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A forward-in-time semi-Lagrangian scheme developed by Sun et al.
(1996) and Sun and Yeh (1997) has been applied to one-dimensional shallow
water equations in both rotational and irrotational systems. After obtain-
ing numerical results, we employ variation formulations (Sun and Sun 2004)
with minimum correction to adjust both total mass and total energy so that
they are conserved. Therefore, the scheme produces accurate, positive-defi-
nite solutions while conserving both mass and total energy. Comparing
among different resolutions, the improvement on total energy is significant
but less significant for a mass field in a coarse resolution model when it
simulates the sharp discontinuities of surface waves, because the mass field
calculation is quite accurate even without correction. The variation method
proposed here can also be easily applied to multi-dimensional flows.

(Key words: Shallow water equations, Geostrophic adjust,
Surface waves, Semi-Lagrangian scheme)

1. INTRODUCTION

Since 1959, semi-Lagrangian schemes have been studied by Wiin-Nielsen (1959) and
many other scientists. Most semi-Lagrangian schemes employing backward trajectories have
been reviewed by Staniforth and Côté (1991). Iterations are often required to solve the departure
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points of the backward trajectories if the velocity field is not constant, as discussed by Bates
(1984), Kuo and Williams (1990), Bermejo and Staniforth (1992), and Huang (1994). On the
other hand, forward trajectories can easily be obtained with great accuracy (Purser and Leslie
1994). Thus, Purser and Leslie (1991) have introduced the ‘cascade interpolation method’.
Sun et al. (1996) have presented the ‘split interpolation method with clipping filter’, and Sun
and Yeh (1997) have developed a more general ‘internet interpolation method’ with uncondi-
tional stability, which has also been successfully applied to the NTU-Purdue nonhydrostatic
atmospheric model (Hsu and Sun 2001; Sun and Hsu 2005) by Shieh et al. (2006)

The use of semi-Lagrangian (SL) advection methods allows for relatively long time steps.
It gives minimal phase error, minimizes the computational dispersion, and can handle sharp
discontinuities (Nair and Machenhauer 2002). However, semi-Lagrangian does not guarantee
the conservation of mass (Rancic 1992; Priestley 1993), which is important for a numerical
model to simulate passive-scalar transport in the atmosphere or the properties of climate studies
and ocean circulation (Priestley 1993). Hence, Rancic (1992), Priestley (1993), Gravel and
Staniforth (1994), Lin and Rood (1996), Bermejo and Conde (2002), and others have devel-
oped different mass conserving, semi-Lagrangian schemes. The detailed mass conserving,
semi-Lagrangian scheme derived from the piecewise parabolic method (PPM) based on the
finite-volume scheme is referred to Rancic (1992). Priestley (1993) and Gravel and Staniforth
(1994) applied a localized correction on the quasi-monotone semi-Lagrangian (QMSL) scheme
of Bermejo and Staniforth (1992) to achieve mass conservation for a shallow water equation.
On the other hand, Bermejo and Conde (2002) applied the variation formulation to achieve a
global conservation of the QMSL. Based on Sun et al. (1996) and Sun and Yeh (1997), Sun
and Sun (2004) (will be referred as SS hereafter) also applied the variation formulation with
mass correction to obtain accurate, positive-definite, mass conserved solutions with simpler
calculations. Furthermore, SS’s results are as good as or more accurate than those obtained by
Carpenter et al. (1990), Priestley (1993), and Bermejo and Conde’s (2002) compared with
analytical solutions for scalar, linear advection. Sun et al. (1996) have also proved that the
accuracy of their semi-Lagrangian scheme is comparable or better than Kuo and Williams
(1990) and others in solving nonlinear advection. Here, we apply the method developed by SS
to one-dimensional shallow water equations. The simulations show that the scheme is capable
of conserving both mass and total energy in rotational and irrotational systems. We are also
applying this method to the two-dimensional shallow water equations to study interactions of
vortices over topography based on the characteristic approach (Hirsch 1988, 1990; Wang and
Yeh 2005) and the cases presented by Wang and Yeh (2005). They will be presented in other
papers. It is also noted that Arakawa and Lamb (1981) and Thuburn and Staniforth (2004)
have developed an elegant finite difference scheme to conserve mass, energy, and absolute
potential vorticity in shallow water equations.

