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ABSTRACT 

The present study uses a fine scale data set from GATE phase III to investigate 
spatial effects on rainfall characteristics and its lagged autocorrelation. Due to the 
finer structure of the present data set, the physical processes invloved for a shorter 
distance scale can be identified, which has crucial information in the estimation for 
the sampling errors of a rain field. 

It is found that for a rainrate less than 4 mm/ hr, a 1 km by 1° and 4 km by 
4° data set will not make any noticeable difference to accumulated rainfall statis­
tics. This is directly implied by stratiform rainfall associated with the mesoscale 
circulation system. The rainfall within that physical region is continuous with a 
rainrate less than 6 mm/hr. A rainfall rate greater than 40 mm/hr contributes 
20 % to the total rainfall in 1 km by 1° data, in contrast to an 8 % contribution 
from the 4 km by 4° data. The area-averaged processes suppress extreme rainfall 
considerably (the extreme would have come from the convective scale) . 

The variance and the autocorrelation calculated in this study reveal that the 
slope of the variance and autocorrelation for a smaller scale are different from those 
estimated through a larger area data. This is an indication that the convective scale 
rainfall field caused this change, and the existence of a horizontal integral length 
scale for the shorter scale end is postulated. The implications of a horizontal integral 
length scale and suggestions for further research are discussed. 

1. INTRODUCTION 

51 

It was understood that outside the tropics, the primary energy source 

of synoptic disturbances is available potential energy with a strong latitudinal 

temperature gradient. In the tropics, on the other hand, the storage of available 
potential energy is very small due to the very weak temperature gradients. The 
latent heat release associated with convective rainfall appears to be the primary 
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energy source for disturbance there. Most latent heat release in the tropics oc­
curs in convective cloud systems. This large sum of latent heat released through 
precipitation is vital to a large-scale general circulation pattern, and the water 
associated with it is essential for human activity. However , the estimation of 
precipitation over the tropics is a difficult problem. Unlike many meteorological 
parameters, rainfall is discontinuous in space and time and exhibits a large nat­
ural variability. Current observation systems, such as rain gauges and radar, are 
generally limited to the measurement of precipitation over land. The oceanic 
rainfall is more frequently extrapolated from other data rather than measured 
directly� 

Satellites have been regarded as a means to circumvent some of the defi­
ciencies of gauge and radar measurement of rainfall. Satellites have the ability to 
access remote areas of the world on a regular basis and this is a great advantage. 
However, satellite systems present their own problems . For example, rainfall 
rates must be indirectly inferred using remote sensing methods . A number of 
techniques have been developed to infer rainfallfrom visible or infrared data or 
to relate it more physically to radiation emitted at microwave frequencies. 

Sampling errors due to temporal gaps dominate the error budget of a 
global rainfall dataset exclusively constructed by a specified satellite. The sam­
pling errors may be defined as the difference between a "true" estimate one 
would obtain from a temporally continuous data set and an estimate from the 
discontinuous data. Radar or gauge observed data must be used to estimate the 
sampling errors and the implication for errors in satellite-measured datasets can 
then be identified. One of the most frequently used observational data sets for 
this type of research is from the GATE (Global Atmospheric Research Program, 
At_!�ntic Tropical Experiment) . . 

During the GATE in 1974 , the approach of combining satellite, radar, 
and aircraft, with an exceptionally dense array of ships launching upper-air 
balloons was adopted, to probe the convective cloud field. These data were 
supplemented by standard synoptic observations, surface-based cloud photog­
raphy, an� a variety of boundary layer measurements . The GATE dataset 
offered an unprecedented opportunity to investigate the evolution of convective 
clouds and the rainfall characteristics associated with these events. Many stud­
ies had been conducted using both real data taken from the GATE experiment 
and using stochastic models of rain rates based on the observed data to inves-

, t igate the lagged space-time correlation of rain fields (McConnell and North, 
1987; Laughlin, 1981; Hudlow and Patterson, 1979) 

The lagged space-time correlation of the rain rate is needed for the esti­
mation of sampling errors in finite rain-gauge networks , and in the estimation 
of bias due to beam-filling. The spatial autocorrelation of the rain rate was 
derived from the GATE phase I and Phase II data. The correlation field is well 
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described by the formula (Bell, 1987) 

