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AB STRACT

The prop a ga tor of a lin ear model plays a cen tral role in em pir i cal nor mal mode and fi nite-time in sta bil ity prob lems. Its

es ti ma tion will af fect whether the lin ear sta bil ity char ac ter is tics of the cor re spond ing dy namic sys tem can be prop erly

ex tracted. In this study, we in tro duce two al ter na tive meth ods for es ti mat ing the lin ear prop a ga tor and fi nite-time growth rates

from data. The first is the gen er al ized sin gu lar value de com po si tion (GSVD) and the sec ond is the sin gu lar value

de com po si tion com bined with the co sine-sine de com po si tion (SVD-CSD). Both meth ods linearize the re la tion be tween the

pre dic tor and the predictand by de com pos ing them to have a com mon evo lu tion struc ture and then make the es ti ma tions. Thus,

the lin ear prop a ga tor and the as so ci ated sin gu lar vec tors can be si mul ta neously de rived. The GSVD clearly re veals the

con nec tion be tween the fi nite-time am pli tude growth rates and the sin gu lar val ues of the prop a ga tor. How ever, it can only be

ap plied in sit u a tions when given data have more state vari ables than ob ser va tions. Fur ther more, it gen er ally en coun ters an

over-fit ting prob lem when data are con tam i nated by noise. To fix these two draw backs, the GSVD is gen er al ized to the

SVD-CSD to in clude data fil ter ing ca pa bil ity. There fore, it has more flex i bil ity in deal ing with gen eral data sit u a tions. These

two meth ods as well as the Yule-Walker equa tion were ap plied to two syn thetic datasets and the Kaplan’s sea sur face

tem per a ture anom a lies (SSTA) to eval u ate their per for mance. The re sults show that, be cause of linearization and flexible

filtering capabilities, the propagator and its associated properties could be more accurately estimated with the SVD-CSD than

other methods.
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1. IN TRO DUC TION

Waves are com mon phe nom ena in the at mo sphere and

the ocean. The mech a nisms of the gen er a tion, evo lu tion, and 

pre dict abil ity of such phe nom ena are strongly de pend ent on

the sta bil ity char ac ter is tics of these waves. There fore, the

abil ity to cor rectly ex tract wave sta bil ity char ac ter is tics from 

ob served data is very cru cial to our un der stand ing of the

dynamics of the cor re spond ing sys tems. Cur rently, em -

pirical sta bil ity stud ies are mainly car ried out through lin ear

in verse mod el ing of the ob served spa tial-tem po ral data. In

other words, one fits an ob served dataset that has m vari ables 

of n + t tem po ral length to a dis crete form of the lin ear

advection equa tion,

Y (t  +  t)  =  AY (t) (1)

where Y (t) Î Âm ´ n is the first n tem po ral length of the m

vari ables (pre dic tor ma trix), Y (t  +  t) is the same vari ables

at t pe riod later (predictand ma trix), and A is the lin ear

prop a ga tor. The prin ci pal os cil la tion pat tern anal y sis (POP;

von Storch et al. 1995; von Storch and Zwiers 1998) ap -

plies an eigenvalue-eigenfunction anal y sis to the lin ear

prop a ga tor to ex tract the dom i nant nor mal mode os cil la -

tions and the as so ci ated sta bil ity char ac ter is tics of the cor -

re spond ing sys tem. How ever, nor mal mode in sta bil ity is

not the only in sta bil ity mech a nism that op er ates in a fluid

sys tem. The in ter ac tions among waves may also cause

amplitudes of some per tur ba tions to growth tem po rarily

even in a sys tem that is nor mal mode sta ble (Farrell and

Ioannou 1996a, b). Be cause most ob ser va tional data are
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nearly sta tion ary, it is hard to as so ci ate any nor mal mode

ex po nen tial growth be hav ior with them. There fore, the fi -

nite-time in sta bil ity is widely ac cepted to play an equal or

more im por tant role as the nor mal mode in sta bil ity in cy -

clone gen e sis, pre dict abil ity, and data as sim i la tion stud ies.

