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ABSTRACT

In this study, we investigate the feasibility of using a blending scheme to com-
bine global coarse-resolution analysis with a high-resolution limited-area model. 
By regularly introducing large-scale information, we intend to correct accumulated 
forecast error in a high-resolution model due to continuous data assimilation cycles. 
The impact of incorporating the blending scheme into three-dimensional variational 
(3DVAR) and local ensemble transform Kalman filter (LETKF) data assimilation 
systems are evaluated using a frontal rainband case. In this study, we aim to an-
swer three questions: (1) Can including larger-scale information correct accumulated 
forecast error and improve model quantitative precipitation forecast (QPF) skill? (2) 
What is the optimal cut-off length scale (CLS) for the two systems? (3) Which prog-
nostic variables are influential if we want to optimize model QPF skill by applying 
the blending technique on it? Results from 24 cycles with an hourly update reveal 
that incorporating the blending scheme successfully mitigates accumulated forecast 
error and improves model QPF skill for both systems. For this case, 600 km is the 
optimal CLS that most enhances model QPF. Also, blending large-scale water vapor 
to correct moisture field plays a key role in this case. Furthermore, the blending 
scheme imposes a larger impact in 3DVAR than that in LETKF. The reason is that 
the large-scale information is directly blended into the 3DVAR background which 
contains more convective-scale features while it is used to recenter the smoother 
LETKF ensemble mean. This results in smoothed blending analysis and could further 
aggravate model spin-up time in high-resolution forecast.
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1. INTRODUCTION

Rapid-evolved convective-scale rainfall systems (Wes-
tra et al. 2014), which are often accompanied by extreme 
rainfall, have relatively low predictability compared with 
larger-scale systems. In particular, for regions with com-
plex terrain, the model forecast skill for convective systems 
is especially limited (Hohenegger and Schär 2007; Yano et 
al. 2018). In order to increase the model forecast skill, it is 
important to improve initial condition accuracy, apply suit-
able model physics and increase model resolution (Sun et al. 
2014). Among these, an accurate initial condition can sig-
nificantly improve model short-term forecast accuracy. Sev-
eral studies have demonstrated the success of data assimila-
tion in the convective-scale forecast, including the use of 

radar observations (Xiao et al. 2007; Xue et al. 2010; Bick et 
al. 2016; Ridal and Dahlbom 2017; Kong et al. 2018; Cheng 
et al. 2020; You et al. 2020), surface observations (Chen et 
al. 2020) and precipitable water vapor information obtained 
from the Global Navigation Satellite System (GNSS) zenith 
total delay observations (Yang et al. 2020).

However, it is still challenging to predict the intensity 
and location of convective systems accurately. First of all, 
the strong nonlinearity of convective systems causes rapid 
growth of forecast error. Model forecast error could result 
from imperfect dynamics, uncertainties in physical param-
eterization schemes, and prescribed lateral boundary con-
ditions. Small-scale forecast error could propagate to large 
scales and therefore degrade the forecast accuracy (Cha 
and Lee 2009; Vincent and Hahmann 2015). Hence, for 
convective-scale data assimilation systems, it is critical to 
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use rapid update cycles to correct model forecast error. For 
example, Miyoshi et al. (2016) selected a 30-second cycling 
frequency to assimilate phased-array radar observations and 
successfully captured the evolution of a severe convective 
system. However, the cycling strategy often leads to ac-
cumulated forecast error due to model spin-up caused by 
imbalanced dynamic and thermodynamic fields. Sun and 
Zhang (2008) pointed out that model QPF performance was 
decreased with increasing updated cycle frequency. In addi-
tion, it is difficult to correct model forecast error over data-
sparse areas. For example, the Taiwan island is surrounded 
by an ocean that is short of observations. In conclusion, the 
data assimilation alone may not be enough to correct the ac-
cumulated forecast error effectively.

Several approaches have been proposed to mitigate the 
accumulated forecast error. For instance, Tong et al. (2016) 
adopted a two-step assimilation strategy that assimilated 
conventional observation before radar data assimilation. This 
two-step assimilation strategy maintained both larger-scale 
and convective-scale features in the model analysis. Cur-
rent operational convective-scale numerical weather predic-
tion (NWP) systems such as the Rapid Refresh (RAP), the 
High-Resolution Rapid Refresh (HRRR), and the CONUS-
NAM (CONtiguous United States nest of North American 
Mesoscale system - convective-scale forecasting system) 
nest also used cloud analysis and radar-reflectivity-derived 
latent heat nudging techniques to introduce observed cloud 
and deep convection information into NWP models (Benja-
min et al. 2016; Gustafsson et al. 2018). However, in an area 
without sufficient observations, the model forecast error ac-
cumulates during rapid update cycles and ultimately leads to 
an increase of forecast error and bias.

