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Dust storms and long-range transport of pollutants are major environ-
mental concerns of Taiwan during the winter monsoon season when north-
easterly winds prevail following passages of cold fronts. To quantify the
impact on air quality, we develop an objective method to classify and study
the long-range transport processes by examining the frontal passages in
two representative years. We have found that there is about one frontal
passage per week in winter and spring, consistent with the climatological
average. The long-range transport events are classified into three types ac-
cording to their degrees of impact on levels of dusts and air pollutants in
Taiwan, namely dust storms (DS), long-range transport with pollutants (FP),
and long-range transport of background air masses (BG). DS cases occurred
4.7% of the time over 14 months and had a large average PM10  concentra-
tion of 127.6 µg m 3−  at Wan-Li station. FP cases occurred 1.9% of the time
and the mean concentration of PM10  during the FP periods was about
85 µg m 3− . BG cases happened 18.6% of the time and the mean concentra-
tion of PM10  was 32.8 µg m 3− . Dust storms and air pollutants tend to be
transported in different air parcels as evidenced by a lack of correlation
between dust aerosols and air pollutants. The frequency of local pollution
(LP) cases was 71.7% in winter and spring. The average PM10  concentra-
tion of LP cases at the Wan-Li station was 47.4 µg m 3− . However, about one
to two-thirds of the PM10  during LP cases can be attributed to the long-
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range transport. When this contribution is taken into account, we estimate
that the contribution of long-range transport to PM10  abundance in north-
ern Taiwan during winter and spring to be in the range of 50% to 75%.

(Key words: Dust storm, Air pollutant, Aerosol, Long-range transport)

1. INTRODUCTION

Dust storms are common during late winter and spring in East Asia (Shaw 1980; Duce et
al. 1980; Wan et al. 1982; Parrington et al. 1983; Chen and Chen 1987; Prospero et al. 1989;
Wang et al. 2000; Lin T. H. 2001; Chun et al. 2001; Murayama et al. 2001). They originate in
arid and semi-arid regions in northern China, Mongolia, and Central Asia under high surface
wind conditions (e.g., Duce et al. 1980.). Chen and Chen (1987) showed that strong surface
winds and low humidity in the lower troposphere associated with cold fronts over arid areas of
China or Central Asia in the spring are the conditions most conducive to the generation of
Asian dust storms.

Taiwan is an island in the subtropics, located off the southeast coast of China. Its climate
is strongly affected by the circulation of monsoons over East Asia. During winter and spring,
as part of the winter Asian monsoon, the Siberian high dominates the weather pattern of East
Asia. The main source region of anticyclones lies nearly stationary around Mongolia through-
out the winter (e.g., Wang 1974). The major track of anticyclones in this season extends from
the source region southeastward passing the lower part of the Yellow River, then eastward
through the Yellow Sea, Korean Peninsula, and then to Japan. As the winter progresses, this
major track shifts southeastward to the coast of the East China Sea.

The frontal zone is characterized by a strong temperature gradient and a shift in wind
direction. Figure 1 shows a typical 3-day back trajectory of a frontal passage that passes over
northern Taiwan. The air masses originate at an altitude 3 km above the dust source regions of
western China and also pass over the industrial regions of eastern China. This allows air mass
to pick up air pollutants if vertical mixing is favorable to such entrainment. In which case, air
pollutants and dust can be transported to Taiwan. However, in a subsiding high-pressure sys-
tem atmospheric stability tends to be high and prevents effective vertical mixing. These pro-
cesses are very important to long-range transport of dust and air pollutants and are a major
focus of this study.

Stagnant and sunny conditions are typical prior to a frontal passage in Taiwan. In addition,
there is a clear diurnal temperature pattern with a daytime maximum. Under these conditions,
local emissions are the major source of air pollution in Taiwan. After the frontal passage,
surface temperatures drop rapidly, and relatively strong northeasterly winds prevail which can
transport dust and air pollutants from the Asian continent to Taiwan. The cold temperature and
northeasterly winds usually last for about two days before it starts to warm up with the return
of the diurnal temperature pattern. These anticyclones associated with the front system fre-
quently form at a rate of about one per week (e.g., Bachmeier et al. 1996).