2. SHALLOW WATER EQUATIONS AND NUMERICAL SCHEME

2.1 Basic Equations and Semi-Lagrangian Scheme

The one-dimensional shallow water equations with the Coriolis force are:
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where h is the height. If we apply the time-split method, (2.1) - (2.3) can be solved as a com-
bination of advection terms and pressure gradient forces [(2.4) - (2.6)], as well as the terms
associated with the Coriolis force [(2.7) - (2.8)]. They are:
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or in a Lagrangian form,

d u c dt( ) /+ =2 0, along dx dt u c/ = +    ,        (2.11)

d u c dt( ) /− =2 0, along dx dt u c/ = −    ,        (2.12)

and from (2.6), we obtain:

dv dt/ = 0, along dx dt u/ = .         (2.13)

Inspection of (2.11) - (2.12) reveals that the quantity u ± 2c is conserved along dx dt u c/ = ± ,
or they mean that “message” u ± 2c is propagated through the fluid with speed ±c as well as
carried with speed u (Yih 1979). On the other hand, v is conserved and carried by speed u
alone.

Let us define the solutions obtained from (2.11) - (2.12) as p u c1 2= +* * , p u c2 2= −* * ,
and from (2.13) as v *, where c * = (gh *) 1/2. Then, u * and h * (before including the effect of
rotation) can be determined as follows (Yih 1979; Erbes 1993):
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Then, apply u * and v * in equations (2.7) - (2.8), we obtain the analytic solution:

ˆ *cos( ) *sin( )u u f t v f t= +  ∆ ∆    ,         (2.16)

and

ˆ *cos( ) *sin( )v v f t u f t= −  ∆ ∆    .         (2.17)

According to Sun et al. (1996) and Sun and Yeh (1997), the procedure to solve (2.11) - (2.13)
includes:

(a) Constructing the Lagrangian network induced by the motion of the fluid from the Eulerian
network and finding the intersections of the networks by a general interpolation from the
irregularly distributed Lagrangian grid to the regularly distributed Eulerian grid;

(b) Applying the spatial filter to remove the unwanted short waves and the values beyond the
constraints.
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2.2 Conservation of Mass

This section follows the procedures discussed in SS closely. Suppose the height at time t n

is h j
n , then the summation of h j

n  over the entire domain of jm grids is:

H h xn
j
n

j
jm

= ∑ δ    ,         (2.18)

where H n is the total mass at nth-time step, and δx j  is the space interval at j th grid and can be a
variable. The summation of h * in (2.15) is:

H h xj j
jm

* *= ∑ δ    ,         (2.19)

where the referenced values hmax and hmin are the extreme values of h j
n  and can be functions of

time and space also, as discussed in SS, we propose a mass correction function, δ h j , at the j th

grid, given by the polynomial:
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1 2 1 2 1 2+ + + +− is the net mass flux between t n t= δ  and t n t= +( )1 δ ,

which is ignored in this paper. Equation (2.21) guarantees the conservation of mass. Equation
(2.22) implies a minimal modification of the results obtained by the original Semi-Lagrangian
scheme. Equation (2.20) is one of the simplest equations with two undetermined parameters
required to satisfy both (2.21) and (2.22). It is noted that (2.20) approaches zero when h j

*

approaches hmax or hmin to ensure no overshooting of the results, which cannot be achieved by a
lower-order polynomial. From (2.21) and (2.22), we can obtain:
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and
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Hence, after calculating b from (2.24), and a from (2.23), we obtain from δ h j  (2.20). Thus, the
height of the j-th grid at time tn+1 is:
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Details are discussed in SS. SS obtained almost identical results when the correction function
consists of two sine modes:

δ α α   h a h h b h hj j j= − + −sin[ ( )] sin[ ( )]* *
max max2    ,         (2.29)

where α π= −/( )h hmax min , a and b are constants to be determined. Hence, only (2.20) is used
in this paper.
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2.3 Conservation of Total Energy