C (s) - ---
1
---

r 
- (0.25 X S + 0.63682)2/3 

4 km :::; s :::; 60 km (1) 

where Cr (s) is the spatial autocorrelation and s is the spatial distance (km). 
That is the spatial autocorrelation function is described by a power law s-2/3• 
The variance of the area-averaged rain rate decreases much more slowly and is 
nearly A-1/3 where A stands for an area (Laughlin, 1981). This finding about 
the variance is consistent with the s-2/3 spatial correlation power law. This 
implies that the concept of a conventional horizontal integral length scale is 
questionable. If there were a finite correlation length, the variance of the area­
averaged rain rate would have to decrease as A - 1• If there were no integral 
length scale for the smallest scale, the variance of the small area-averaged rain­
field would be large, which then indicates large sampling errors in the estimation 
of a true correlation. However, the s-2/3 power law of spatial autocorrelation 
is based on data with a minimum resolution of 4 km x 4 km. The physical 
events which have a scale smaller than 4 km could not be resolved in the study 
when deriving Eq. (1) . Hence, how the s-2/3 power law formulation in Eq. (1) 
is affected by the smaller-scale events is uncertain. 

After the GATE experiment, one of the major findings is the identification 
of mesoscale disturbances embedded in a convective cloud cluster system (Houze 
and Betts, 1981). In the GATE region, cloud cluster systems have a lifecycle of 
12 to 24 hours evolving from individual convective cells to a mature organized 
mesoscale system and finally di_ssipating. Rainfall deriving from the mesoscale 
anvil region is mostly continuous and can last for several hours at a rate of 
2,...,, 6 mm/hr, in contrast to the convective core region where rainfall rates are 
in the range of 10,....., 100 mm/hr (Leary and Houze, 1979) . The characteristic 
length scale of the convective core region is only on the order of several km, 
the mesoscale anvil region has a spatial domain of about 100 km. So the 
convective core regions may not be totally resolved by a 4 km by 4 km data 
set. · This convective disturbance may thus play a role in the spatial lagged 
correlation statistics. Therefore this study attempts to reexamine the lagged 
space-time autocorrelation based on a fine scale data set which can resolve the 
small convective events, in order to investigate the correlation structure for the 
smaller-scale in order to estimate of the rainfall statistics , and compare them 
with the conclusions drawn from studies with a coarser grid data. An attempt 
will be made to physically interpret the statistical results of this study through 
the observed cloud cluster events . 

Section 2 will describe the data set and the techniques used in the anal­
ysis. The results and discussion are presented in Sec .  3. Section 4 compares 
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the present study with other previous studies and a generalized hypothesis is 
postulated. Conclusions and suggestions for further research follow (Sec. 5). 

2. DATA AND ANALYSIS TECHNIQUE 

The data set u·sed in this study is based on radar observations from the 
Canadian ship named "Quadra" during Phase 3 of the GATE experiment. The 
GATE radar data has been studied extensively. However, most of the radar 
rainfall analyses were based on the smoothed data set constructed by Hudlow 
and Patterson (1979). The data density used by Hudlow and Patterson was 
4 km by 4 km and the time interval was 15 minutes. This resolution is not 
capable of deducing behavior smaller than 4 km. The present data set is based 
on radar observations at 1 km by I 0 of sweep angle and at 5 minute intervals. 
Only 8 Julian days of data are used in this analysis (day 245, 246, 252, 253, 254, 
260, 261, 262). The detailed structure of the convective events on these days 
have been studied by many investigators, e.g, Houze and Betts (1981), Leary 
and Houze (1979), Esbensen et al. (1988) . 

If we have P data segments in a fixed time interval, and for each segment, 
there are N numbers of data points, the lagged autocovariance function (ACVF) 
can be estimated by the formula as follows. 

P N-m 
c; (m) = N � pL L [Xn+m (i) - X][Xn(i) - X] (2) 

i= 1 n= 1 

where the overbar represents an average through all the available data used in 
the study, namely, 

- 1 p N 
X= NxpLLX,.(i) 

i=l n=l 
(3) 

with m as the spatial lag. X can be any meteorological variable of interest. 
Here the rain rate is used. The subscript of n (i) stands for the data point in 
the spatial (temporal) domain. The lagged autocorrelation function (ACRF) 
thus is estimated as 

c;(m) 
PB (m) = C� (O) (4) 

c; (0) is the ACVF for zero lag. We name this scheme the "method B" 
scheme. 
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There exist different estimators to estimate the ACVF, for example, it 
can be estimated as 

where 

and 

N-m 
c� (i, m) = � L [Xn+m (i) - X(i")] [Xn (i) - X(i)] 

n=l 

N 
X(i) = � L Xn(i) 

n=l 

( ) 1 � c� ( i, m) 
PA m = 

p L.J C* (i 0) ,:,., 1 A ' 

We call this scheme the "method A" scheme. 