Many researchers noted that not only mineral dust but also air pollutants were carried
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over long distances in the spring over eastern Asia and the Pacific Ocean (Uematsu et al. 1983;
Prospero et al. 1985; Prospero and Savoie 1989; Okada et al. 1990; Harris et al. 1992; Uemastu
et al. 1992; Arimoto et al. 1996; Jaffe et al. 1997; Xiao et al. 1997; Liu and Shiu 2001; Uematsu
et al. 2002; Uno I. et al. 2003 ). Recently, Prospero et al. (2003), in a study of aerosols distri-
butions at Midway Island during 1981-2000, found that pollutants such as sulfate and nitrate
ions in the aerosols increased concurrently with mineral dust in spring and winter. In addition,
they showed that anthropogenic sulfate and nitrate concentrations in aerosols almost doubled
from 1981 to the mid 1990s, mainly because of increased emissions from China.

However, little correlation between air pollutants and Asian dust storms is found in our
analysis of hourly measurements at the Taiwan Environment Protection Administration (TEPA)
air quality monitoring stations. We notice that concentrations of air pollutants such as CO,
NOX  and SO2  during a typical Asian dust storm tend to stay at background or moderate
values most of the time and elevated values are found only occasionally. Actually, as we will
see later that most of the frontal passages over Taiwan have background/moderate levels of air
pollutants. This is probably a result of a well-mixed boundary layer over the East China Sea
upwind of Taiwan, which is known for highly efficient turbulence mixing because of the cold
winter monsoon winds over the relatively warm Kuroshio Current.

Fig. 1. Result of the HYSPLIT model 3-day backward trajectory analysis started at
0400UTC (1200LST), April 12, 2001 at altitudes of 100, 500 and 1000 m at
Wan-Li station in northern Taiwan. The top and bottom panels display
horizontal and vertical motion. Symbols denote the location of the air
parcel every 6 hours.
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The lack of correlation between mineral dust and air pollutants in TEPA measurements is
most likely because of the fact that mineral dust and air pollutants originate from different
source regions (Fig. 1). Air masses containing dust that pass over industrial areas may be at
altitudes too high to mix with pollutants near the surface. In order to better understand this
problem and, more importantly, the key processes in the long-range transport of dust and air
pollutants, we conduct this study analyzing concurrent measurements of aerosols, trace gases,
and meteorological parameters in Taiwan. We focus on the frontal passages and develop an
objective method to classify various types of long-range transport according to dust and air
pollutant levels. Finally, we evaluate the contribution of long-range transport to distributions
of PM10 in northern Taiwan.

2. DATA ANALYSIS METHOD

Meteorological parameters, i.e., surface temperature, wind direction and speed, rainfall,
and atmospheric concentrations of PM10, NOX , CO, and SO2 observe at coastal stations and
a mountain station in northern Taiwan are used in this study. The coastal stations Wan-Li,
Tan-Shui, and I-Lan (Fig. 2) along north and northeast Taiwan are major stations used in the
data analysis. These stations are on the upwind direction of the frontal passage and thus ideal
for observing the effect of frontal passages on distributions of dust and air pollutants. Mea-
surements at the Yang-Ming mountain station (altitude 826 m) at a national park in northern
Taiwan turn out to be very valuable also because it is relatively clean and provides information
on altitudinal distribution of trace species. The tall north-to-south running Central Mountain
Range (average altitude 2.5 km) in Taiwan effectively protects southern Taiwan from the
winter monsoon, making the data there difficult to interpret.

In this work, we develop an objective method to classify the air mass following each
frontal passage in northern Taiwan according to the amounts of long-range transported dust
and air pollutants. The meteorological parameters observed near the coasts such as temperature
and winds can be used to identify the time and intensity of the frontal passage. As discussed in the
introduction, air mass behind a front usually contains Asian continental air (Fig. 1), while winds
before the frontal passage tend to be weak and thus local emissions can dominate distributions
of air pollutants. For contrast purposes, analysis starts one day before the frontal passage and
lasts for four days to cover the entire period of a typical cold front passage.

We show below that Asian continental air behind a front can be further classified into
three categories: (1) the dust storm case (denoted DS) that consists primarily of Asian mineral
dust but not necessarily air pollutants as mentioned earlier; (2) the frontal pollution case (denoted
FP) that contains a significant amount of air pollutants from the Asian continent (i.e., long-
range transport of air pollutants) but little dust; and (3) the background air case (denoted BG)
that contains relatively clean background air from the East China Sea north of Taiwan. When
there is no frontal passage, the fair weather diurnal variation of temperature becomes apparent
and concentrations of air pollutants clearly follow local temporal emission patterns. This case
is classified as local pollution (denoted LP).
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3. DATA USED

We use hourly meteorological data and concentrations of PM10 and other pollutant mea-
sured at TEPA air quality monitoring stations. Since the frontal passage is a typical weather
event in Taiwan in winter and spring, a large number of episodes are identified from Novem-
ber 1999 to May 2000, and from November 2000 to May 2001. These two years are chosen
because the data are readily available and representative of climatological mean.

