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ABSTRACT

The distribution characteristics of airborne particulate matter (PM)
were investigated in terms of the relationships between different constitu-
ents (elements) and between different particle ranges (fine vs. coarse) from
the city of Chongju, South Korea for approximately a year (October 1995
to August 1996). For the purpose of our study, the elemental compositions
of both fine (FP: PM, ;) and coarse particle (CP: PM, ,,) fractions were
determined by proton induced x-ray emission (PIXE). Based on our study,
the annual mean concentrations of PM in FP and CP fractions were found
to be 41.4 and 29.6 um’s, respectively. The major elemental components of
CP were found to be in the order of Si, Ca, Al, Fe, K, and Cl, while those of
FP were S, Cl, Si, K, and Fe. If the temporal patterns of PM were compared
across seasons, the most prominent pattern was found to be a relative deple-
tion in coarse-mode concentrations during the summer’s possibly due to
efficient wet scavenging. On the other hand, the summing term for all ele-
ments showed consistently a summertime depletion pattern for all particle
fractions. Our analysis of the relative relationships between PM and ele-
ments confirmed that the contribution of elemental components to PM mass
concentrations can differ significantly across different particle size ranges
and seasons.
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1. INTRODUCTION

By operational definition, particles less than 2.5 um in diameter belong to the fine par-
ticle (FP) fraction, whereas those greater than 2.5 um are of the coarse particle (CP) fraction
(e.g., Seinfeld 1986). Like physical differences in particle size, sources of each particle frac-
tion have been distinguished from each other in various respects. The formation of fine par-
ticles occurs primarily as the result of various man-made activities (including the combustion
of fossil fuels or secondary chemical reactions in the atmosphere). In fact, a number of previ-
ous studies have demonstrated that toxic metallic species (such as arsenic, selenium, cadmium,
and zinc) are more concentrated in the fine, rather than coarse, particle fraction (e.g., Kim et al.
2003). By contrast, coarse particles are produced primarily by such processes as wind erosion,
primary emissions, sea spray, and mechanical processes (Pakkanen et al. 2001a, b). Hence, the
coarse particle mode of PM is known to consist mainly of crustal components such as iron,
calcium, and silicon (Mishra et al. 2004).

A better knowledge of the size distributions of the ambient aerosols can provide valuable
clues in predicting the pathways leading to their formation and transformation in the atmo-
sphere (Gramotnev and Ristovski 2004; Hazi et al. 2003). Moreover, because of the great
differences in origin and associated physicochemical properties between different particle size
ranges, diverse statistical treatment is also allowable for the apportionment of sources (e.g.,
Polisar et al. 2001) and/or for the evaluation of health risks (e.g., Lall et al. 2004). A prerequi-
site for the application of such sophisticated tools is detailed information concerning the chemical
composition of particles. This means the acquisition of a quantitative data set is fundamental
to the establishment of strategies to control urban aerosol pollution problems.

Although numerous studies have been performed to investigate the atmospheric chemis-
try of PM, information concerning the behavior and fate of PM is still insufficient in certain
respects; for example, changes in chemical composition across different particle size ranges
(e.g., Yao et al. 2003). In this study, in order to investigate the factors and processes control-
ling the distribution of airborne PM, measurements were undertaken to simultaneously ana-
lyze PM samples in both fine and coarse mode in the city of Chongju, a moderately urbanized
area in Korea. Through a thorough investigation of both absolute and relative relationships
between different elements, we attempted to elucidate the main mechanisms that contribute to
the formation of PM in Chongju, Korea. In addition, based on these measurement data, we
discuss the fundamental factors that underlie the temporal distribution of airborne PM.