To mitigate accumulated forecast error, Yang (2005a, 
b) proposed a blending scheme that obtained an analysis 
by combining large-scale and finer-scale fields through an 
incremental spatial filtering technique. Using this blending 
scheme, Wang et al. (2014) demonstrated that this tech-
nique successfully reduced accumulated forecast error. Fur-
thermore, Hsiao et al. (2015) combined large-scale patterns 
(wavelength > 1200 km) of the NCEP global analysis with 
fine-scale structure (wavelength < 1200 km) of a high-reso-
lution regional model. They demonstrated that this blending 
technique not only removed systematic forecast error result-
ed from update cycles, but also improved the prediction of 
tropical cyclone track and rainfall over Taiwan island.

In this study, we aimed to investigate the impact of 
combining this blending scheme into the convective-scale 
data assimilation system, which had a horizontal resolution 
of 2 km and an update frequency of 1 hour. Although sev-
eral studies had proven the benefits of implementing this 
blending technique into regional forecast systems, its impact 
on the convective-scale data assimilation system required 
further investigation due to its higher model resolution and 
update frequency. In this study, we used two convective-

scale radar data assimilation systems currently operational 
in Central Weather Bureau (CWB). Both systems are based 
on the Weather Research and Forecasting (WRF) model 
with different data assimilation algorithms, one with three-
dimensional variational data assimilation (3DVAR; Barker 
et al. 2012) and the other with Local Ensemble Transform 
Kalman Filter (LETKF; Hunt et al. 2007; Yang et al. 2009; 
Tsai et al. 2014). This paper was organized as follows. Sec-
tions 2 and 3 are the experimental design and the results, 
respectively. A summary is presented in section 4.

2. EXPERIMENTAL DENSIGN
2.1 Radar Data Assimilation Systems

Two radar data assimilation systems, one based on 
WRF 3DVAR (Barker et al. 2012) and the other used a 
32-member LETKF (Hunt et al. 2007), were selected to 
investigate the impact of the blending scheme on the con-
vective-scale model forecast. Both systems adopted hourly 
update cycles with boundary condition provided by NCEP 
GFS forecasts. Except for their different data assimilation 
techniques, both systems use WRF (Weather Research and 
Forecasting; Michalakes et al. 2001) model with an iden-
tical model configuration (Fig. 1). Identical to operational 
settings, the model used in this study had a 2 km horizontal 
resolution and 52 vertical levels with the model top at 20 
hPa. The model physics included Noah land surface model 
(Tewari et al. 2004), Goddard microphysical scheme (Tao 
et al. 2016), YSU PBL scheme (Hong et al. 2006), and 
RRTMG radiation scheme (Iacono et al. 2008).

In this study, radar radial velocity and reflectivity were 
assimilated every hour by selecting the volume scan that 
was closest, which had roughly 0 - 10 minutes difference, to 
the analysis time at each radar site. Here, four S-band radars 
(Fig. 1), including Wufenshan (RCWF), Hualien (RCHL), 
Chiku (RCCG), and Kenting (RCKT), were used in all ex-
periments. For radial velocity and reflectivity observations, 
a set of hybrid scans constructed by Chang et al. (2009) was 
implemented to perform quality control. Due to the irregular 
radar data distribution in polar coordinates, appropriate data 
preprocessing was needed. For example, Liu et al. (2016) 
proposed the three-dimensional (3D) reflectivity mosaic in 
NCEP’s data assimilation systems, which interpolated and 
composited the individual radar observations to the Carte-
sian coordinate system. Feng et al. (2020) suggested that 
the radial velocity observations applied the evenly spaced 
thinning method (ESTM) on the polar coordinate, obtaining 
the best data assimilation performance. In this study, in both 
the 3DVAR and LETKF systems, the radial velocity for in-
dividual radar was thinned to a rough resolution of 2 km in 
the original polar coordinate. The reflectivity was interpo-
lated by the Adaptive Barnes method (Askelson et al. 2000) 
and composited to a Cartesian coordinate with a horizontal 
resolution of 2 km and 500 m in vertical.
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The use of the observation variables and the strategy 
to update the analysis variables between the 3DVAR and 
LETKF systems were different. In summary,
•  In 3DVAR, the reflectivity was assimilated through cloud 