4. CLASSIFICATION OF AIR MASSES

4.1 Local Pollution Cases

In Taiwan, high-pressure fair weather in winter usually prevails between two frontal
passages. It is characterized by weak surface winds, stable atmospheric conditions, and a clear
diurnal cycle in surface temperature. Stable and weak wind conditions are conducive to the
accumulation of air pollutants due to local emissions. Figure 3 shows a typical local pollution
episode (Jan. 17 - 20, 2001) at Wan-Li station. Synoptic-scale analysis (Fig. 4) shows a high
pressure system controlled the weather pattern around Taiwan. Concentrations of pollutants
consistently show temporal variations with peaks around rush hour. This is a clear case domi-

Fig. 2. The topography (altitude is represented by shadowed areas) and EPA
ground stations (closed circles) of air quality network in northern Taiwan.
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Fig. 3. The time series of hourly PM10  (red closed circles), CO (dashed line),

SO2  (solid), NO OX 3+  (triangle), NOX (cross), surface temperature
(open circle with vertical line), wind speed (closed squares, bottom panel)
and rainfall (black bar, bottom panel) are shown at Wan-Li station dur-
ing a local pollution case (0100LST Jan. 17 to 2400LST Jan. 20, 2001).
Surface wind at Wan-Li station is represented by wind vector.

Fig. 4. Synoptic-scale surface weather map at 0000Z (0800LST) Jan. 19, 2001.
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nated by local pollution (LP). In the daytime, anthropogenic emissions at rush hour lead to the
concurrent enhancement of air pollutants such as NOX , CO, and SO2. PM10  concentrations
show similar patterns but with some phase lag, probably as a result of a secondary source. At
night, concentrations of all pollutants drop gradually to their minima. PM10 concentrations
generally stay below 100 µg m 3−

 and the correlation between PM10  and other air pollutants
are poor on an hourly basis. However, on a time scale of a half day or longer, a positive
correlation is apparent.

In order to identify sources and to examine how transport paths affect concentrations of
air pollutants in northern Taiwan, a three-day backward trajectory analysis is preformed for
each air-mass case. The analysis was computed using the HYSPLIT (Hybrid Single-Particle
Lagrangian-Integrated Trajectory) model (Draxler and Hess 1998). A backward trajectory
analysis was performed for altitudes of 100, 500, and 1000 m, at Wan-Li station in northern
Taiwan.

The trajectory analysis started from 0400UTC (1200LST), on Jan. 20, 2001 (Fig. 5). The
backward trajectories show slow-moving air parcels around the western Pacific over a 72-
hour period prior to 0400UTC. Weak winds and clean oceanic air enable local emissions to

Fig. 5. Result of the HYSPLIT model 3-day backward trajectory analysis started at
0400UTC (1200LST) Jan. 20, 2001 at altitudes of 100, 500 and 1000 m at
Wan-Li station in northern Taiwan. The top and bottom panels display
horizontal and vertical motion. Symbols denote the location of the air
parcel every 6 hours.
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dominate air quality. The sunny, stagnant conditions of a high-pressure system also lead to a
typical fair weather diurnal temperature distribution.

4.2 Long-range Transport

As mentioned earlier, significant long-range transport is usually associated with a frontal
passage that is characterized by a strong pressure gradient at the surface and a cold air mass
behind it. As the cold front passes over northern Taiwan, the surface temperature drops to a
minimum, wind speed increases to a maximum and the wind changes to a northeasterly direction.
The strong winds sweep away most of the local pollutants such that the diurnal variations of
pollutants observed in LP cases become less evident or even disappear all together. In this
situation, most of the enhancement of air pollutants can be attributed to long-range transport.

Based on measurements of PM10  and other air pollutants at TEPA air quality ground
stations, we show below that the long-range transport associated with frontal passages can be
further classified into three types, namely dust storm (DS), long-range transport with pollut-
ants (FP), and long-range transport of background air masses (BG).

