfting condensation Level (LcL)

We use the lifting condensation level (LCL) defined as 
the cloud base height. From Georgakakos and Bras (1984), 
the LCL is estimated as
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where PSFC is the surface pressure, TD is the dewpoint tem-
perature in Kelvin, RHSFC is the surface relative humidity, 
and RV is the gas constant for vapor (= 461 J K-1 kg-1). The 
LCL pressure is converted to height using the CloudSat 
ECMWF-AUX data.

(a)

(b)

Fig. A1. (a) Globally-averaged, annual means of CLWP from the 1970 - 1994 periods of the 20th century GCM simulations contributed to the IPCC 
AR4 FAR (20c3m scenario). (b) Annual mean values of CLWP (g m-2) from 1970 - 1994 of the 20th century GCM simulations contributed to the 
IPCC AR4 FAR (20c3m scenario). The figure is taken from Li et al. (2011).
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(a) (b)

(c) (d)

Fig. A2. (a) Annual mean cloud liquid water path (CLWP: g m-2) from MODIS average from May 2008 to April 2010; (b) same as (a) but from 
January 2001 to December 2005; (c) the difference between (a) and (b); (d) the difference of (c) relative to (a) (unit: %).