control variables, including rainwater (qr), snow (qs), and 
graupel (qg) mixing ratio. The above hydrometer variables 
were retrieved as observations from reflectivity based on 
Gao and Stensrud (2012). For the assimilation of radial 
velocity, 3DVAR and LETKF systems both applied the 
same observation operator (Sun and Crook 1997). 3DVAR 
only updated the x and y components of wind (u, v) and 
used them as control variables. Sun et al. (2016) demon-
strated that the univariate (u, v) control variable, denoted 
as the CV-option 7 in WRF 3DVAR, was more suitable 
for the convective scale since it produced an analysis with 
small-scale features. Also, the large-scale balance had less 
impact under the small temporal and spatial scale of con-
vective systems.

•  In LETKF, the reflectivity was directly used to correct only 
the qr, qs, and qg through its flow-dependent background 
error covariance. The reflectivity observation operator in 
LETKF was from Dowell et al. (2011), in which the in-
tercept parameter and hydrometer density were defined 
based on the Goddard microphysical scheme (Tao et al. 
2016). The radial velocity observations were only assimi-
lated to update the three-dimensional velocity components 
(u, v, and w), perturbation potential temperature (θ’), and 
water vapor mixing ratio (qv). Such an update strategy was 
determined based on the operational assessment in CWB 
(not shown), which led to the best QPF performance. Fi-
nally, the horizontal covariance localization radius for the 

w, qr, qs, and qg were 12 km, while that for u, v, θ’, and qv 
were 36 km. The vertical covariance localization radius 
was 4 km for all the variables.

2.2 The Blending Scheme

Yang (2005a, b) proposed a blending scheme to com-
bine two model fields into a blending analysis based on spa-
tial filtering technique. The concept of this blending tech-
nique could be illustrated as

( )X X X Yblend sf sf= - +  (1)

where X and Y denote two different model fields. The sub-
script sf means a model field whose short-wavelength ranges 
were filter out using spatial filtering method. In other words, 
Ysf only contains long-wavelength of its original model field 
Y. The other term (X - Xsf) is in contrast contains only short-
wavelength ranges of its original model field X. Finally, a 
blending field Xblend is obtained by combing (X - Xsf) and Ysf.

The spatial filtering technique used in this study was 
formulated on a sixth-order tangential implicit filtering 
method (Raymond and Garder 1991). In this method, an 
empirical length scales value (L) is required to determine 
the spectrum amplitude response (H) as shown in Eqs. (2) 
and (3), which divided a model field into two corresponding 
wavelength ranges.

( ) tanH L L
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1r fD= +
-
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Fig. 1. The model domain, radar location, and radar coverage. The color shading is the terrain height (m) base on a 2-km model mesh.
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6f rD= c m (3)

where xD  is model grid spacing, which is 2 km in this study. 
lx is the cut-off length scale (CLS), which determines the 
range of short-wavelength in spatial filtering. Figure 2 dem-
onstrates the change of amplitude response (y-axis) in re-
sponse to different length scales (x-axis) and several CLS 
values. The CLS values included 300, 450, 600, 750, and 
900 km. Here, an amplitude response value of 0 means that 
the model field is filtered out completely, and a value of 
1 means it remains untouched. Clearly, more short-wave-
length ranges are filtered out when the CLS is larger.