(5) 

(6) 

(7) 

The main difference between these two estimates of the ACRF is that 
method B uses all the possible information contained in the dataset to form 
an ensemble mean, as indicated in Eq. (3), while method A only used the data 
in a given time segment to form the mean, as represented by Eq. (6). Further 
discussion can be found in the Appendix. 

For a consistent estimator of the ACVF or ACRF, we want the limit 
of large N not to lead to a value different from the true ensemble average. 
In rainfall data, one often has a finite strip of data N, but many different 
independent realizations of the strip. In such a case, we need to know which 
is the better estimate of the ACVF. Trenberth (1984) has considered these two 
estimators with the application to large scale meteorological fields in mind. He 
found that method B was the better estimator for such an application. 

Since his analysis assumed Gaussian statistics which do not hold for rain­
fall statistics, we have to reexamine this estimator problem. We construct a 
more generalized model which can treat either the Gaussian or non-Gaussian 
noise processes. An analytic expression for the bias generated through different 
methods under a hypothesized ARl red noise process is derived. By looking 
at the estimators for an ARl process within the limit of large N, the asymp­
totic estimation of the bias generated by different schemes may be written (see 
Appendix for details) as 

b(m) 
= (1 + a) (a"' - 1) 

(1- a) x N+ (8) 

where b(m) is the bias for lag m and a is the ARl parameter. For method A, 
N+ is the number of data points in a given segment. For method B, N+ is 
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the number of data points over the total segments [or N x P as in Eq. (3)]. 
Bias generated by method B is much smaller than that generated by method 
A. This demonstrates that method B is a better estimator for the estimation of 
the rainfall statistics. Trenberth (1984) also pointed out method B is a better 
estimator for his formulation. Our generalized study finds that the Gaussian 
or non-Gaussian noise only affected the covariance function. It doesn't affect 
the correlation function. Therefore Eq. (4) is used in this study to estimate the 
ACRF. 

3. RESULTS AND DISCUSSION 

Before showing the results of the spatial autocorrelation function com­
puted from the present dataset, some of the mean statistics are presented first 
to identify the effects of area-averaging on the fundamental rainfield structure. 

a. Mean 

Figure 1 shows the probability density function of the rainfield, based on 
the present dataset (which has 1 km by 1° resolution) and the data which are 
reconstructed from the present set to have 4 km by 4° resolution. The length of 
al° sweep angle depends on it's radius. It varies from about 0.85 km (around a 
radius of 50 km) to 1.7 km (around a radius of 100 km). The largest probability 
for the rain rate mode is on the order of 4 mm/hr. I km by 1° and 4 km by 
4° have a similar probability structure, and the latter has a weaker probability 
distribution at the 4 mm/ hr. rate. The corresponding contribution to the total 
rainfall by these 2 resolutions is shown in Fig. 2. In the 1 km by 1° dataset, the 
contribution from a rainrate greater than 40 mm/hr contributes about 20 % 
of the total rainfall, in contrast to the 8 % contribution from the 4 km by 4° 
resolution. This means that extreme rainfall occurs in a smaller area and the 
area averaging process suppresses these extreme values. The contribution to the 
rainfall from the smaller rain rate (say, less than 6 mm/ hr) is quite comparable 
in these two resolutions. Thi� leads to the confirmation that the rainfall from 
the anvil regions is mostly homogeneous and at rates smaller than 6 mm/hr. 
This point is clearly identified in Fig. 3. Figure 3 shows the a�cumulated rainfall 
contribution from different rain rates for the two resolutions used in Fig. I. For 
a rain rate::; IO mm/hr, they contribute about 50 % of total rainfall for a 1 km 
by 1° dataset. Due to smoothing at the 4 km by 4° resolution, it takes a higher 
rain rate for 1 km by 1° data to achieve the same level of contribution to total 
rainfall. For example, the accumulated 10 mm/hr rainrate in the 4 km by 4° 
resolution contributes 55 % of the total rainfall, in contrast to 50 % from the 
1 km by 1° resolution. 