Fig. 6. The time series of hourly PM10  (red closed circles), CO (dashed line),
SO2  (solid), NO OX 3+  (triangle), NOX (cross), surface temperature
(open circle with vertical line), wind speed (closed square, bottom panel)
and rainfall (black bar, bottom panel) are shown at Wan-Li station
(0100LST April 11 to 2400LST April 14, 2001). Surface wind at Wan-
Li station is represented by wind vector.
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4.2.1 Dust Storm Cases

Figure 6 shows a typical dust storm event observed at Wan-Li station on April 12 - 13,
2001. The data and synoptic weather map (Fig. 7) indicate that the cold front arrived around
midnight of April 11, 2001. The wind speed reached a maximum when temperature reached a
minimum on April 12, 2001. Meanwhile, PM10 concentrations dropped to near the detection
limit and then jumped drastically to about 250 µg m 3−

 in a few hours. These concentrations of
PM10 were almost two or three times the normal level for LP cases. In fact, elevated concen-
trations of PM10 with peak values of about 200 µg m 3−

 were observed over most stations in

Fig. 7. Synoptic-scale surface analysis at 0000Z (0800LST) April 12, 2001.

Taiwan on April 12 and 13, 2001. On April 12, the prevailing winds were relatively strong,
especially at the Wan-Li station. Strong winds swept away most of the local pollutants as
evidenced by the fact that NOX , CO, and SO2 stayed at extremely low values and showed no
diurnal cycle. Mineral dust dominated the composition of PM10 (Shu et al. 2004; Wang et al.
2004).

There were very few air pollutants carried with the dust storm even though the back tra-
jectory passes over the industrial regions of northern China (see next section). The correlation
coefficients between PM10 and other air pollutants (e.g., CO and SO2 ) are very low as ex-
pected (Figs. 8a, b). Thus, we can conclude that the PM10 at Wan-Li on April 12, 2001 was
from a dust storm carrying few air pollutants. On the next day (April 13), rush hour peaks of
NOX , CO, and SO2 were observed near the 56th and 68th hours of Fig. 6 as a result of local
emissions when surface winds weakened and the normal fair day diurnal cycle in temperature
returned. April 13, 2001 was classified as an LP even though some of the PM10 (up to about
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70 µg m 3−
) was definitely leftover dust from the previous day.

72-hour back-trajectory analyses at altitudes of 100, 500, and 1000 m calculated for the
DS case of April 12, 2001 (Fig. 1) suggest that the air mass in northern Taiwan originated from
dust source areas near Mongolia and western China. The trajectory of air parcels originated at
high altitude (above 3 km) in northern China, following a typically subsiding high-pressure
system to Taiwan.

Figure 9 shows another DS case on Feb. 1, 2001. Surface wind speed increased to its
maximum in the early morning of Feb. 1, 2001 with PM10 and other air pollutants increased
concurrently. The correlations between PM10 and other air pollutants during this period were
very good. However, when the PM10 level reached its maximum value of about 150 µg m 3−

 at
1500LST, concentrations of other air pollutants dropped substantially and stayed low thereafter.
It is obvious that after 1500LST correlations between PM10 and other air pollutants on an
hourly basis were poor. The trajectories of air parcels at 500 and 1000 m came from dust

Fig. 8. Relationship between (a) PM10  and SO2  (b) PM10  and CO during
(0100LST April 12  to 2400LST April 13, 2001 at Wan-Li station).
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Fig. 9. The time series of hourly PM10  (red closed circles), CO (dashed line),
SO2  (solid), NO OX 3+  (triangle), NOX (cross), surface temperature
(open circle with vertical line), wind speed (closed square, bottom panel)
and rainfall (black bar, bottom panel) are shown at Wan-Li station dur-
ing a dust storm case (0100LST Feb. 1 to 2400LST Feb. 4, 2001). Sur-
face wind at Wan-Li station is represented by wind vector.

source areas in central China (Fig. 10). However, the air parcel at 100 m originated at low
elevation in the industrial areas near Shanghai which probably contribute significant air pol-
lutants to the air parcel.

 In this DS case, the dust storm apparently picks up air pollutants in the first few hours,
but remains relatively clean afterward. In fact, in our examination of various individual dust
storms we notice that they only occasionally carry significant amounts of air pollutants, and
only during certain periods of a dust storm. Apparently dust storms pick up air pollutants
along their long-range transport to Taiwan only when the atmospheric stability and vertical
mixing conditions over polluted regions are favorable to the entrainment of pollutants from
the surface layer.