If we multiply (2.1) by gh, (2.2) by u and (2.3) by v, we obtain:
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If we define h h hb= + ', where hb is the basic height and h'  is the perturbation, and integrate
(2.30) over the entire domain between n t∆  and ( )n t+1 ∆ , we obtain:
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For a closed domain, or domain with a periodic boundary or far away boundaries, we obtain:
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The total energy at the nth time step, E K Pn n n= + , should be conserved and equal to its initial

value E0.
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After solving û j , v̂ j  from (2.16) - (2.17) and h j
n +1 from (2.27), we will apply the variation

formulation so that the total energy can be conserved with a minimum modification to those
obtained by (2.16) and (2.17). If we define:
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the perturbation of δκ ˆ j for a close or periodic system should satisfy the following constraint:
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Here δκ ˆ j  is similar to δ  h j  in (2.20). We can follow the variation formulation (2.20 - 2.22) to
calculate δκ ˆ j  and the kinetic energy:
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Then, we assume that the change of kinetic energy does not affect the wind direction, that is:
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and

v vj
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j j
+ = +1 1ˆ ( )δ    .       (2.35b)

From (3.34) - (2.35), we can solve δ j and consequently ( , )u vj
n

j
n+ +1 1 . The formulation of (2.35a, b)

also applies to the irrotational fluid (f = 0 and v = 0).
The variation technique discussed here can be easily applied to multi-dimensional problems,

as shown in SS, which conserves the total mass in two-dimensional flow.

3. NUMERICAL MODEL

The model based on A-grids consists of jm grids with a uniform space interval δx , which
is integrated for N-time steps. The basic height hb = 200 m. The initial perturbed height h'  is
given by:

h h x x Aj a j c
' ' exp ( ) /( )= − −[ ]

 λ
2

   ,           (3.1)



Wen-Yih Sun 785

where ha
'  is the amplitude of height perturbation, xj and xc are the location at j th-grid and the central

point, respectively; λ = =−( ) / . .ghb 1 0 447 24  km, is the radius of deformation if f = 10-4 s -1 in
a rotational fluid and g = 10 m s -2; where A is a parameter to control the length scale Lx of the
initial disturbance, Lx A= λ . We also calculate the error of the total mass (Em) and error of the
total energy (Ee) at the N th time step (last time step) as follows:

Em H H H h x h x h xN
j
N

im
j j

o

im
j j

o

im
j= − = −



∑ ∑ ∑( ) / /0 0

   δ δ δ    ,           (3.2)

Ee K P E EN N= + −( ) /0 0   .           (3.3)

Table 1 provides the parameters used in this study. The model is integrated with double precision.

4. NUMERICAL RESULTS IN AN IRROTATIONAL SYSTEM

In addition to pure gravity waves (i.e., f = 0), the results will show the numerical simula-
tions of geostrophic adjustment from the initial shortwave (A < 1) and longwave (A > 1) dis-
turbances of either velocity or mass field.

4.1 Case 4A

The system starts from rest (u = v = 0 everywhere) and an initial perturbation h'  given by
(3.1) with ha

'  = 0.1 m, hb = 200 m, A = 0.2, δ t  = 320 s, δx  = 3.125 km, jm = 1601, and f = 0, as
indicated by curve A in Fig. 1a and Case 4A-a in Table 1. As time increases, the perturbation
propagates as surface gravity waves, as shown by B, C, and D at t = 1.07 × 104, 2.13 × 104,
and 3.2 × 104 s, respectively. Because the perturbation is very small, the simulation is almost
identical to the analytic solution. The waves propagate with a phase of 44.72 m s -1 (= gh ).
The maximum Courant number CN, which is define as CN = (max ) /   u gh t x+ δ δ , = 4.58
with max .  u ≈ 0 012 m s -1. The total kinetic energy K is identical to the total potential energy
P, as shown in Fig. 1b. This is called the principle of equipartition of energy and is valid in
conservative dynamical systems undergoing small oscillations that are unaffected by plan-
etary rotation (Kundu 1990). The error in mass field is very small in our simulations, as shown
in Table 1.

Without applying the variation principle, the error of mass, Em = 0.5696 × 10 -11 and error
of the total energy, Ee = -.2791 × 10-6 are very small for Case 4A-a shown in Table 1, because
the scheme is very accurate for advection equations (Sun et al. 1996; Sun and Yeh 1997; Sun
and Sun 2004; Shieh et al. 2006).