In this study, X is the limited-area WRF model forecast, 
and Y is the NCEP GFS analysis. That is to say; we aimed 
to retain only small-scale features from the high-resolution 
model and incorporate the large-scale features from the 
global model. For example, Fig. 3a is the x component of 
wind (u) from NCEP GFS analysis. Figures 3c and e are the 
high-resolution WRF model forecasts that refer to the back-
ground of 3DVAR and LETKF, respectively. Among them, 
the background of u wind in LETKF (Fig. 3e) was smoother 
than in 3DVAR (Fig. 3c) because the LETKF background 
was the average over the 32 ensemble members. It shows that 
the wind speed in the background of 3DVAR and LETKF 
was significantly lower than that in the NCEP GFS analysis. 
Both differences were up to 4 m s-1 in the northwestern and 
southwestern open ocean of Taiwan. After applying spatial 
filtering with different CLS values, the large-scale features 
of the NCEP GFS analysis (Ysf) and the small-scale features 
of the 3DVAR/LETKF background (X - Xsf) were displayed. 
For GFS as shown in Fig. 3b, the result used 300 km CLS 
was closest to its original GFS analysis. When the CLS in-
creased from 300 to 900 km, the wind perturbation became 
smaller and smoother. For the background of 3DVAR and 
LETKF as shown in Figs. 3d and f, both wind perturba-
tion increased with increasing CLS. Finally, the results of 
blending field (X - Xsf + Ysf, Figs. 3g - h) showed that using  
300 km CLS retained more information from GFS analysis, 
especially over the open ocean. The wind speed was up to 12 
and 15 m s-1 over the southwestern and northeastern Taiwan 
areas. In contrast, using 900 km CLS kept more small-scale 
features from WRF, obtaining weaker and more scattered 
wind speed over southwestern Taiwan.

The x and y components of wind, perturbation potential 
temperature, water vapor mixing ratio, perturbation pres-
sure, perturbation dry air mass, and surface pressure were 
included in the blending scheme. The effect of the blending 
scheme was similar to the x component of wind (Fig. 3).

In order to quantify how much information in the blend-
ing results (3g.h) was taken from GFS analysis (Fig. 3a), the 
correlation coefficient between the two fields was computed 
as Fig. 4. Since smaller CLS indicated that more GFS infor-
mation was incorporated, we expected that the correlation 

would decrease as CLS increased. As expected, the coef-
ficient decreased from 0.94 - 0.95 at 300 km to 0.88 - 0.92 
at 900 km. In addition, LETKF had a higher correlation than 
3DVAR for all CLS, which could result from the smoother 
LETKF ensemble mean as shown in Fig. 3.

2.3 The Data Assimilation Procedure

In this study, we aimed to improve model QPF through 
the implementation of blending scheme in the convective-
scale data assimilation system. A heavy rainfall case oc-
curred in June 2012 under the influence of Meiyu front 
and strong southwesterly flow was selected. Figure 5 is the 
6-hour accumulated rainfall from quantitative precipita-
tion estimation (QPE) products, which was operational in 
CWB. This QPE product was derived on a regular grid with 
0.0125° resolution using empirical reflectivity-rainfall rela-
tion. Also, surface rainfall observations were used to cor-
rect the estimated rainfall (Wang et al. 2016). The QPE was 
also used for verification, as introduced in section 2.4. As 
shown in Fig. 5, active convection occurred in the Central 
Mountain Range (CMR) and southwestern part of Taiwan 
during 0000 UTC 10 June 2012 to 0000 UTC 11 June 2012, 
producing torrential rainfall more than 400 mm within 24 
hours (not shown). Figure 6 depicts the large-scale environ-
ment at 0000 UTC 10 June 2012. Under the influence of 
Meiyu front, northern Taiwan was encompassed by strong 
horizontal wind shear with the higher equivalent potential 
temperature. In the pre-frontal region, strong southwesterly 
flow transported warm and humid air toward the island, sup-
porting the development of convective systems mentioned 
above. Such vigorous convection was typical in the pres-
ence of monsoon flow (Ruppert et al. 2013), which could 
have a compound effect due to the terrain effect.

To evaluate the benefits of blending scheme in 3DVAR 
and LETKF data assimilation systems, 24 cycles with an 
hourly update from 00 to 23 UTC on 10 June 2012 were 
designed (Fig. 7). Both systems were cold-started from 
NCEP GFS 0.5° × 0.5° analysis. To provide enough spin-up 
time, both 3DVAR and LETKF experiments went through 
the same data assimilation spin-up time of 12 hours. The 
3DVAR system was cold-started at 12 UTC 9 June. In LET-
KF, the ensemble forecasts were carried out at 06 UTC 9 
June 2012 to spin up the ensemble spread, and then the data 
assimilation began at 12 UTC 9 June 2012. The verification 
period was from 00 UTC 10 June 2012 to 23 UTC 10 June 
2012. The blending scheme was applied every six hours 
at 00, 06, 12, 18 UTC by combining the low-resolution 
NCEP GFS 0.5° × 0.5° analysis with the high-resolution 
WRF background from 3DVAR systems (Fig. 8a). Simi-
larly, in the LETKF system, the blending scheme combined 
the NCEP GFS analysis and the ensemble mean of the 
background (Fig. 8b). Therefore, the blending scheme in 
the LETKF system played a role similar to the recentering 
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Fig. 2. The amplitude response (y-axis) corresponding to the length scales (x-axis) with the different CLS settings. The CLS values include 300, 
450, 600, 750, and 900 km.