2. METHODS

In this study, both fine and coarse particle samples were collected and analyzed simulta-
neously for the period, October 1995 through August 1996 from a total of 58 individual
experiments. The sampling site location was on the roof of the Chongju National College of
Science and Technology building (15 m above ground level), which is located in a commer-
cial-residential complex in central Chongju City. There are no large buildings around the sam-
pling site to disrupt wind flow patterns. The site is approximately 3.8 km from the nearest
highway, Kyung Bu line, and 56 km away from the west coastal area. The city represents a
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moderately urbanized area (154 kmz), about 115 km from Seoul, the capital of Korea (Fig. 1).
It lies within a topographic basin surrounded by mountains to the east and south and is open to
the west and north. The prevailing wind at the study site is either southwesterly or northwesterly.
The climate of Chongju is characterized by large variations in temperature, from a monthly
mean of -1.3°C in January to 26°C in August. Its population (570,000) is growing rapidly, and
at present the number of vehicles on the road (145,000) is approximately five times that of
1990. It has been shown that the major emission sources of the city are industry, domestic
heating, and vehicles with the main fuel sources in industry and heating being heavy and light
oils (Chongju 1996). Major industries include electronics, metal assemblies, textiles, food,
etc. These industrial sources are approximately 1.5 km from the monitoring site located north-
west of downtown Chongju. The city experiences air pollution problems due to the combined
effects of the topography, meteorological conditions, increasing fuel usage by industry, ve-
hicles and continuous growth in population.
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Fig. 1. A geographical location of the study site, Chongju in Korea.
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The Korean Peninsula during the spring months comes under the influence of Asian dust
storms, which contain high concentrations of earthen components originating from regions in
northern China and/or the Mongolia plateau. Chung and Yoon (1996) found that the chief
layer of a dust cloud moved to the east and southeast by a steering airflow at 850 - 500 hPa;
and they estimated atmospheric loadings for this cloud to be 1.5 Mton.

The collection of PM samples was performed routinely from 8 a.m. in the morning at 24 h
intervals using a dichotomous sampler (Model SA241, Andersen Co.). Instead of covering
every month throughout the year, we conducted continuous sampling over intervals of 3 to 4
days for two representative months in each season. The particles entering the dichotomous
sampler with an aerodynamic diameter below 10 (PM,,) were divided into two size fractions
by means of a virtual impactor with a 2.5 cutoff point. These two particle fractions are re-
ferred to as fine (FP: d, <2.5 um) and coarse particle fractions (CP: 2.5 um < d, <10 um),
respectively. The sampler was operated at a total flow rate of 16.7 liters min™' (the flow rates
of coarse and fine fractions were 1.67 and 15 Imin™", respectively). Particles were collected on
37 mm Teflon membrane filters (1 um pore size) and supported by rubber o-rings (Gelman
Sciences). The PM, ; mass was determined gravimetrically using a microbalance (Cahn
C-35), which is sensitive to changes as small as 0.1 ug. All Teflon filters were pre- and post-
weighed (below 35°C and 50% relative humidity), and the net weights were corrected with
three unsampled control filters. All Teflon filters were conditioned before and after sampling
in a clean chamber (Nikko auto dry desiccator) for at least 24 hrs.

Elemental composition was analyzed using a proton induced x-ray emission (PIXE) by
the Element Analysis Corporation (Lexington, K'Y, USA); this instrument has the capacity to
analyze up to 72 elements (sodium to uranium). Three blank filters were analyzed and used to
correct the mass of each element contained in the sample filters. Information regarding the
detection limit (DL) values for the series of elements measured is shown in Table 1, which
includes sodium (Na), magnesium (Mg), aluminum (Al), silicon (Si), sulfur (S), chlorine (CI),
potassium (K), calcium (Ca), titanium (Ti), manganese (Mn), iron (Fe), copper (Cu), zinc
(Zn), and lead (Pb). These values were calculated on the basis of analyzer sensitivity using 24-
hr samples collected separately at coarse (1.67 lmin"l) and fine-mode flow rates (15 lmin_l).
The accuracy of the measurements of these species was typically within 10% of the standard
value. The precision was typically computed between 1 to 10% on the basis of replicate analy-
sis of air samples.