In such stud ies, the sin gu lar value de com po si tion (SVD;

Golub and Van Loan 1996) is ap plied to the lin ear pro -

pagator to ex tract the dom i nant sin gu lar vec tors and the

associated fi nite-time growth rates. Be cause the lin ear pro -

p a ga tor plays a cen tral role in em pir i cal nor mal mode and

fi nite-time in sta bil ity prob lems, how to es ti mate it from the

data will de ter mine whether the sta bil ity char ac ter is tics of

the cor re spond ing sys tem can be prop erly ex tracted.

Con ven tion ally, the lin ear prop a ga tor A is es ti mated

using the Yule-Walker equa tion (Brockwell and Davies

1991):

A  =  {Y (t  +  t) YT (t)} {Y (t) YT (t)}-1 (2)

where su per scripts T and -1 de note the ma trix trans pose

and ma trix in verse re spec tively. How ever, the pre dic tor

and the predictand are gen er ally not per fectly lin early cor -

re lated; i.e., their lag t autocorrelations are al ways less than 

1. Con se quently, the lin ear prop a ga tor so de rived gen er ally 

un der es ti mates the lin ear in sta bil ity of the cor re spond ing

dy namic sys tem. For ex am ple, it is well known that POP

anal y sis can yield only damped os cil la tion pat terns (von

Storch et al. 1995). This means that us ing the Yule-Walker

equa tion to es ti mate the prop a ga tor, the ob served vari abil -

ity can not be fully main tained and Eq. (1) be comes a sta ble

lin ear sys tem. Be cause of this, some kind of forc ing term

must be added to Eq. (1) to main tain the ob served va ri -

ability in the lin ear in verse model (Penland and Magorian

1993; Penland and Sardeshmukh 1995) and the Markov

model (Xue et al. 1994; Xue et al. 2000). There fore, it is de -

sir able to know whether an ini tial linearization of the orig i -

nal data, be fore the es ti ma tion of the lin ear prop a ga tor, can

al low the lin ear sta bil ity char ac ter is tics of the cor re spond -

ing sys tem to be more prop erly ex tracted. Fur ther more, al -

though it is well known that the sin gu lar val ues of a lin ear

prop a ga tor rep re sent the non-modal av er aged am pli fi ca -

tion or de cay ing rates (fi nite-time growth rates) of the cor -

re spond ing lin ear dy namic sys tem in t pe riod, the con nec -

tion be tween them is gen er ally es tab lished through some

pre de fined ma trix norms. Var i ous stud ies (Palmer et al.

1998; Kim and Mor gan 2002) have shown that dif fer ent

choices of norms will yield quite dif fer ent sin gu lar vec tors.

This seem ingly non-unique ness of sin gular vec tors has

added con sid er ably com plex ity to the dy namic in ter pre ta -

tion of the cor re spond ing sys tem. There fore, it is also de sir -

able to es tab lish a more di rect and clearer con nec tion be -

tween the sin gu lar val ues of a lin ear prop a ga tor and the fi -

nite-time growth rates.

In this study, we in tro duce two al ter na tive ap proaches,

which orig i nate from the field of ma trix com pu ta tion, to es ti -

mate the prop a ga tor, fi nite-time growth rates and the as -

sociated sin gu lar vec tors from the data. Rather than us ing

the autocovariance and the lag-t covariance ma tri ces of the

ob served data to es ti mate the prop a ga tor, these ap proaches

first linearize the re la tion be tween the pre dic tor and the

predictand by de com pos ing them to have the same com mon

evo lu tion ma trix, and then make the es ti ma tions. Fur ther -

more, these ap proaches es tab lish a di rect con nec tion be -

tween the sin gu lar val ues of a lin ear prop a ga tor and the

finite-time growth rates of the predictand sin gu lar vec tors.