Below a 6 mm/hr rain rate, the contributions from these two resolutions 
are almost identical. Physically, this coincidence of two resolutions at a smaller 
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Fig. 1 The probability distribution function of the rainfield based on the GATE phase III 
data with 1 km by 1° and 4 km by 4 ° resolutions. 

rain rate can be explained by the mechanisms involved in the convective cloud 
system. It is known that in the GATE region, mature cloud clusters not only has 
a convective core region, they also have an anvil region associated with them. 
The rainfall from an anvil region is estimated at a rate of 2 rv 6 mm/ hr and it 
usually lasts for several hours. Because of the large horizontal area.occupied by 
the anvil region, these two resolutions actually resolved the physically similar 
behavior at a smaller rain rate branch. 

Only in the convective core region, which is associated with higher rain.:. 
fall, does the contribution to the total accumulated rainfall through these two 
resolutions begin to differ. The two different characteristic rainfall mechanisms 
in the GATE cloud clusters do have an impact on the accumulated rainfall 
contribution with respect to different spatial resolutions. This suggests that it 
would be interesting to investigate rainfall characteristics in other climatologi­
cally different regimes to see if this phenomenon persists. Such information will 
be useful for generalizing the conclusions drawn based on the GATE data. 

b. Variances 

The variances of these two resolutions with different radii of radar mea­
surement are shown in Table 1. The general pattern is that the 1 km by 1° 
spatial resolution has large variances as expected. However, the point which 
really concerns us is the slope of this increase from a larger spatial domain to 
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Fig. 2 The contribution of various rainrates to the total rainfall for 1 km by 1° and 4 km by 
4° resolutions. 

a smaller region. Table 2 shows the estimated slope between these two res­
olutions. Some of the data in Table 2 is plotted in Fig .  4a. The slopes as 
shown from· Table 2 are all concentrated in the neighborhood of 0.166, with 
0.024 as the standard deviation. In general , the variance is in logarithmics 
V = C - 0.166 x A, where C is an empirical constant, A is the area under 
investigation and V is the logarithm of the variance asociated with the area A. 

The slope is apparently larger than those deduced from GATE phases I 
and II which used the 4 km by 4 km grid as the smallest spatial resolution. 
Figure 4b from North (1987) shows that the decrease of variance for an area­
averaged rain rate decreases at about power law �1/3. The finding is consistent 
with the -2/3 spatial correlation power law found by Bell (1987) . They used 
these results to argue the non-existence of the horizontal integral length scale 
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Fig. 3 The accumulated rainfall contribution from different rainrate for the two resolutions 
used in Fig. 1. 

:mil 
Table 1. The variance of I km by 1° .(D:l)fand 4 km by 4° (D4) resolutions with various radar 

sweep radii. 
. . 'll :1:).ITSi'l.1:.. · 

50 km 
54 km 
58 km 
62 km 
66 km 
70 km 
74km 
78 km 
82 km 

6.859 
6.200 

86 .km . !:HS5;,�ft�i.J,. 
90 km 3ftni.�,5�9 
94 km_� &'.OJ il:,927 
98 k�iJ"rd�:.3.904 

:hlu1J· 

;-I Et. 0-- JO f)j.G � 

]�)1!3 ;)fLtvA'RIWNeEh 

0.836 0.209 
0.792 0.223 
0.732 0.238 
0.656 0.217 
0.594 0.209 
0.592 0.234 

5.479 
4.898 
5.638 
5.345 
4.459 
4.718 
4.235 
3.707 
3.114 
2.750 
2.426 
2.279 

in log 

0.777 
0.739 
0.690 
0.751 
0.730 
0.649 
0.674 
0.627 
0.569 
0.493 
0.439 
0.385 
0.358 

The e�pMted difference in the variance from the -.3392 power law is 0.41. 
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Table 2. The estimated slope for the variances at 1 km by 1° (Dl) resolution to reach the area 
associated with 4 km by 4° (D4) resolution. 

Estimated Slope 

50 km -0.162 

54km -0.186 

58 km -0.146 

62 km -0.117 

66 km -0.126 

70 km -0.16 
Mean=-0.166 

74 km -0.156 Standard Dev .=0.024 

78 km -0.174 

82 km -0.185 

86 km -0.198 

90 km -0.181 

94 km -0.174 

98 km -o.rJ� 
"T I!Ol 

in the rain field. 
As illustrated in Fig. 4a, the solid line should be the estimated variance 