Case 4A-b has the same initial perturbation as Case 4A-a, except for a coarse resolution
δx  = 12.5 km and jm = 401. The results of Case 4A-b are very close to Case 4A-a except for the
Courant number = 1.145, and slightly larger errors, Em = -0.90 × 10 -11 and Ee = -0.15 × 10 -3, as
shown in Table 1.
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Fig. 1. Simulated: (a) h at t = 0, 1.07 × 104, 2.13 × 104, and 3.2 × 104 s, and (b)
time-sequence of E/E 0, K/ E 0, and P/E 0 for Case 4A-a with hb = 200 m,
ha

'  = 0.1 m, and A = 0.2.
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4.2 Case 4B

Case 4B-a is the same as Case 4A-a except ha
'  = 20 m, as shown in Table 1 and Fig. 2.

Because the height is always symmetric and velocity is asymmetric with respect to the central
point, xc in our simulations, hereafter, we will show the results for x xc≥ = 0 only. The Courant
number = 4.915 because of a stronger velocity ( max .  u ≈ 2 2 m s -1) generated by a larger
surface gradient. The phase speed is about 47 m s -1, which is carried by u + c according to (2.9).
The solutions depart from the linear solution as the tilt of both height field and velocity field
increases with time. Similar results were obtained by Erbes (1993). Eventually, the wave col-
lapses when the slope approaches infinity (i.e.,   ∂ ∂h x/ → ∞), which is similar to collapse of
the Burger equation discussed in Sun et al. (1996). The error in total mass is still very small,
although it is larger than Cases of 4A. The error in total energy is comparable between 4A-a
and 4B-a. It is also noted that the ratio of P/E 0 in 4 B-a is slightly less than 0.5.

The solutions of Case 4B-b with coarse resolution δx  = 12.5 km and jm = 401 are also
included in Table 1. The error in mass is still negligible, Em = -.13 × 10-5 but the error in the
total energy, Ee = -.33 × 10-2, which is much larger than the fine resolution simulation of Case
4B-a. On the other hand, Case 4B-c in table 1 shows that both mass and total energy can be
conserved when the variation principle is applied. It is also noted that the difference in either
height or velocity fields is very small for most points between Cases 4B-b and 4B-c.

Fig. 2. Simulated: (a) h, (b) u at t = 0, 1.067 × 104, 2.133 × 104 and 3.2 × 104 s,
and (c) time-sequence of E/E 0, K/ E 0, and P/E 0  for Case 4B-a with hb =
200 m, ha

'  = 20 m, and A = 0.2.
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Fig. 2. (Continued)
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5. RESULTS WITH THE CORIOLIS FORCE

The propagation of waves becomes more complicated in a rotating system due to the
existence of the Coriolis force (Rossby 1938; Gill 1982). The dispersion relation in linearized
shallow water equations without mean flow becomes:

σ 2 2 2 2= +f c k    ,           (5.1)

where σ  is frequency, f = 1.0 -4 s -1 is the Coriolis parameter, and k is the wave number. The
phase speed of the dispersive wave is:

c
f

k
cp = = ± +σ

κ

2

2
2    .           (5.2)

Gravity (or buoyancy) effect is more important than the Coriolis force for short wave (ck >> f ).
On the other hand, the Coriolis force becomes dominant for a long wave (ck << f).

5.1 Case 5A

The results for case 5A-a with f = 1.0 -4 s -1, ha
'  = 20 m, A = 0.2, δ t  = 320 s, δx  = 3.125 km,

and jm = 1601 but without conservations of mass and energy are shown in Table 1 and Fig. 3,
where only half of the domain ( x xc≥ = 0) will be presented because h is symmetric; while u
and v are asymmetric with respect to xc. Figures 3a - c show the simulated h, u, and v at t = 0,
1.333 × 104, 2.667 × 104, and 4 × 104 s, which are indicated by A, B, C, and D, respectively.
Figure 3d reveals the time sequences of the total energy, potential energy, and kinetic energy.
At the beginning, the unbalanced pressure gradient force in x < λ  generates the x-component
wind and the fast propagating gravity waves, the amplitude of the waves is smaller than that in
Case 4B, because part of pressure gradient is counterbalanced by the y-component velocity, as
we can see at x = 1 × 102 km, the Coriolis force quickly turns a westerly wind to a northerly
wind. Overshooting occurs in x < λ , thus, h'  at x = 0 decreases from 20 to 1.8 m within 13000 s,
then increases to 3.5 m at t = 40000 s. The leading wave propagates away with a phase speed
of 47.5 m s -1, which is similar to Case 4B but 0.5 m s -1 faster here due to the effect of rotation.
The amplitude also gradually decreases with time.