3. RESULTS AND DISCUSSIONS

3.1 The Overall Pattern of PM Experimental Results

In Table 2, a statistical summary of our compositional analyses of both FP (d, <2.5 um)
and CP mode (2.5 um < d, < 10 um) samples is presented using some major parameters
derived from our measurement data. (Data for the PM,, fraction represent the sum of both FP
and CP fractions, as they were collected separately by the dichotomous sampler.) To make a
meaningful comparison of the relative roles for the two particle fractions between the different
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elemental components, a comparison of the results was made using the following terms: (1)
two absolute values: PM (ug m'3) and X(element) (ng m'3); and (2) two relative values
derived as concentration ratios: X (element)/PM (%) and F/C ratio (unitless). Here, the sum-
ming term for element [ X(element)] was derived by summing up the individual concentra-
tions of all elements investigated in this study (Fig. 2).

Table 1. Detection limit (DL) values of elements for the analysis of the fine and
coarse particles (ng m) in this study.

Species PM; 5 PM;s.10

Na 25.5 203
Mg 14.1 113
Al 11.7 9.30
Si 11.0 8.70

S 10.3 8.30
cl 103 8.20
K 9.60 7.60
Ca 14.7 11.7
Ti 6.90 5.50
\% 5.10 4.10
Cr 2.60 2.00
Mn 2.10 1.70
Fe 3.40 2.70
Ni 4.40 3.60
Cu 2.40 1.90
Zn 2.10 1.70
Br 4.50 3.60

Pb 10.8 8.70
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Fig. 2. Comparison of the mean concentrations of elemental components be-
tween fine (PM, ) and coarse (PM, ; ,,) particle fractions.

The results shown in Table 2 indicate several interesting aspects of PM geochemistry. First of
all, the mean PM concentrations are larger in FP (41.4 ug m'3) than in CP (29.5 ug m'S). This is
compatible with results from many previous studies conducted in diverse urban areas in that
PM, 5 mass can account for 27 ~ 80 % of PM,, mass (Zhuang et al. 1999, Alonso et al. 1997,
Chan et al. 1997, Harrison et al. 1997, Chow et al. 1996). On the other hand, the pattern for
elemental mean concentration data is completely reversed with the values for FP and CP frac-
tions at 2.76 and 7.54 ug m_3, respectively. Our results thus indicate the absolute dominance
of elemental components in the CP mode. To analyze the diverse features of PM chemistry, all
the different individual constituents used for the derivation of the summation term in Table 2
are analyzed independently in Table 3. For the computation of each statistical term shown in
the tables, we excluded concentration values below detection limits (BDL) to place limitations
on uncertainties in such lower-bound concentration ranges. However, to describe the occur-
rence patterns of such lower-bound concentration values, the frequency of all BDL occur-
rences are given additionally in tables with respect to all and seasonally divided data sets. Per
our classification of data in terms of detectibility, the acquisition patterns of valid data sets
appear to contrast quite sharply between various data groups. For example in the case of many
elements (e.g., Na, Mg, Cl, Ti, Cr, Mn, Ni, and Cu), the occurrences of BDL readings occurred
primarily in the FP fraction. By contrast, the opposing patterns were also evident for a few
elements (including V, Ni, and Pb), such that their BDLs were found predominantly in the CP,
rather than FP, fraction. Moreover, if these elemental data are compared on a seasonal basis,
BDL values were observed most commonly during summer, probably due to enhanced wash-
out of these constituents with the aid of heavy or frequent precipitation. Specially, the major
unidentified elements (manganese and titanium) that are wet scavenged in the summer (Table 3).
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3.2 The Distribution Characteristics of Elemental Components in the Study Area