increase as the power law of -0.33, and tJteCijashed line is the actual increase 
given by the present study. Here the variance which approached from the even 
larger area is assumed to be at a rate of -0.33 power law. Our present study 
indicates that the change of vaoo�<JRiwt the area-averaged rain rate between 
1 km by 1° and 4 km by 4° decreasE?s at a .Power la:w of -0.166, or we may write 
it as V is proportional to A-�!1�"S9�1'-�PJ �hiall�bWer suggests that the variance 
associated with the smaller spatfa�ele�olution f��l� off more slowly. That could 
be an indication of the existence 'iJ'r iR integraf1�ri_lgth icale. This is in contrast 
to the spatial region which does not?Je�m to ha��8a?prefJhable horizontal length 
scale. We are hypothesizing that ther�exists a H?J"r�zont�f)ength scale somewhat 
smaller than 4 km. Physically, this may be rel&t�.a to til�EiPainfall characteristic 
associated with the convective scale. The next �€dtion c!B'Rfuins more discussion 
on this. WB.O t:El�. \' 

c .  Autocorrelation 
�i.o eaa.& 

00&!.8 

The-lagged autocorrelation of these two resolutii�scare computed from 
Eq. (3) . Figure 5 shows the lagged autocorrelation of th�0rltinfield with respect 
to the distance for two resolutions · at a radar sweep radius 'cfr 102 km. ·The 4 km 
by 4° data has a higher correlation distance for a given correlati6n value than 
the 1 km by 1° data set. This fact can be illustrated by the e-folding distance. 
The e-folding distance of 1 km by 1° data is about 5 km, whiMqt4J.e 4 km by 
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Fig. 4a The plot of some of the data points from Table 2. The solid line indicates that variance 
increased at -0.33 power law, while the dashed line is the actual computation to reach 
the 1 km by 1° area. 

4° data is about 25 km. The decay of the autocorrelation in the logarithm 
for the 4 km by 4 ° data on the large correlation end is close to a straight line 
with a slope of around -0.6. Over the small correlation end, the shape of the 
autocorrelation is not a straight line. For a straight line in a log-log plot, the 
ACRF(s) is proportional to s-k, and k is the estimated slope in the log...:log plot. 
For. a large correlation (or smaller distance) , the 4 km by 4° autocorrelation 
behaves as a -0.6 power law. 

For the 1 km and 1° data, the logarithmic ACRF decays close to a straight 
line with a slope between -0.58 and -0.667 in the large correlation end. How­
ever, at distances of 2 ,...., 4 km, the decaying slope is slower than the estimated 
straight line slope. Figure 6a shows the lagged ACRF for 1 km by 1° data at 
various radar sweep radii from the center of radar measurement. Although the 
detailed structure of the ACRF with respect to various radii differ, they do have 
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the same trend to slower decay for much smaller distances. The corresponding 
field for a 4 km by 4° data set at a different radius is shown in Fig. 6b. In the 
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Fig. 6a The logarithmic plot of lagged ACRF for a 1 km by 1° resolution, for various radii 
from the radar measurement center. 

shorter distance end, the lagged ACRF are all clos� to a straight line, and are 

quite different from those of the 1 km by.1° resolution. 

This slower decay of the ACRF at the shorter distance end has significant 
implications. This aspect is consistent with the variance results discussed ear­

lier. This is also an indication that an integral length scale exists somewhere 
for a shorter distance to make the characteristics of the ACRF differ when 
compared to the outer distance end, due to the physical characteristic of the 

convective scale associated with the rainfield. The typical convective rain scale 
is only on the order of several km. On the other hand, the rainfall from the 
mesoscale stratiform cloud region will extend for a much larger outer distance. 
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Fig. 6b Same as Fig. 6a, except for the 4 km by 4° resolution. However, they are at different 
radii. 

For the small correlation end, the slope of the logarithmic ACRF is also 
far from a straight line, both in 4 km by 4° and 1 km by 1° data. We attributed 
this departure from a straight line is due to the smallness of the sample size 
used in the present study, which only included 8 partial days of rainfall data, 
in  contrast to the 18 days of data used by Laughlin (1981) and Bell (1987) . 
Due to the small size of the data, the results for large spatial distances have 
not been able to respond to the ample information contained in the horizontal 
stratiform rainfall region. This will be improved a great deal when more data 
(in a temporal sense) is included. 
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4. COMPARISON AND IMPLICATIONS OF THE RESULT 
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The present study used the GATE phase III data from "Quadra" to es­
timate the lagged autocorrelation. The original data is in a 1 km by 1° grid. 
The 4 km by 4° data set used here is constructed from the original data by 
simple area weighted averaging. Some previous studies of this problem used 
data from Phases I and II of the GATE (Laughlin, 1981; McConnel and North, 
1987; Bell, 1987) . A 4 km by 4 km grid was used as the basic data set. Physi­
cal characteristics having a scale smaller than 4 km can't be resolved entirely. 
Figure 7 from Bell (1987) shows the spatial correlation of the GATE I rain­
fall. The corresponding lagged spatial ACRF in logarithmics is shown in Fig. 8 
(North, 1987) . Their results show a s-0·58 power law decay of the ACRF, and 
the long-tail of a spatial correlation with a value of about 0.2 extends to a 
farther distance (at least up to 70 km). Also the power law decay of ACRF 
can extend to around 70 km before the fitting begins to deteriorate. Laughlin 
(1981) studied the effect of spatial averaging on the temporal autocorrelation in 
rainfall fields. He found the e-folding time scale changed from around 1 hr (in 
4 by 4 km2) to more than 10 hr (in 280 by 280 km2) . The temporal correlation 
has an implicit implication on the spatial correlation. This indicates that the 
larger area-averaged data should contain a slower correlation decay in the outer 
distance. 