The re main der of this pa per is or ga nized as fol lows. Sec tion

2 de scribes the meth od ol ogy and prop er ties of the gen er al -

ized sin gu lar value de com po si tion (GSVD; Golub and Van

Loan 1996). Sec tion 3 de scribes the meth od ol ogy and pro -

perties of the sin gu lar value de com po si tion (SVD) com -

bined with the co sine-sine de com po si tion (CSD; Golub and

Van Loan 1996). To com pare and eval u ate the rel a tive

advantages of dif fer ent ap proaches, the Yule-Walker equa -

tion, the GSVD and the SVD-CSD are ap plied to two syn -

thetic datasets and an ob served dataset to es ti mate the cor -

responding lin ear prop a ga tors and the as so ci ated prop er -

ties. Sec tion 4 shows the re sults for two syn thetic datasets

con sist ing of 10 nor mal mode os cil la tions plus two dif fer ent

lev els of noise. Sec tion 5 shows re sults for the monthly mean 

sea sur face tem per a ture anom a lies (SSTA, Kaplan et al.

1998). Sec tion 6 dis cusses and sum ma rizes this study.

2. THE GEN ER AL IZED SIN GU LAR VALUE
DE COM PO SI TION METHOD (GSVD)

In the ma trix com pu ta tion field, there is a well-known

the o rem called gen er al ized sin gu lar value de com po si tion

(GSVD; the o rem 8.74 in Golub and Van Loan 1996). It

states that, if F Î Âk ́  q, G Î Âp ́  q and k, p ³ q, then there ex -

ist two or thogo nal ma tri ces, U Î Âk ́  k and V Î Âp ́  p, and an

invertible ma trix, X Î Âq ´ q, such that:

UT FX  =  C  =  diag (c1, ×××, cq)     0  £  c1  £  c2  £  ×××  £  cq  £  1 (3)

VT GX  =  S  =  diag (s1, ×××, sq)     1  ³  s1  ³  s2  ³  ×××  ³  sq  ³  0 (4)

where CT C + ST S = Iq and Iq is a q ´ q iden tity ma trix.

There fore, a gen er al ized eigenvalue prob lem (i.e., Gx =

lFx), can be di rectly solved with out the need for form ing

GT G and FT F. Based on this the o rem, the pro posed GSVD

method for es ti mat ing the lin ear prop a ga tor and the as so ci -

ated prop er ties can be de scribed as fol lows. For the lin ear

model of Eq. (1), if m ³ n, the pre dic tor and the pre dictand

ma tri ces can be de com posed us ing the GSVD as:

Y (t)  =  UCX-1 (5)

Y (t  +  t)  =  VSX-1 (6)
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Be cause Y (t) and Y (t  +  t) have been re ar ranged to have

the same tem po ral evo lu tion struc ture, X-1 Î Ân ´ n, the

correlation co ef fi cient be tween the time se ries of each

corresponding col umn vec tor of U Î Âm ´ m and V Î Âm ´ m

beco mes unity. There fore, the use of GSVD linearizes the

re la tion be tween the pre dic tor and the predictand. The

sub sti tu tion of Eqs. (5) and (6) into Eq. (1) with some

ma trix manipulations then yields:

A  =  VSC-1UT  =  VSUT (7)

where

S  =  diag (s1, ×××, sn)  =  SC-1  =  diag (s c1 1 , ×××, s cn n) (8)

is a di ag o nal ma trix.