4.2.2 Frontal Passages with Pollutants

Figure 11 shows a case in which a frontal passage (Fig. 12) is accompanied by a substan-
tial pickup of air pollutants. It shows that northeasterly winds with  maximum speed of about
12 m s 1−  brought an air mass from the East China Sea with PM10 concentrations that peaked
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at about 100 µg m 3−
 on Jan. 19, 2000 (Fig. 11). The concentrations of PM10, CO, and SO2

were well correlated, suggesting that pollutants were the major component of the PM10. Fur-
thermore concentrations of PM10 , CO, and SO2 did not show any diurnal cycle and thus
unlikely to be from local emissions. In fact, the Yang-Ming mountain station (Fig. 13a) and
the Tan-Shui costal station (Fig. 13b) had nearly identical concentrations of PM10, CO, and
SO2 as the Wan-Li station on Jan. 19, 2000. This was strong evidence that the pollutants came
from upstream source areas and that the levels of CO and SO2 were controlled by long-range
transport rather than local emissions.

Figure 14 shows the 72-hour backward trajectory starting from 0400UTC (1200LST),
Jan. 19, 2001. In this case, the air parcels spend most of the 72 hours over industrial areas of China
before traveling to Taiwan. During three days of travel, the air parcels of 100, and 500 m are
mostly at relatively low altitude (below 1000 m). So the probability of picking up air pollut-
ants over industrial areas for these air parcels should be relatively high.

Fig. 10. Result of the HYSPLIT model 3-day backward trajectory analysis started at
0600UTC (1400LST), Feb. 1, 2001 at altitudes of 100, 500 and 1000 m at
Wan-Li station in northern Taiwan. The top and bottom panels display
horizontal and vertical motion. Symbols denote the location of the air
parcel every 6 hours.
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Fig. 11. The time series of hourly PM10 (red closed circles), CO (dashed line),
SO2  (solid), NO OX 3+  (triangle), NOX (cross), surface temperature
(open circle with vertical line), wind speed (closed square, bottom panel)
and rainfall (black bar, bottom panel) are shown at Wan-Li station dur-
ing a frontal pollution case (0100LST Jan. 17 to 2400LST Jan. 20, 2000).
Surface wind at Wan-Li station is represented by wind vector.

Fig. 12. Synoptic-scale surface analysis at 0000Z (0800LST) Jan. 17, 2000.
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Fig. 13. The time series of hourly PM10 (red closed circles), CO (dashed line),
SO2  (solid), NO OX 3+  (triangle), NOX (cross), surface temperature
(open circle with vertical line), wind speed (closed square, bottom panel)
and rainfall (black bar, bottom panel) are shown at (a) Yang-Ming sta-
tion (b) Tan-Shui station during a frontal pollution case (0100LST Jan.
17 to 2400LST Jan. 20, 2000).

(a)

(b)



Lin et al. 773

4.2.3 Background Air Masses

Figure 15 shows the front passing over northern Taiwan was nearly stationary on the
morning of Feb. 10, 2001 and exhibited typical characteristics of a northeasterly monsoon.
Concentrations of PM10 , NOX , CO, and SO2 during this period were relatively low on both
Feb. 9 and 10 (Fig. 16a). For example, PM10  concentrations never exceeded 50 µg m 3−

 at
Wan-Li (Fig. 16a), Yang-Ming (Fig. 16b) and Tan-Shui (Fig. 16c). Apparently the northeast-
ern winter monsoon brought a relatively clean background air mass from the East China Sea
into northern Taiwan. This air mass is denoted as BG.

Figure17 shows that the relatively clean background air parcel traveled from northeastern
China and moved southeastward to Taiwan on Feb. 10, 2001, mostly over the ocean. Other
than spending a long time over the ocean, this case was accompanied by abundant precipitation.

Fig. 14. Result of the HYSPLIT model 3-day backward trajectory analysis started at
0400UTC (1200LST), Jan. 19, 2000 at altitudes of 100, 500 and 1000 m at
Wan-Li station in northern Taiwan. The top and bottom panels display
horizontal and vertical motion. Symbols denote the location of the air
parcel every 6 hours.
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Fig. 15. Synoptic-scale surface analysis at 0000Z (0800LST) 10 Feb. 2001.

Effective wet and dry deposition may account for the low average concentrations of air pollut-
ants for the BG case. Nevertheless, CO which is not water soluble and thus not subject to wet
deposition or dry deposition to the ocean was also low.

Based on the classification method described above, most of the long-range transport
episodes can be easily separated. However, the method also has  limitations. For example,
once the surface pressure gradient and wind speed declines after frontal passage, local emis-
sion influences become more evident. In this situation, although the air mass still has a signifi-
cant contribution from long-range transport the case remains classified as an LP case. This is
particularly so when the concentrations of long-range transport dust or pollutants are not very
high, e.g., BG cases. In this regard, since frequency of frontal passages is about once a week
(Bachmeier et al. 1996), comparable to the lifetime of PM10 , one can expect  long-range
transport to have a significant “legacy” contribution to an LP case that follows a frontal passage.
This has important implications for the evaluation of  long-range transport on Taiwan’s air
quality as is elaborated on later.