(a)

(c)

(e)

(b)

(d)

(f)

(g)

(h)

Fig. 3. The x component of wind (u) at model sigma vertical level 5 (about 220 m height) at 1800 UTC 09 June 2012. (b) is the large-scale features 
of the NCEP GFS analysis (a) from the spatial filtering with the different CLS settings, including 300, 450, 600, 750, and 900 km. Similarly, (d) 
and (f) are the small-scale features of the 3DVAR (c) and LETKF (f) background, respectively. Both fields correspond to Ysf and (X - Xsf) in Eq. (1). 
Finally, both (g) and (h) are the blended U wind which is Xblend of Eq. (1).
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Fig. 4. The pattern correlation of GFS analysis at 1800 UTC 09 June 2012 with the different CLS (300, 450, 600, 750, and 900 km) experiments for 
3DVAR (red line) and LETKF (blue line), respectively.

Fig. 5. The 6-hour accumulated QPE from 0000 UTC 10 June 2012 to 0000 UTC 11 June 2012.

Fig. 6. The 850 hPa analysis field of NCEP GFS at 0000 UTC 10 June 2012. The solid black lines are the geopotential height (m), the arrows are 
the wind speed (m s-1), and the shading means the equivalent potential temperature (K).
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mechanism commonly used in the ensemble data assimila-
tion (Wang et al. 2013). Sensitivity experiments were car-
ried out to explore the impact of different CLS (300, 450, 
600, 750, and 900 km) on the model QPF. The details of the 
experiment design were listed in Table 1.

2.4 Rainfall Verification

The fractions skill score (FSS; Roberts 2008) was se-
lected to evaluate the model QPF skill. Rather than point-
to-point verification, FSS is a neighborhood verification 
method that takes into account the spatial probability. Equa-
tions (4) and (5) are the FSS formulations.

FSS FBS
FBS1

worst
= -  (4)

( )FBS N P P

FBS N P P

1

1
f oi

N

worst fi
N

oi
N

2
1

2
1

2
1

= -

= +

=

= =^ h

/

/ /
 (5)

where N is the number of model grids (N = 49 in this study) 
within a predefined influence radius (8 km in this study). 
Pf and Po are the spatial fraction of the model forecast and 
observation that exceed a predefined rainfall threshold. The 
FBS value ranges from 0 to 1, and FBSworst represents the 
largest possible FBS. Briefly, FSS of 1 indicates a perfect 
forecast, which means that model forecast and observation 

have the same spatial fraction within the influenced radius, 
while FSS of 0 indicates no forecasting skill.

3. RESULTS

In this section, we first examined the impact of the 
blending scheme in the 3DVAR and LETKF data assimila-
tion system using a CLS of 600 km. To further optimize the 
performance of blending scheme, its sensitivity to different 
CLSs and blending variables were also investigated. Each 
experiment had a total of 24 cycles with an hourly update 
from 00 to 23 UTC on 10 June 2012. A total of 24 model 
forecasts initialized by hourly 3DVAR and LETKF analysis 
were used to evaluate the effect of the blending scheme.

3.1 Impact of the Blending Scheme in Radar Data 
Assimilation System

As shown in Fig. 9, there are two distinct rainfall maxi-
mums located at central (labelled as system A) and southern 
CMR (labelled system B) at 1900 UTC 10 June 2012. The 
maximum 0 - 6 hour accumulated rainfall reached 113 and 
245 mm for system A and B, respectively. Figures 9b and 
d show the corresponding rainfall predictions from 3DVAR 
and LETKF systems without the blending scheme. For sys-
tem A, 3woBD and LwoBD had maximum accumulation 
rainfall of 111 and 117 mm, respectively, which was close 
to the 113 mm of radar QPE despite the slightly scatter 
rainfall pattern. For system B, both experiments produced 

Fig. 7. The strategy of the hourly cyclic WRF 3DVAR radar data assimilation system with the blending scheme. The gray and red periods represent 
the spin-up and the study periods, respectively.