Results from the present study illustrate the correlation characteristics of 
the rainfall data for the shorter distance end. The spatial ACRF estimated by 
4 km by 4 ° data in the present study shows a power law decay of s- k, k is 
between (-0.667 and -0.58) ,  which occurs in a comparable structure with the 
results shown by North (1987). However, the results from a 1 km by 1° dataset 
revealed a different characteristic of the ACRF for the shorter end. There exist 
ranges where the ACRF decay is slower than the power law'established for the 
larger area (namely, 4 km by 4° and beyond). The actual slope of this decay in 
the shorter end varies from radius to radius, but in general, the trend to have a 
slower decay rate for ACRF exists, and this slower decay of the lagged ACRF 
is consistent with the A- 0·166 power law estimated through variance analysis. 

As discussed in previous sections, this point is itdopted as the basis of our 
postulation. We thus postulated that the slower decay of the spatial ACRF for 
the shorter end is due to the existence of a horizontal integral length scale. This 
length scale is around 2 � 3 km. Physically, we interpreted this le�gth scale to 

be due to the rainfall characteristic on the .convective scale. This observation 
couldn't have been determined with a 4 km by 4° or 4 km by 4 km data. 
The characteristic length scale of the convective scale is on the order of several 
km. The larger data set has a great impact in suppressing the convective scale 
rainfall characteristics . 
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So as determined from the GATE study (Houze and Betts , 1981) , the con­
vective scale, as well as the mesoscale structure, is an integral part of tropical 
cloud clusters. The rainfall characteristic associated with these two distinctively 
different branches have a profound impact on the spatial ACRF structure. The 
long-tailed structure found by Bell (1987} is associated with continous strati­
form rainfall produced from the mesoscale circulation. 

The existence of a horizontal integral length scale has a great significance 
when relating the problems that the TRMM (Tropical Rainfall Measurement 
Mission, see Simpson et al., 1988 for more details) project encounters. In short, 
the TRMM is a proposed project to measure tropical rainfall from space through 
microwave channels and radar. Sampling errors for this project, as well as rain­
gauge measurement, depends on the characteristics of tropical cloud clusters. 
Present results indicates the existence of an integral length scale. This also 
implies more numbers of independent samples, which will reduce the. rainfall 
sampling errors estimated through the proposed TRMM satellite. 
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5. CONCLUSIONS AND SUG GESTIONS FOR FURTHER 
RESEARCH 

The present study used a finer data set from the GATE phase III to 
investigate the spatial effects on rainfall characteristics and its lagged autocor,... 
relation. Because of the finer structure of this present data set, we are able to 
identify the physical processes invloved in a shorter distance scale , which has 
crucial information for estimating sampling errors in the TRMM project. 

It is found that for a rainrate Jess than 4 mm/hr, the 1 km by 1° and 
4 km by 4° data set will not make any noticeable difference to accumulated 
rainfall statistics. This is a direct implication from the stratiform rainfall as­
sociated with the mesoscale circulation ( or rainfall from the mesoscale anvil) . 
The rainfall within that physical region is continuous with a rainrate less than 
6 mm/hr. A rainfall rate larger than 40 mm/hr contributes 20 % of the total 
rainfall in a 1 km by 1° dataset, in contrast to' the 8' % contribution from the 
4 km by 4° data set. The area-averaged process.suppresses the extreme rainfall 
considerably (the extreme would have come from the c.on�ective scale) . This 
is another way to indicate that convective scale J,"ainfall always has a smaller 
spatial scale and an extremely large rainrate. 