In order to examine both absolute and relative contributions of elemental components
contributing to PM composition, their magnitude was compared between the two particle
fractions. According to our comparison based on the summarized results in Table 2, both
similarities and dissimilarities coexist in their distribution patterns across particle sizes. In
general, the elemental concentrations in the CP fraction appear to be significantly higher than
their FP counterpart. In the CP fraction, their mean concentrations, expressed in ng m”, were
found to decrease in the following order: Si (2596), Ca (1072), Al (1069), Fe (949), K (496),
Cl1 (367), S (324), Na (265), Mg (231), Ti (98), Pb (36), Zn (28), Mn (21), V (13), Cu (8.3), Cr
(7.0), and Ni (6.8). On the other hand, if the results are compared for the FP fraction, the
relative patterns for most elements are quite compatible with a few exceptions such as: S
(1136), Cl1 (459), Si (360), K (214), Al (183), Fe (146), Ca (99), Na (95), Mg (71), Pb (63), Zn
(85), Ti (21), V (15), Cu, Br (13), Mn (11), Ni (8.7), and Cr (5.1). It is also worth noting that
the changes in their concentration levels, in general, contrast starkly between major crustal
and trace metal components. The former tends to exhibit a significant concentration drop from
the CP to the FP fraction (Si, Ca, Al, Fe, K, Na, Mg, and Mn), while the latter tends to gain
concentrations in the FP mode on many occasions (Pb, Zn, V, Cu, and Ni). If examined in
terms of correlation analysis, the elements with similar source types generally exhibit signifi-
cant correlations with each other. However, if changes in their relative ordering are concerned,
an element like S appears to undergo the most significant changes of all. In the FP mode, S
becomes the most dominant component of FP, as it alone can account for almost one half of
the total elemental mass in the FP fraction.

As elements like Na, Mg, Al, Si, K, Ca, Ti, Mn and Fe are known to be of crustal origin,
they tend to be notably abundant in the CP rather than FP fraction (Chan et al. 1999, Chen et al.
1997, Chow et al. 1996, Lyons et al. 1993, Seinfeld 1986). Iron and manganese, however, are
crustal elements that can also be emitted by industrial sources, in particular iron and steel
operations (Chow 1996, Huang et al. 1994). However, in our study area, there are no known
sources of iron and steel operations. Hence these elements are suspected to be of crustal origin.
As previously mentioned, elemental sulfur was found to be the predominant component of FP
elemental mass. The main sulfur sources in Chongju appear to come from the heavy and light
oils used in industry and heating. Road salt, sea salt spray, automobile emissions, and coal
combustion can act as sources of chlorine in the atmosphere (e.g., Spengler and Thurston
1983). However, there are also contrasting reports of Cl fractionation. For instance, Chow et
al. (1996) reported that substantial amounts of CI (and Na) were detected in the CP fraction at
the coastal site. The correlation coefficients of Cl and Na in the CP and FP fractions were 0.7
and 0.3, respectively, suggesting that these components in the FP fraction did not originate
from the same sources; Cl in the fine particles may have originated from anthropogenic sources.
Elemental K in aerosols can come from either crustal matter or smoke. Therefore, non-soil K,
rather than total K, has been usually used to indicate smoke emissions (Chan et al. 1999, Linda
et al. 1997, Chow 1996, Huang et al. 1994).

Generally reduced PM, ;/PM,, ratios for potassium are consistently found from many
sites such as those for Chongju, Los Angeles, Brisbane, and Helsinki (Table 4). Several metals
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including Pb, Zn, and Cu are found to be enriched in FP rather than CP mode. These metals are
generally known to be emitted from combustion processes (Chan 1999, Chow 1996, Huang et
al. 1994, Spengler and Thurston 1983). Lyons et al. (1993) also reported that particle size
distributions of metals like Cu and Zn can be dominated by particle size ranges of less than
1 um in diameter, indicating the possibly strong influence of anthropogenic sources. Pb has
been considered as the traditional marker element for gasoline-powered vehicles. However,
Pb does not appear to be an efficient marker in our study area or in S. Korea, as the use of
leaded gasoline has been phased out since 1993 (e.g., Mishra et al. 2004). The comparative
results summarized in Table 3 also indicate that those metals tend to be enriched in the FP
fraction in most study sites including Los Angeles, Brisbane, and Helsinki (Table 4).

3.3 Temporal variation of PM compositions between elements

In order to more precisely understand the PM distribution characteristics in the study area,
the concentrations of various elements measured in this study were further analyzed to assess
factors affecting PM compositional changes across different seasons. It is worth noting that
PM mass concentrations determined as both total (PM, ) and CP fraction (PM, 5 ,,) complied
well with general expectations, such as their relative depletions during the summer/fall period.
As coarser particles can be more effectively removed by wet scavenging during the rainy
summer season, they tend to exhibit more depletion during summer than their fine particle
counterparts. By contrast, no such signal is apparent in fine-mode PM distribution; its distribu-
tion may be affected by different factors such as the chemistry of ionic components that are
more abundant in the fine particle mode.