From Eqs. (5), (6), and (7), it is clear that the lin ear

propagator can be di rectly de rived from the GSVD de com -

po si tion of the pre dic tor and the predictand with out the need

to form Y(t) YT(t) and Y(t  +  t)YT(t) first. Fur ther more, it is

noted that the left and right sin gu lar vec tors de rived from the

SVD of a given ma trix are unique up to mul ti pli ca tion of a

col umn of the left sin gu lar vec tors by a unit phase fac tor and

si mul ta neous mul ti pli ca tion of the cor re spond ing col umn of

the right sin gu lar vec tors by the same unit phase fac tor if all

the sin gu lar val ues are non-de gen er ate and non-zero. As

Eq. (7) is also the SVD of A, there fore if the same con di tions

are met, the use of GSVD de com po si tion al lows the sin gu lar

val ues and the left and right sin gu lar vec tors of the prop a ga tor 

to be si mul ta neously de rived. Be cause all the sin gu lar val ues

de rived from ob served data are gen er ally dis tinct and non-

 zero, there fore the lin ear prop a ga tor and the as so ci ated sin -

gular vec tors de rived from the GSVD are also gen er ally

unique. The unique ness of the GSVD re sults can also be

readily checked by di rect cal cu la tion. For ex am ple, one can

ran domly gen er ate a lin ear prop a ga tor A, then use Eq. (1) and

an ar bi trary ini tial con di tion to gen er ate the cor re spond ing

Y(t) and Y(t  +  t). By ap ply ing the SVD to A and the GSVD

to Y(t) and Y(t  +  t), one can eas ily see that the GSVD de -

rived lin ear pro p a ga tor and sin gu lar val ues are the same as A

and its as so ci ated sin gu lar val ues, while the GSVD de rived

sin gu lar vec tors are also the same as those of A ex cept for

pos si ble sign re ver sal among some of the vec tors.

More over, we note in Eq. (8) that the i-th sin gu lar value

si is ex pressed in terms of the ra tio be tween si and ci, which

are the nor mal ized am pli tude mea sures of the i-th sin gu lar

vec tor of Y(t  +  t) and Y(t), re spec tively. There fore, the i-th

sin gu lar value of the prop a ga tor di rectly and clearly rep re -

sents the non-modal av er aged am pli tude am pli fi ca tion or

de cay rates of the cor re spond ing lin ear sys tem in t pe riod in

terms of the L2 norm of the state vec tor, Y(t). Be cause dif -

fer ent vari ables gen er ally have dif fer ent spec tral char ac ter -

is tics, it is likely that us ing dif fer ent state vari able to de scribe 

the same lin ear sys tem will yield some what dif fer ent lin ear

prop a ga tors and as so ci ated sin gu lar vec tors. This fea ture

may par tially ex plain why dif fer ent choices of norms in pre -

vi ous stud ies yielded quite dif fer ent sin gu lar vec tors. An -

other sig nif i cant fea ture of the method is the ex act equal ity

be tween Y(t + t) and AY(t); i.e., Y(t + t) = VSX-1 =

VSC-1UTUCX-1  =  AY(t). This im plies that the vari abil ity

of Y(t  +  t) can be com pletely re pro duced by AY(t). Hence,

when us ing the GSVD to es ti mate the lin ear prop a ga tor,

there is no need to add any un known forc ing term to Eq. (1)

to main tain the ob served vari abil ity.

3. THE SIN GU LAR VALUE DE COM PO SI TION
COM BINED WITH THE CO SINE-SINE
DE COM PO SI TION METHOD (SVD-CSD)

The above der i va tion shows that, when data have more

grid points than ob ser va tions, the GSVD pro vides a di rect

way to es ti mate the lin ear prop a ga tor and its as so ci ated sin -

gu lar vec tors. How ever, the GSVD the o rem re quires that k,

p ³ q, there fore it can not be ap plied to data with fewer vari -

ables than ob ser va tions (i.e., m < n). More im por tantly, all

data are more or less con tam i nated by noise. There fore,

when m ³ n, both the GSVD and the Yule-Walker equa tion

are very likely to over-fit the lin ear re la tion be tween the

predictor and the predictand and lead to wrong es ti ma tions. 

To pre vent such an over-fit ting prob lem, it is a com mon

prac tice to use only the dom i nant prin ci pal com po nents

(PCs) from the prin ci pal com po nent anal y sis (PCA; Preisen -

dorfer and Mobley 1988) of the orig i nal data to es ti mate the

lin ear prop a ga tor. In such cases, the num ber of re tained PCs

will gen er ally be much less than the ob ser va tions. There fore, 

we need to de velop an other ap proach to es ti mate the lin ear

prop a ga tor and the as so ci ated prop er ties for m < n cases.