The variance and the autocorrelation calculated in this study revealed that 
the slope of the variance and. autocorrelation for the _smaller scale are different 
from those estimated through the large area data. This is an lridication that the 
convective scale rainfall field caused this change. The existence of an integral 
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length scale is a reasonable consequence of this scale of disturbance. 
The slow decay of the autocorrelation found by Bell (1987) for large dis­

tances (say, up to 70 km) is due to the characteristics of homogeneous stratiform 
rainfall. This fact leads to an interesting problem, since all the studies so far 
used data which contains these two different scales of motion within tropical 
cloud clusters (Laughlin, 1981; Bell, 1987; McConnel and North, 1987; and 
the present study) . It will be helpful then to investigate how spatial effects on 
the autocorrelation field within an area which contains only stratiform rain­
fall. With this observational study and some rainfall modeling studies that 
simulate rainfall from the convective scale, we may learn more about the in­
teraction of rainfall statistics (convective scale and mesoscale) as well as how 
these two physically different processes evolve, reaching the final rainfall field 
as envisioned from the tropical region. These areas will be the topics for further 
research. 
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APPENDIX 

Bias Analyses for Different Autocorrelation Estimators 

In this appendix we will consider the problem that rain fields are so dis­
tinctly nongaussian that this might bear strongly on the choice of the statistical 
estimator. We are interested to know whether the statistial estimators are input 
dependent or not. Our approach is to build a "time" series using an ARl pro­
cess and we will have an exact theoretical answer to compare with our estimator 
results. We wil use the same estimators as Trenberth (1984) and demonstrate 
anlytically how these affect the bias of the estimator and compare it with the 
autocorrelation coefficient obtained from a numerically generated first-order 
autoregressive process. 

a. A first-order autoregressive process 

A first-order autoregressive pr�cess is assumed to represent a meteorolog­
ical variable Xn at a typical location: 

Xn - µ = a (Xn- l - µ)+En (Al) 

where Xn is the value of the variate at time step n, µ a process mean (assumed 
constant here) , a the autoregressive coefficient such that lo:I < 1 for stationarity, 
and En can be Gaussian or Poisson distributed white noise with variance o�. 
Trenberth (1984) employed Gaussian distributed white noise input to derive an 
approximation of the expected value for the autocorrelation estimator. Note 
that the Poisson distributed input noise is appropriate for application to the 
random rain fields process. 

For the stationary process, the theoretical values of mean and autocovari­
ance are 

{A2) 

C(m) = ((Xn - X)(Xn+m - X)) 
(A3) 
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where m is the time-:-lag, and the bracket represents the ensemble averaging 
procedure and a2 is related to the variance of the noise a� by: 

a2 
a2 = ( 

1 - a2 (A4) 

Notice that the variance of the ARl process is input noise dependent. The 
mean estimator for a finite sample size is expressed as: 

N - 1
2: X = - X N n 
n::: l 

. . 
. . 

(AS) 

where N is the sample size and the over-bar indicates a time average across 
the summation of the stationary time series . Even if the data are stationary, 
the above time mean estimator depends on N since the second te

,
rm in (A4) 

does not vanish for finite sample sizes. The random time series Xn = µ + <Pn 
is made up of random fluctuation <Pn around the constant mean µ so that the 
time averaged mean estimators are also random variables. That is, the ensemble 
average of the above time mean is constant and the above estimator is unbiased 
but has random error due to finite sample size N. 

We are interested in how the uncertainty of the mean estimator affects 
the estimation of the second-order moments . We will find an analytical form 
for the autocovariance estimator when the time averaged mean value has an 
error which ·is not negligible for finite sample sizes. 

b. The ACRF estimator and its input noise dependency 

Taking the ensemble average of the ACVF estimator, we obtain the fol­
lowing expressio

.
n for methbd A (from Eq. (5) in the text) : 

N - m  N - m 
(C� (i, m)) = � '  L (Xn (i) Xn+m (i)) - � L (Xn (i) X(i)) 

n= 1 n = l  

� t (Xn (i) X(i)) + (N; m) ( X{i)2 ) 
n =m + 1  

(A6} 

Neglecting the differences between the means computed over n = 1, N - m and 
n = m + 1,  N, Trenberth (1984) obtained the following expression, 

{A7) 
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Notice that the ACVF .estimator is biased hut (C1 (i, m)) . -r  0 due to the 
devision of N instead of N - m. 