The results reveal that for x < 100 km, the y-component momentum reaches steady state
within 20000 s while the height fields still changes with time because Lx is smaller than the
radius of deformation λ  as shown in Figs. 3a - c.

The time sequence of energy (Fig. 3d) reveals that half of the potential energy quickly
converts to the kinetic energy within 3000 s. Then the energy conversion between potential
energy and kinetic energy becomes much slower due to the inertia-gravity wave oscillation of
the large scale waves shown in Figs. 3a - c. The amplitude of oscillation decreases slowly with
time as the major portion of the system gradually approaches geostrophic balance.

When a coarse resolution, δx  = 12.5 km, is used, the simulated h at t = 0, 1.33 × 104 ,
2.66 × 104, and 4 × 104 s and the time evolution of energy are shown in Figs. 4a - b, which
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Fig. 3. Simulated: (a) h, (b) u, and (c) v at t = 0, 1.333 × 104, 2.666 × 104, and
4  × 104 s; (d) time-sequence of E/E 0, K/E 0, and P/E 0 for Case 5A-a with
hb = 200 m, ha

'  = 20 m, A = 0.2 and δx  = 3.125 km.
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Fig. 3. (Continued)
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Fig. 4. Simulated: (a) h at t = 0, 1.333 × 104, 2.666 × 104, and 4 × 104 s, and (b)
time-sequence of E/E 0, K/ E 0, and P/E 0 for Case 5A-b with hb = 200 m,
ha

'  = 20 m, A = 0.2, and δx  = 12.5 km.
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show a sharp peak in height field and 2.5% error in total energy at t = 40000 s as shown in Case
5A-b in Table 1. On the other hand, mass and total energy can be conserved when the variation
principle is applied, as shown Case 5A-c and 5A-d in Table 1.

5.2 Case 5B

First, we introduce an initial perturbation h'  as in Case 5A-a, then, a geostrophic wind
balance is applied to obtain the y-component wind, which is shown as curve A in Fig. 5a for
the right hand side of the domain ( x xc≥ = 0). After introducing y-component wind, we reset to
h'  = 0 initially, as curve A in Fig. 5b. Hence, there is a y-component wind but no height pertur-
bation initially. Furthermore, conservation of mass and total energy is also applied in Case 5B-a.
The results are shown in Table 1 and Figs. 5a - d, in which we can see that the y-component
wind does not change much with time within x < 200 km. On the other hand, h'  increases
rapidly between t = 0 and t = 1.33 × 104 s (Fig. 5b). The waves generated by an initial unbal-
anced force propagate away as inertia-gravity waves (Figs. 5b - c). Because of a little adjust-
ment in the momentum field, about 95% of the total energy remains as kinetic energy, and

Fig. 5. Simulated: (a) v, (b) h, and (c) u at t = 0, 1.333 × 104, 2.666 × 104, and
4  × 104 s, and (d) time-sequence of E/E 0, K/ E 0, and P/E 0  for Case 5B-a
with hb = 200 m, ha

'  = 20 m, A = 0.2, and δx  = 3.125 km. (e) Same as Fig.
5d except without controlling total mass or energy (Case 5B-b).



Wen-Yih Sun 795

Fig. 5. (Continued)
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Fig. 5. (Continued)
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only 5% of the initial kinetic energy is converted to potential energy (Fig. 5d). Without applying
the variation principle to control the total mass and energy, we obtain 3% error in total energy,
as shown in Fig. 5e and Case 5B-b in Table 1, although the difference in results between 5B-a
and 5B-b are small in both velocity and height fields. The error in total mass is also small as
shown in Table 1.

From Cases 5A-B, we can see that the mass field adjusts to the momentum field for an
initial short wave perturbation (A << 1) according to geostrophic adjustment (Gill 1982).