The SVD-CSD method is ba si cally an ex ten sion of the

GSVD method. In line with the der i va tion of the GSVD

theorem, we first linearize Y(t) and Y(t + t), by re quir ing

that they have the same evo lu tion struc ture. Con se quently,

the SVD is ap plied to their joint ma trix to yield:

(9)

where Q Î Â2m ´ 2m and R Î Ân ´ n are or thogo nal, L = diag

(l1, ×××, lf), and f £ min (2m, n). If m ³ n, the co sine-sine

decom po si tion (CSD; the o rem 2.6.2 in Golub and Van

Loan 1996) can be used di rectly to de com pose Q, yield ing

the same de com po si tions of Y(t) and Y(t  +  t) as those for

Eqs. (5) and (6). How ever, the CSD can not be di rectly applied

to Q when m < n. In such cases, Q, L, and R need to be de -
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com posed into dom i nant (sub script d) and re main der (sub -

script r) submatrices, based upon how many sin gu lar vec -

tors need to be ex tracted or re tained. Be cause the num ber of 

re tained sin gu lar vec tors (N) can not ex ceed the num ber of

state vari ables (m), for a given N £ m, then Q, L, and R in

Eq. (9) are fur ther de com posed into Qd1, Qd2 Î Âm ´ N, Qr1,

Qr2 Î Âm ´ (2m - N), Ld = diag (l1, ××× lN), Lr = diag (lN + 1, ×××,

lf), Rd Î Ân ´ N, and Rr Î Ân ´ (n - N). In terms of these sub -

matrices, Y(t) and Y(t  +  t) can also be sep a rated into Yd (t),

Yr (t) and Yd (t  +  t), Yr (t  +  t), re spec tively. The or -

thogonal re la tion be tween Rd and Rr im plies that Yd (t)

and Yd (t + t) are also or thogo nal to Yr (t) and Yr (t  +  t).

Hence, Eq. (1) can be di vided into a dom i nant equa tion and

a re main der equa tion, i.e.,

Yd (t  +  t)  =  AdYd (s) (10)

Yr (t  +  t)  =  ArYr (s) (11)

Due to the fact that Yd (t) and Yd (t  +  t) rep re sent the do -

minant lin ear covariability of Y(t) and Y(t  +  t), Eq. (10)

can be viewed as a fil tered ver sion of Eq. (1). The CSD is

then used to de com pose Qd1 and Qd2 to be come:

(12)

where Ud1, Ud2 Î Âm ´ m, Vd Î ÂN ´ N are or thogo nal ma tri -

ces, CS and SS di ag o nal with Cd
TCd  +  Sd

TSd  =  IN. With

these decom po si tions, Yd (t), Yd (t  +  t) and Ad can be writ -

ten, similar to Eqs. (5), (6), and (7), as:

Yd (t)  =  Ud1CdVd
TLdRd

T  =  Ud1Cd  ´  X d
-1 (13)

Yd (t  +  t)  =  Ud2SdVd
TLdRd

T  =  Ud2SdXd
-1 (14)

and

Ad  =  Ud2SdCd
-1Ud1

T (15)

Con se quently, when data have more state vari ables than

ob ser va tions, the SVD-CSD still al lows for a di rect esti -

mation of the lin ear prop a ga tor and the as so ci ated pro -

perties from the fil tered pre dic tor [Yd (t)] and predictand

[Yd (t  +  t)]. Sim i larly, be cause the vari abil ity of Yd (t  +  t)

can be com pletely re pro duced by AdYd(t), one also does

not need to add any un known forc ing term Nto Eq. (10) to

main tain the ob served vari abil ity.