Fig. 8. The strategy of the blending scheme applies to the 3DVAR (a) and LETKF (b) radar data assimilation system. In Fig. 7a, xb and xb are the 
background and analysis. xbBD  is a new background after the blending scheme that was applied every six hours at 00, 06, 12, 18 UTC. In 7(b), xb  
(xbk, k = 1, 2, …, 32) and xa  (xak, k = 1, 2, …, 32) are the ensemble mean (members) of the background and analysis. xbkBD  (k = 1, 2, …, 32) are the 
new ensemble background after the blending scheme.
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Experiment Description

3woBD/LwoBD Without the blending scheme

3BN300/LBN300 Blending NCEP GFS analysis at CLS = 300 km

3BN450/LBN450 Blending NCEP GFS analysis at CLS = 450 km

3BN600/LBN600 Blending NCEP GFS analysis at CLS = 600 km

3BN750/LBN750 Blending NCEP GFS analysis at CLS = 750 km

3BN900/LBN900 Blending NCEP GFS analysis at CLS = 900 km

Table 1. Data assimilation experiment setting and description.

Note: CLS is cut-off length scale, L is for LETKF, 3 is for 3DVAR.

(a) (b) (c)

(d) (e)

Fig. 9. The 0-6 hour accumulated rainfall from QPE (a) and experiments including 3woBD (b), 3BN600 (c), LwoBD (d), and LBN600 (e) that are 
described in Table 1. The initial condition is at 1900 UTC 10 June 2012. The illustration also marks the maximum precipitation values and their 
locations in areas A and B.
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rainfall only half of the amount of radar QPE. Therefore, we 
aimed to investigate if the blending scheme could improve 
this distinct rainfall forecast error.

In comparison with 3woBD and LwoBD, 3BN600 and 
LBN600 included a blending scheme with 600 km CLS. As 
shown in Figs. 9c and e, employing the blending scheme 
in data assimilation cycles to incorporate large scale infor-
mation from NCEP GFS significantly improved the model 
QPF skill. In contrast to the insufficient rainfall in 3woBD 
and LwoBD, 3BN600 and LBN600 had 6-hour accumulated 
rainfall intensity closed to radar QPE. In this case, 3BD600 
had a slightly better model QPF skill than LBD600.

To understand the reason why the additional blending 
scheme significantly elevated model QPF skill, the mois-
ture transportation by the pre-frontal southwestly flow was 
investigated since it was suggested to play an important role 
on terrain enhanced heavy rainfall as shown in Fig. 6. Verti-
cally integrated moisture flux convergence (VIMFC, Hud-
son 1970) from 1000 to 700 hPa was calculated to quantify 
the amount of moisture transportation,

g x
uq

y
vq dp1VIFMC

1000hPa

700 hPa

2
2

2
2= - +c m#  (6)

As shown in Fig. 10, the results showed that the larger 
VIMFC was produced over the windward side of CMR in 
southern Taiwan. In general, over the southwestern ocean of 
Taiwan, the southerly wind component (Figs. 10c and f) and 
moisture (Figs. 11c and f) were increased after blending the 
global analysis. The stronger southerly wind was suggested 
due to the enhanced stronger channel effects. It accelerated 
the southerly wind speed as flow into the Taiwan Strait, re-
sulting in more divergence over the open ocean. In contrast, 
the stronger southerly wind component also contributed 
more convergence over the southeastern coast of Taiwan 
due to the terrain effect. Combined with the moisture and 
the convergence field, and finally resulted in the stronger 
VIMFC over the southeastern coast of Taiwan and weaker 
VIMFC over the open ocean area.

This stronger VIMFC provided a favorable environ-
ment for the development of convections, which was con-
sistent with the improvement of model QPF for system B 
in 3BN600 and LBN600 (Figs. 9c and e). In contrast, the 
lack of these two key features led to insufficient rainfall for 
system B in 3woBD and LwoBD (Figs. 9b and d). For Sys-
tem A, the wind speed was more parallel to the CMR. Even 
though the moisture (Fig. 11) increased slightly, the VIMFC 
only had a limited increase after blending. Therefore, the im-
pact of the blending scheme on system A was not significant.