As seen in Fig. 3, the distribution patterns for the sum of elemental components contrast
slightly with those of PM size distribution; they are consistently depleted in the summertime,
regardless of particle size. However, if we compare the pattern after normalizing the elemental
concentration by PM mass concentration, the coarse fraction does not exhibit any more deple-
tion (Fig. 3, bottom). It is hence reasonable to suspect that summertime scavenging of elemen-
tal components in the coarse mode may proceed less efficiently than those of non-elemental
components. When this type of seasonal pattern is examined across different elements, pat-
terns do contrast among elements. Although most elemental components generally appear to
comply well with the patterns of PM or the sum of elements, a few elements seem to exhibit
their own unique patterns such as Na, Cu, and Pb.

4. CONCLUSIONS

In order to elucidate the relationship between size distribution and chemical characteris-
tics of airborne particles, we investigated elemental constituents of aerosols between two size
ranges across fine and coarse particle fractions in a moderately urbanized area in Korea. The
results of our investigation generally indicated that the size distribution characteristics of PM
can be accounted for by the complicated roles that exist between different particle fractions. It
was found that the mass concentration of the CP mode was affected highly effectively by
elemental components. If compared in terms of the summation of elements, the combined concen-
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Table 4. The mean ratios of PM, 5 to PM,, (PM,s/PM,,). Both mass and el-
emental concentrations of important species are compared with other

studies.
Chongju  Los Angeles® Brisbane” Helsinki
Species
(this study) U.S.A. Australia  Finland
Na 0.17 A - 0.36
Mg 0.15 0.19 - 0.16
Al 0.14 0.14 0.15 0.1
Si 0.12 0.09 0.11 -
S 0.78 - 0.76 -
Cl 0.52 - 0.16 -
K 0.3 0.23 0.42 0.3
Ca 0.08 0.10 0.11 0.13
Ti 0.07 0.09 0.15 -
Mn 0.27 0.50 0.50 0.28
Fe 0.13 0.18 0.20 0.16
Cu 0.58 - - 0.33
Zn 0.65 0.60 0.75 0.64
Pb 0.8 - 0.82 0.74
Mass 0.58 0.59 0.41 0.48

a) January 1995 to February 1996 in downtown Los Angeles, USA (Kim et al.
2000).

b) December 1993 to November 1995 in Brisbane, a subtropical coastal city
in Australia (Chan et al. 1999).

c) Aerosol samples of PM2.3 and PM2.3-15 collected from April 1996 to
June 1997 in Helsinki, Finland (Pakkanen et al. 2001b).

d) Not available.

tration of CP [ Z(element), = 7.5 ug m_S] exceeded its counterpart [ Z(element), = 2.8 ug m'3]_
The major elemental components of CP were found to be in the order of Si, Ca, Al, Fe, K, and
Cl, while those of FP were S, Cl, Si, K, and Fe.

According to our study, clear seasonal patterns were observed consistent for both the
different PM modes and different constituents. First of all, the CP mass data represented as
(PM, 5 ,,) showed rather strong seasonal variations, which can be described as enhancement
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Lee et al. 359

in the winter/spring seasons relative to summer/fall seasons. Here mass and abundant species
generally showed higher concentrations in the spring; this may reflect to some degree the
influence of soil dust from China as a result of Asian dust storms. On the other hand, the
results of the FP mass data were clearly distinguished from such patterns. The FP mode, in
fact, tended to show moderately enhanced concentration levels during the summer relative to
the spring or fall. If the mass ratio of PM, ;/PM,,, is evaluated, its values are also higher in
summer and than in the spring.

This detailed analysis of physical and chemical properties of airborne particles has been
helpful in providing valuable insights into their geochemistry in a moderately urbanized area.
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