The SVD-CSD can re cover the GSVD re sults when

m > n and can be ap plied to m < n cases. There fore, al though

slightly more com pli cated to im ple ment, the SVD-CSD has

a wider range of ap pli ca bil ity. Fur ther more, if some kind of

fil ter ing needs to be ap plied to the orig i nal data, the

SVD-CSD has two op tions to choose from. The first is the

num ber of re tained PCs (m); the sec ond is the num ber of

retained sin gu lar vec tors (N). The use of a spe cific m to fil -

ter data, as in the con ven tional data anal y sis, is based on the

ex plained vari ance of the orig i nal data. How ever, this kind

of data fil ter ing does not dif fer en ti ate whether the pre dic tor

and the predictand are lin early re lated or not. There fore,

some im por tant lin ear covariability be tween the pre dic tor

and the predictand may be fil tered out. On the other hand, if

all the PCs of the orig i nal data are re tained, the SVD-CSD

can still al low data fil ter ing by se lect ing N < m. In such

cases, one can as sure that the dom i nant lin ear covariability

be tween the pre dic tor and the predictand will not be un -

intentionally fil tered out. As for the Yule-Walker equa tion,

because the re tained sin gu lar modes must be the same as the

num ber of state vari ables, data fil ter ing can only be ap plied

by choos ing a sub set of PCs (i.e., choos ing a spec i fied m and

N = m). There fore, the SVD-CSD of fers a more se lec tive

data fil ter ing mech a nism for the es ti ma tion of the lin ear

prop a ga tor and the as so ci ated prop er ties.

4. THE SYN THETIC NOR MAL MODE
OS CIL LA TIONS

In the above der i va tions, we learned that both the GSVD 

and the SVD-CSD are ca pa ble of de riv ing the lin ear pro -

pagator and the as so ci ated prop er ties di rectly from the pre -

dictor and the predictand ma tri ces. How ever, their per for -

mance in es ti mat ing the lin ear prop a ga tor and the as so ci ated

sin gu lar val ues should be com pared with the con ven tional

Yule-Walker equa tion to eval u ate their use ful ness. In this

sec tion, we ap ply all these meth ods to two syn thetic datasets

with known nor mal mode growth rates to see if they can

faith fully ex tract the sta bil ity char ac ter is tics from the data.

These syn thetic datasets are con structed as a su per po si tion

of 10 nor mal mode os cil la tions con tam i nated by two dif -

ferent lev els of ran dom noise on the global trop ics be tween

30°S - 30°N with 5° ´ 5° res o lu tion, that is:

z x y t k x l y t ej j j

t

j

j( , , ) cos( ) ( , )          
  

= + - +
=

s a
l

N 0
1

10

å
(16)

where   N (0, a) de notes ran dom noise with zero mean and

stan dard de vi a tion a = 0.1 or a = 1, k
j

j =  
p

180
, lj = 

[( ( )]1 2 1

180

    + -j p
, s

p
j

j
  

    
=

+ -[ ( )]1 3 1

600
  with  j  =  1, …,

10, lj  =  -0, -0.001, ×××, -0.009 is the growth rate of the jth

nor mal mode, x  =  0, 5, ×××, 350, 355, y  =  -30, -25, ×××, 25, 30

and t  =  1, 2, ×××, 600. It is noted that each of the dataset con -

sists of 936 time se ries (m  =  936), with 600 time steps (n  =

600) in each se ries, there fore the GSVD re stric tion is sat is -

fied (i.e., m  ³  n). Fur ther more, be cause these 10 modes are 
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or thogo nal and each lj is small, the fi nite-time growth rate

can be ap proximately taken as 1 + ljt if t is also small.

There fore, the estimated fi nite-time growth rates from the

GSVD, the SVD-CSD and the Yule-Walker equa tion can be

com pared to these known val ues to eval u ate their va lid ity.