It is important to note that the lower atmosphere of the East China Sea in winter and
spring is generally polluted as a result of frequent (once a week) northeasterly winter mon-
soons bringing Asian continental air to this area. This has been substantiated by extensive
measurements during PEM-West B (Hoell et al. 1997), BIBLE (Kondo et al. 2003), TRACE-
P (Jacob et al. 2003), and ACE-Asia (Huebert et al. 2003) experiments that showed significant
anthropogenic pollutants in the boundary layer over the East China Sea. In addition, satellite
observations also show widespread distributions of high aerosol optical depth in the western
North Pacific in winter and spring as a result of Asian continental outflow (Husar et al. 2001;
Nakajima et al. 2003). Therefore the background air of the East China Sea is likely to be
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Fig. 16. The time series of hourly PM10  (red close circles), CO (dashed line),
SO2  (solid), NO OX 3+  (triangle), NOX (cross), surface temperature
(open circle with vertical line), wind speed (closed square, bottom panel)
and rainfall (black bar, bottom panel) are shown at (a) Wan-Li station (b)
Yang-Ming  (c) Tan-Shui  during a frontal clean case (0100LST 9, Feb.
to 2400LST 12 Feb. 2001). Surface wind at Wan-Li station is repre-
sented by wind vector.

(a)

(b)
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significantly polluted due to outflows from the Asian continent. Furthermore, in the boundary
layer, strong turbulence mixing results in well-mixed polluted background air prevailing. This
well-mixed polluted background air is most likely the BG cases observed in Taiwan. This is
supported by our own measurements that show that more than half of the 32.8 µg m 3−

 of PM10

are sulfate, nitrate, and ammonium ions, soot and organic carbon. In conclusion, all three
frontal passage cases, i.e., DS, FP, and BG, ought be considered long-range transport cases of
Asian continental air masses onto northern Taiwan. This is so even for BG cases which have
lower concentrations of PM10 (i.e., cleaner) than those of the LP cases.

5. IMPACT OF LONG-RANGE TRANSPORT ON AIR QUALITY

Applying the method developed in Section 4, we can evaluate the frequency of occur-
rence of each case and use it to estimate the impact on the air quality of Taiwan. Table 1 shows
frequency of occurrence for local pollution and three long-range transport cases during the
winters and springs of a two-year period (Nov. 1999 to May 2000 and Nov. 2000 to May
2001). Crosschecking against other years has confirmed that the two years are representative
of the other ten years TEPA has maintained the current extensive network of stations.

The average PM10 concentration of local pollution (LP) cases at the Wan-Li station is
about 47.4 µg m 3−

. The frequency of occurrence of LP cases in these two years is 71.7% or
305 days out of 14 months. Dust storm (DS) cases occur 4.7% of the time or 20 days in 14

Fig. 16. Continued (data missing during 01~18 LST 09 Feb. 2001).

(c)
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months and have a large average PM10  concentration of 127.6 µg m 3−
 at Wan-Li station.

Since an average dust storm event lasts 2 days, we get 5% per year as the frequency of occur-
rence for the DS, a very reasonable number. Frontal pollution cases (FP) occur about 1.9% of
the time or 8 days and the mean concentration of PM10  during the FP periods is about
85 µg m 3−

. Background frontal cases (BG) happen 18.6% of the time or 79 days and the mean
concentration of PM10 is 32.8 µg m 3−

. So the long-range transport cases (i.e., sum of DS, FP,
and BG) occur approximately 25% of the time or 107 days with an average concentration of
54.4 µg m 3−

. Assuming again 2 days per frontal passage, we get about 54 cold fronts over 14
months which are very close to the climatological average of one per week frequency sug-
gested by Bachmeier et al. (1996). This also substantiates the representativeness of the two
years.

We notice, however, that the number of BG cases (about 40 cases) is much greater than
the number of FP cases (about 4 cases). In addition, in terms of levels of gas phase air pollut-
ants the DS cases resemble closer those of BG cases than FP cases. Given the fact that nearly
all cold fronts pass over polluted areas of the Asian continent within 5 days prior to reaching
Taiwan, it is surprising to see so few FP cases. Two processes may contribute to this

Fig. 17. Result of the HYSPLIT model 3-day backward trajectory analysis started
at 0400UTC (1200LST), Feb 10, 2001 at altitudes of 100, 500 and 1000
m at Wan-Li station in northern Taiwan. The top and bottom panels dis-
play horizontal and vertical motion. Symbols denote the location of the
air parcel every 6 hours.
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phenomenon, one is that the air parcel passes above the polluted area without picking up any
significant amount of pollutants, another is that the pollutants are diluted to BG levels during
long-range transport. In regard to the latter we note that, as discussed earlier, turbulent mixing
or dilution is highly efficient in the boundary layer over the East China Sea because of the cold
winter monsoon over the relatively warm Kuroshio Current.