Although 3woBD and LwoBD both assimilated ra-
dar observation, the analysis correction over terrain and 
the open ocean was generally small due to the lack of cor-
rection in regions far away from radar sites or in data-void 

regions due to complex terrain. Also, assimilating radar 
reflectivity and radial velocity only corrected wind and 
hydrometer fields in the 3DVAR system; therefore, by no 
ways to correct errors in water vapor forecast. Although the 
LETKF system had cross-variable correlations embedded in 
the flow-dependent background error covariance, the cor-
relations between water vapor and other control variables 
were relatively weak, which could result from model bias 
and sampling error due to our limited ensemble size (Wu 
et al. 2020). Therefore, this case illustrated the importance 
of blending large-scale information during convective-scale 
data assimilation cycles to remove the accumulated forecast 
error in the background, e.g., x and y components of wind, 
perturbation potential temperature and water vapor mixing 
ratio, which could not be corrected efficiently due to the 
limitation of observation and data assimilation strategy.

Average FSS over 24 forecasts were computed to eval-
uate the robustness of the blending strategy. In this study, 
we targeted improving model 0 - 6 hour QPF skill, and only 
precipitation over land points were included in the verifica-
tion. As shown in Fig. 12, 3BN600 and LBN600 outperform 
their corresponding no blending experiments, especially 
for larger rainfall thresholds. Compared to LwoBD with 
3woBD, LETKF had higher model QPF skill than 3DVAR, 
which was as expected from the literature (e.g., Zhang et 
al. 2011) that the LETKF could be benefited from the flow-
dependent background error covariance. On the contrary, 
3BN600 had a higher FSS than LBN600 for rainfall thresh-
olds larger than 80 mm after applying the blending scheme. 
The impact of blending scheme was larger in 3DVAR 
compared with LETKF. In the LETKF system, the blend-
ing scheme was used to combine the LETKF smoothed en-
semble mean and large-scale analysis, which could further 
aggravate the model spin-up issue resulted from the lack of 
small-scale structures. In contrast, it was directly applied to 
the 3DVAR background field which contained more con-
vective scale features.

3.2 Sensitivity of Blending Variables and Cut Off 
Length on Model QPF

Additional 3DVAR experiments were designed to un-
derstand the relative importance of blending variables, in-
cluding horizontal wind component (u, v), perturbation po-
tential temperature (θ’), and water vapor mixing ratio (qv) in 
this case. Each experiment was comprised of 24 forecasts. 
As shown in Fig. 13, it is possible to classify all experiments 
into two groups. Obviously, experiments in which blended 
water vapor (BLEND_Q, BLEND_QT, BLEND_UVQ, and 
BLEND_UVQT) had higher model QPF skill than others, 
again emphasizing the key role of large-scale moisture field 
in this case. Ultimately, BLEND_UVQT blended all four 
variables and had the best QPF skill among all. It was sug-
gested that the better QPF performance was conducive to 
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(a) 3woBD (b) 3BN600 (c) 3BN600-3woBD

(d) LwoBD (e) LBN600 (f) LBN600-LwoBD

Fig. 10. The vertically integrated moisture flux convergence (VIMFC, shading, 10-3 kg m-2 s-1) and the 850 hPa wind vector (m s-1) from the 3woBD 
(a), 3BN600 (b), LwoBD (d), and LBN600 (e) experiment. The vertical integration of VIMFC is from 1000 to 700 hPa. The positive/negative values 
of the shading are the convergence/divergence, respectively. (c) is the difference between 3BN600 and 3woBD, while (f) is the difference between 
LBN600 and LwoBD.

(a) 3woBD (b) 3BN600 (c) 3BN600-3woBD

(d) LwoBD (e) LBN600 (f) LBN600-LwoBD

Fig. 11. The 850 hPa water vapor mixing ratio (shading, g kg-1) from the 3woBD (a), 3BN600 (b), LwoBD (d), and LBN600 (e) experiment. (c) is 
the difference between 3BN600 and 3woBD, while (f) is the difference between LBN600 and LwoBD.
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the more balanced meteorological fields in BLEND_UVQT, 
which blended all meteorological variables.

To employ the blending scheme optimally, we fur-
ther investigated the sensitivities of different cut-off length 
scales on model QPF. CLS determined how much large-
scale information was introduced in a blended field. For ex-
ample, a smaller CLS retained more information from GFS 
fields. Five different CLS experiments were conducted for 
24 data assimilation cycles for each. The CLS setting in-
cluded 300, 450, 600, 750, and 900 km. Figure 14 shows 
that the model QPF score significantly improved both in 
3DVAR and LETKF experiments as including the blend-

ing scheme no matter which CLS was used. Similarly, the 
VIMFC had the same performance between different CLSs 
(not shown). All CLS experiments in 3DVAR and LETKF 
had captured the similar large-scale feature. Figure 14 also 
shows that 3DVAR had distinct FSS scores with respect 
to different CLS, in particular for large rainfall thresholds. 
However, in the LETKF system, the impact of different 
CLS on model QPF skill was small. As we could see in  
Fig. 4, it was consistent that the correlation with GFS analy-
sis dropped more steeply with increasing CLS in 3DVAR 
compared with LETKF. Overall, the experiments suggested 
an optimal CLS of 600 km in this study.