Since the presence of pronounced cycles or nonstationarity in the data 
time series , the differences between the means mentioned above are significant 
in general so that we use (A6) . Inserting Eq. (6) (from the text) into (A6) , 
the expected value of the autocorrelation estimator for method A becomes as 
follow3: 

(ABa) 

where 

B (N, a:, m) = N2 ( l 
) 
{ (1 + a:) (N - 2m) - � (1 - a:N - 2m ) 1 - a:  1 - a:  

+ � (1 _ O:N - m ) (l - a:m )  _ O:N - m  [m(a:l - m _ a:m )  _ _!!_] 
1 - a: 1 - a:  

2o: ( N m N ) 20: m ( N ) } (A8b) + -- o: - - a:  + -- - a:  - 1  
1 - a: . 1 - a: N3 

D = 4a: _ 0:2 - 1 - 0:3- m _ O:m - 1  _ {m - l) (a:m + 0:2 - m )  
+ (m _ 

l) (a:m + l  
_ a:l "'" m )  (ABc) 

Notice that the above ACVF estimator depends on input noise through relation 
( A4) . If both the coefficient of the first-order autoregressive process, a:, and 
the time-lag, m, are zero, the above expression agrees with the variance for 
independent sampling a2 JN. The second term of (A8a) is a random error 
which comes from the random uncertainty of the mean estimator defined by 
( A5) and vanishes for infinite sample size. 

The expected value of the lagged ACRF estimator 

1 � (C1 (i, m)) (PA (m)) = p {:-; (C1 (i , O) )  (A9) 

is a consistent estimator of the autocorrelation coefficient in the sense that 
the limit of large N does not lead to a value different from the true ensemble 
average. A more important finding is that the ACRF estimator is independent 
of the input noise, either Gaussian or Poisson. This is because the variance for 
the ARl process simply depends linearly on the variance of the input noise as 



72 TA O Vol.2, No.1 

shown in (A4) . In the next section we will compare the exact form of the ACRF 
estimator for method A and B with the numerically obtained ACRF. 

c. Biases of the different ACRF estimators · 

For finite sample size N, the random error of ACVF estimate (A6) de­
pends on the size of the data sample such that the ACRF estimator (A8a) also 
depends on the sample size. The expected value of the ACRF estimator for 
method A is thus written as :  

1 � (c; (i, m)) (PA (m) )  = P 2 (c; (i, o) ) 
a!m l - B (N, a, m) 

1 - B(N, a, O) 

which is independent of the input noise, either Gaussian or Poisson. 

(AlO) 

We obtain a similar form for the expected value of the autocorrelation 
estimator with method B as : 

( (m)') = 
alm l  - B(N+ , a, m) 

PB 1 - B(N+ , a, O) 
{All) 

Notice that the above expression has the same form as expression (A16) except 
for the sample size N+ . Both estimators (AlO) and (All) are plotted in Fig. Al. 
The upper curve is method B for observations in all the strips (N+ = 10000) . 
The lpwer is method A for observations in a single strip (N = 100) . Method B 
is so close to the exact answer, am , that the two are nearly coincident .  Notice 
that the smaller the coefficient of the first-order autoregressive process , a, the 
larger the discrepancy. The numerical estimates are plotted in Fig. A2, for 
method A (N = 100) and for method B (N+ = 10000) . The upper curve is 
for method B and the lower is for method A. Since l a [  < 1 and the number 
of data points N is usually large compared with time-lag m, the asymptotic 
estimations of the bias generated by different methods may be written to order 
O(a) as: 

b(m) = (1 + a) (am - 1) 
(1 - a)N+ 

(A12) 

for method A, N+ is the number ofmembers of the strip (N+ = N) . Whereas, 
for method B, N+ is the number of members of the entire set including all 
strips (N+ = N x P) . The above expression for the bias of both methods is 
used in Equation (8) in the text. Since the autocorrelation time for the series 
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Fig. A l  Theretical autocorrelations for the AR1 process. The upper curve shows method B 
with 10000 data points, which coincides with the exact value am. The lower curve 
shows method A for strips of length 100. The autocorrelation is shown out to 20 lags 
for a = 0.4 and 0.6. 

is 1/(i - o:) , the product N+ (1 - o:) is just twice the number of independent 
samplings for the aggregate N+ . Thus the bias is inversely proportional to the 
independent samples so that method B is a better estimator even if it provides 
only one estimate of the ACRF form from the data set of sample size N+ x P. 
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Fig. A2 . As in Fig. A l  but for a typical time series of simulated ARl process with white 
noise forcing. Notice that the above two autocorrelations identically agree with the 
theoretical autocorrelations shown in Figure Al. 
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