Based on the discussion above, it is tempting to make an obvious conclusion that the
contribution to the total PM10 for Wan-Li station in winter and spring is about 70% (Table 1)
from local emissions (LP) and 30% from the long-range transport (DS + FP + BG). This
conclusion, however, is subject to the assumption that DS, FP, and BG are entirely due to

Table 1. The percentage and average concentration of local pollution (LP), dust
storm (DS), Background air masses (BG), frontal pollution (FP), and
data missing (M) cases are shown at Wan-Li station in the two-year
period (Nov. 1999 to May 2000 and Nov. 2000 to May 2001).
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long-range transport and LP is solely from local emissions. We know the latter assumption is
false because of the “legacy” effect discussed in Section 4. Moreover, the assumption that DS,
FP, and BG are entirely due to the long-range transport is only qualitatively correct. There
should be a finite contribution of local emissions during all frontal passage cases. Northeast-
erly winds can blow away some, but not all local emissions. We have made an estimate of this
effect by examining the BG cases at all stations in northern Taiwan. By comparing stations
with different emission rates, we estimate that the contribution of local emissions during a
typical frontal passage case is less than 10 µg m 3−

 in northern Taiwan. For Wan-Li, it is about
5 µg m 3−

, a negligible value. The “legacy” effect, however, can be substantial. Assuming a
nominal lifetime of PM10 of about 5 days and one frontal passage per week (Bachmeier et al.
1996), approximately half of the PM10 from a frontal passage can be present during the trail-
ing LP episode. This means that about half of the PM10 concentrations of LP cases are due to
long-range transport. The uncertainty in the estimate of the “legacy” effect is about 2, i.e., one
to two-thirds of the PM10 concentrations of LP cases are due to long-range transport. When
this is taken into account, we estimate that the contribution of the long-range transport to
PM10 abundance at Wan-Li station in winter and spring is in the range of 50% to 75%, the rest
being from local emissions.

We have examined data at other stations in northern Taiwan and found that the 50% and
75% range applies to most stations, including stations in most urban areas. The contribution of
long-range transport can increase up to 80% at some clean rural stations and decrease to as low
as 35% at highly polluted urban stations. The value reaches nearly 100% at a station on the
Penghu Islands. The fact that the PM10 concentrations at the Penghu station had an average
value of about 50 µg m 3−

 and rarely got below 25 µg m 3−
 in winter and spring was consistent

with the discussions above, particularly in regard to the average concentration of long-range
transport cases (54.4 µg m 3−

) and the legacy effect. In summer and fall, the average PM10

concentration at the Penghu station is about 20 µg m 3−
.

The contribution of long-range transport to PM10 abundance in the range of 50% to 75%
in northern Taiwan is a remarkably high value. It obviously has important implications for
control strategies of air pollution over northern Taiwan. For example, local emission control
can only affect less than half of the abundance of PM10 in the region. In southern Taiwan,
reductions in local emissions should be more effective as the Central Mountain Range weak-
ens the northeasterly winter monsoon. At this moment we don’t have a quantitative estimate of
the contribution of long-range transport to PM10 abundance in southern Taiwan. The method
developed above has too much uncertainty to give a reliable estimate. Model calculations are
needed.

Chang et al. (2000) made a model study based on TAQM (Taiwan Air Quality Model;
Chang (1990) to understand the impact of long-range transport on acid deposition in Taiwan
under various weather conditions. They found that about 45% of the total deposition (dry and
wet depositions) of sulfate in Taiwan was the result of long-range transportation during a
northeasterly monsoon episode. Their calculations also showed approximately a 2 to 1 ratio
for northern vs. southern Taiwan contributions. This means 60% of the total deposition of
sulfate in Taiwan was contributed by long-range transport during a northeasterly monsoon
episode, and 30% for southern Taiwan. Although strictly speaking, sulfate deposition can’t be
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compared directly to the PM10 concentration, the agreement between the 60% value in north-
ern Taiwan with our range of 50% to 75% is reassuring. In this regard, we notice that an
analysis of the measurements of acid precipitation in Taipei by Lin et al. (1999) also suggested
a dominant role for long-range transport.