Fig. 12. The FSS of 0 - 6 hours QPF aggregates 24 forecasts from 0000 to 2300 UTC of 10 June 2012. The horizontal axis is the rainfall threshold 
(mm 6-hr-1). The experimental descriptions are shown in Table 1.

Fig. 13. Same as Fig. 12, but for the FSS of the different model variables used in blending scheme based on the 3DVAR experiments.
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4. SUMMARY

It is challenging to improve the short-term QPF accom-
panied with extreme rainfall, particularly for an operational 
center, like Taiwan’s Central Weather Bureau. Several stud-
ies demonstrated that rapid-updated convective-scale data 
assimilation for radar and surface observations could effec-
tively elevate the model QPF skill. However, the forecast 
error could accumulate with time through the long-term 
continuous cyclic data assimilation, especially over the da-
ta-void areas, resulting in a systematic drift from large-scale 
patterns. It had been demonstrated that the blending scheme, 
which combined the large-scale patterns of the global analy-
sis and finer structure of the high-resolution regional model, 
could effectively remove systematic forecast error resulted 
from update cycles (Hsiao et al. 2015). However, whether 
the effect could be obtained in the convective-scale data as-
similation system required further investigation.

In this study, the blending scheme was applied to the 
3DVAR and LETKF based radar data assimilation systems. 
Both systems had the same model configuration with 2 km 
resolution and employed hourly update cycles to assimi-
late the four S-band radar observations over Taiwan Island. 
Twenty-four data assimilation cycles were designed for 
both LETKF and 3DVAR systems to evaluate the impact 
of the blending scheme on model QPF for a heavy rainfall 
event. This rainfall system was associated with the strong 
moist southwesterly flow and produced a maximum 6-hour 
accumulated rainfall up to 245 mm over southern Taiwan. 
The major findings were summarized as follows:
(1)  FSS computed from 24 forecasts pointed out that an ad-

ditional blending scheme significantly improved model 

QPF skill of both the 3DVAR and LETKF systems, par-
ticularly for large rainfall thresholds.

(2)  The blending scheme imposed a larger impact on 
3DVAR than LETKF, because it was directly applied 
to the 3DVAR background field which contained more 
convective scale features compared with LETKF. In 
contrast, blended the smoothed LETKF ensemble mean 
with the GFS analysis was expected to worsen the model 
spin-up issue due to the smoother analysis.

(3)  Among all blending variables, including wind, perturba-
tion potential temperature, and water vapor mixing ratio, 
moisture played a key role in the model QPF improve-
ment in this case. Blending large-scale information from 
the global model adding more moisture flux into the 
background favored the rainfall forecast over the south-
western part of Taiwan.

(4)  Additional sensitivity experiment was designed to deter-
mine the optimal cut-off length scale (CLS). In this study, 
model QPF from experiments with CLS of 300, 450, 600, 
750, and 900 km was compared. Results suggested that 
model QPF skill was improved compared with experi-
ment excluding blending no matter which CLS was used. 
Among them, 600 km was the optimal CLS for our cur-
rent data assimilation systems. Furthermore, 3DVAR 
had a larger FSS difference in response to different CLSs 
compared with LETKF, which again emphasized the 
larger impact of the blending scheme on 3DVAR.

In summary, this study successfully applied the blend-
ing scheme to a rapid-update radar data assimilation and 
demonstrated robust improvement for the model QPF skill. 
In view of such encouraging results, the blending scheme 
could be considered for an operational purpose.

(a) (b)

Fig. 14. The FSS of accumulation threshold (mm) aggregate all 24 forecasts starting at 0000 UTC 10 2012 to 2300 UTC 10 June 2012 for 0 - 6 hours 
QPF. The results are the (a) 3DVAR and (b) LETKF experiment using different CLS settings. The experimental descriptions are shown in Table 1.
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