5.3 Case 5C

The initial condition is the same as Case 5A, except A = 3.6 and δx  = 12.5 km and δ t  =
1600 s (CN = 6.02). The simulated heights for Case 5C-a (without controlling for mass or
energy) at t = 0, 1.333 × 104, 2.667 × 104, and 4 × 104 s are shown in Fig. 6a, and the time
sequence of velocity vector (u, v) at x = 500, 1300, and 3825 km in Fig. 6b . Results show that
the velocity adjusts to the mass field while around 90% of energy retains as potential energy,

Fig. 6. Simulated: (a) h at t = 0, 5.33 × 104, 1.07 × 105, and 1.6 × 105 s, (b) time-
sequence of velocity (u, v) at 500 (X1), 1300 (X2), and 3825 (X3) km and
(c) time-sequence of energy E/E 0, K/ E 0, and P/E 0  for Case 5C-a with
hb = 200 m, ha

'  = 20 m, A = 3.2 and δx  = 12.5 km.
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Fig. 6. (Continued)
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as shown in the time sequence of energy in Fig. 6c. Inertia-gravity oscillations exist in all
fields with a period of about 57500 s with a small oscillation in mass (Fig. 6a) but a much
larger oscillation in velocity field (Fig. 6b), although the waves are rather smooth compared
with the disturbances generated by smaller scale perturbations in Cases 5A and 5B. The results
remain about the same with δ t  = 2666.7 s and CN = 10.05 (referred as Case 5C-b in Table 1).
It is also noted that the errors in mass and total energy remain very small even without applying
the variation principle.

5.4 Case 5D

The initial condition of Case 5D-a is the same as Case 5B-a, except A = 3.6 here. Although
about 75% of the energy remains as kinetic energy (Fig. 7c), the oscillation of both potential
and kinetic energies is much larger than for Case 5C-a. This indicates that it is slower to
approach a geostrophic balance with an unbalanced large-scale momentum field as initial
condition. Table 1 also shows that the errors for Case 5D-a are quite small even without control-
ling for mass or energy. The errors remain very small with a larger time interval δ t  = 2666.7 s as
shown in Case 5D-b in Table 1.

Fig. 7. same as Fig. 6 except for Case 5D-a.
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Fig. 7. (Continued)
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This paper reveals that we can apply the semi-Lagrangian scheme presented by Sun et al.
(1996), Sun and Yeh (1997) to obtain accurate, positive-definite solutions from one-dimen-
sional shallow water equations with or without the Coriolis force. According to SS, we can
also add the variation formulations to guarantee the conservation of mass and total energy of
the solutions.

Although in the 1-D case only left or right characteristic directions (i.e., ±x directions)
exist, in the multi-dimensional cases there are an infinite number of characteristic directions
that could be used for characteristic wave tracking, as discussed in Hirsch (1988, 1990) and
Wang and Yeh (2005). Hence, the characteristic equations of the semi-Lagrangian system in
2-D or 3-D are quite complicated. However, the semi-Lagrangian method is much more accurate
than the finite difference method when they are applied to simulate flow with a sharp gradient.
After solving u, v, and h, we can easily apply the variation principle to achieve the conservation
of mass and total energy in a 2-D or 3-D flow. Simulations for two-dimensional shallow water
equations will be presented in future papers.

6. SUMMARY

A forward-in-time semi-Lagrangian scheme developed by Sun et al. (1996) and Sun and
Yeh (1997) has been applied to one-dimensional shallow water equations in both rotational
and irrotational systems. After obtaining the numerical results, we employ the variation prin-
ciple (Sun and Sun 2004) to find the minimum corrections needed to adjust both height and
total energy so that they are preserved. Because the minimum correction based on variation
principle is applied, diffusion or dispersion introduced here is rather localized and is smaller
than that applied by Bermejo and Conde (2002), as discussed in SS. The scheme produces
accurate, positive-definite solutions while conserving both mass and total energy. The varia-
tion principles can significantly reduce the error in the total energy for coarse-resolution models;
however, the improvement is less significant in the mass field because the original schemes
produce quite accurate mass even without any adjustment. It is noted that most people are
concerned with the conservation of mass, because total energy decays in a viscous flow. Whilst,
an accurate calculation of the total energy should be important, it is more difficult than the
mass field.

The simulations show that (non-dispersive) gravity waves are generated by an initial per-
turbation in an irrotational system. On the other hand, the flow in a rotational system goes
through geostrophic adjustment; the waves generated by unbalanced forcing propagate away
as inertia-gravity waves. Currently we are working on two-dimensional flows to study the
interactions of vortices over topography and the problems discussed by Wang and Yeh (2005)
based on the characteristic-based semi-Lagrangian method presented here. The characteristic
equations and semi-Lagrangian scheme for multi-dimensional flows are quite complicated
and will be presented in future papers.
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