Using the same method, we estimate that the range of 50% to 75% contribution of long-
range transport to PM10 abundance in northern Taiwan is also applicable to other air pollut-
ants with relatively long lifetimes, e.g., CO and ozone. For short-lived species such as NOX

and SO2, contributions from long-range transport to their abundances in Taiwan ought be
substantially smaller for two reasons: first there is significant loss during long-range transport,
and second there shorter life spans means that their contribution to the “legacy effect” ought
be smaller. We plan to make a study of contribution dependency due to species lifetimes in a
separate paper.

6. SUMMARY AND CONCLUSIONS

Taiwan is an island in the subtropics, located off the southeast coast of mainland China.
During winter and spring, as part of the winter Asian monsoon, the Siberian high dominates
the weather pattern of East Asia. Dust storms generated in arid areas of central Asia usually
follow the track of anticyclones southeastward behind a cold front. The passage of a cold front
over Taiwan is characterized by a rapid drop in surface temperature and a shift to strong
northeasterly winds which can transport dust and air pollutants from the Asian continent onto
Taiwan.

Back trajectory analysis of a typical dust storm (Fig. 1) that influenced Taiwan showed
that its trajectories started at relatively high altitudes (above 3 km) over desert regions in
western China and subsided under the control of a high-pressure system on its long-range
transport to Taiwan (Fig. 1). The trajectories passed over polluted regions of the Asian conti-
nent and could have picked up air pollutants if the vertical mixing was effective. In this work,
we have studied the processes of long-range transport of dust and air pollutants by examining
the temporal and spatial distributions of aerosols and trace gases during various phases of the
frontal passage. More importantly, we have made an estimate of the impact of long-range
transport of PM10 on the air quality in northern Taiwan.

Stagnant and sunny conditions are typical prior to the frontal passage in Taiwan. Under
these conditions local emissions are a major source of air pollutants. Concentrations of air
pollutants consistently show temporal variations with peaks around rush hour. These cases are
classified as local pollution (LP).

The strong northeasterly winds behind the cold front sweep away most of the local pollut-
ants and replace them with air parcels that can be backtracked usually to the Asian continent.
Based on measurements of PM10  and other air pollutants at the TEPA air quality ground
stations, we have shown that the long-range transport associated with frontal passages can be
further classified into three types: (1) the dust storm case (DS) that consists primarily of Asian
mineral dust but not necessarily air pollutants; (2) the frontal pollution case (FP) that contains
a significant amount of air pollutants from the Asian continent but little dust; and (3) the
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background air case (BG) that contains relatively clean background air from the East China
Sea.

Essentially no correlation is found between dust and air pollutants observed at TEPA air
quality monitoring stations. In fact, dust and air pollutants are usually transported in separate
air parcels. This is the case despite most dust storms passing over polluted areas of the Asian
continent. Obviously vertical mixing conditions are usually not favorable for entrainment of
air pollutants into the dust storms.

We have analyzed the frontal passages over two representative years and obtained the
following results. DS cases occur 4.7% of the time and have a large average PM10 concentra-
tion of 127.6 µg m 3−

 at Wan-Li station. Frontal pollution cases (FP) occur 1.9% of the time
and the mean concentration of PM10 during the FP periods is about 85 µg m 3−

. Background
frontal cases (BG) happen 18.6% of the time and the mean concentration of PM10 is about
32.8 µg m 3−

. So long-range transport cases occur approximately 25% of the time (i.e., sum of
DS, FP, and BG) with an average concentration of 54.4 µg m 3−

. The frequency of occurrence
of LP cases is 71.7% in winter and spring. The average PM10 concentration of LP cases at the
Wan-Li station is 47.4 µg m 3−

.
There was about one frontal passage per week, consistent with the climatological average

(Bachmeier et al. 1996). The short interval of about five days (i.e., LP cases) in between two
frontal passages is approximately equal to the lifetime of PM10. This means that a significant
amount of PM10 during the frontal passage will be present in the trailing LP period. We esti-
mate about one-third to two-thirds of the PM10 of LP cases is contributed by this “legacy”
effect of long-range transport. When this effect is taken into account, we estimate that the
contribution of the long-range transport to PM10 in northern Taiwan in winter and spring is in
the range of 50% to 75%. These values are remarkably large and have important implications
for control strategies. We believe that the range also applies to other air pollutants with rela-
tively long lifetimes, e.g., CO and ozone. For short-lived species such as NOX  and SO2,
contributions of long-range transport to their abundances in Taiwan should be substantially
smaller.
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