Re sults from the weakly ran dom noise con tam i nated

syn thetic dataset (i.e., a = 0.1) are shown in Figs. 1 and 2. In

Fig. 1a, one clearly notes that the ex plained vari ance of the

first 20 PCs are well above those of the rest of PCs. Be cause

the sig nal part of the syn thetic time se ries con sti tutes 10

normal mode os cil la tions and each nor mal mode can be

decomposed into a pair of equal vari ance PCs, this re sult

indicates that the PCA is very ef fec tive in dif fer en ti at ing

sig nal from noise in the weakly ran dom noise con tam i nated

data. Fig ure 1b shows the es ti mated lag-1 (t = 1) fi nite-time

growth rates us ing both the GSVD and the Yule-Walker

equa tion meth ods. Be cause the GSVD and the Yule-Walker

equa tion yield A Î Â600 ´ 600and A Î Â936 ´ 936, re spec tively,

the max i mum num ber of sin gu lar vec tors can be ex tracted

from them are 600 and 936, re spec tively. How ever, the

Yule-Walker equa tion needs to cal cu late the in verse of the

auto covariance ma trix. When data have fewer ob ser va tions

than grid points, the re sul tant auto covariance ma trix is

singular. Hence, with the Yule-Walker equa tion, one en -

counters the rank de fi ciency prob lem in ma trix in ver sion

and yields un re al is ti cally large fi nite-time growth rates com -

pared to the GSVD. Con versely, re sults from the GSVD

showed a nearly anti-sym met ri cal dis tri bu tion be tween the

grow ing and de cay ing modes. Be cause C and S, as shown in

Eqs. (5) and (6), are ar ranged in as cend ing and de scend ing

or der be tween 0 and 1, re spec tively, this anti-sym met ri cal

dis tribution is what one would ex pect when the vari abil ity

of Y(t + 1) can be faith fully re pro duced by AY(t). Never -

theless, be cause the GSVD does not have any data fil ter ing

mech a nism to dif fer en ti ate sig nal from noise, it in ev i ta bly

over es ti mates the lin ear re la tion be tween the pre dic tor and

the predictand. There fore it is also in ca pa ble of yield ing the

cor rect re sults (i.e., the solid line sig nif i cantly de vi ates from

the di a mond sym bols).

Fig ure 2 shows the SVD-CSD and the Yule-Walker

equa tion es ti mated lag-1 growth rates for PCA fil tered data.

The SVD-CSD re sults are cal cu lated us ing 20 re tained PCs

(m = 20) and re tained sin gu lar vec tors, N = 5, 10, 15, 20,

respectively. The Yule-Walker equa tion re sults are cal cu -

lated us ing re tained PCs m  =  5, 10, 15, 20, re spec tively. One 

ob serves clearly that the Yule-Walker equa tion al ways over -

es ti mates the de cay rates, while the SVD-CSD yields re sults

over all quite sim i lar to the true de cay rates. How ever, when
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Fig. 1. The PCA and the es ti mated lag-1 (t = 1) fi nite-time growth rates re sults of the weakly ran dom noise con tam i nated syn thetic dataset (stan dard

de vi a tion a = 0.1). (a) is the ex plained vari ance as a func tion of PC modes from PCA of the data. (b) is the es ti mated fi nite-time growth rates as a func -

tion of the sin gu lar vec tors us ing the Yule-Walker equa tion (dashed line) and the GSVD (thick solid line), re spec tively. The di a mond sym bols rep re -

sent the lag-1 fi nite-time growth rates de rived from the nor mal mode growth rates of the syn thetic data (i.e., 1 + lj).

(a)

(b)



the re tained sin gu lar vec tors are equal to the re tained PCs

(i.e., m = N = 20), the growth rates of the first few sin gu lar

vec tors tend to be over es ti mated. Note that the re tained PCs,

al though be ing PCA fil tered, are still not noise-free. When

m = N, be cause the SVD-CSD is un able to ap ply fur ther fil -

ter ing to the data, the over es ti ma tion of the lin ear re la tion

be tween the pre dic tor and the predictand in ev i ta bly leads to

the over es ti ma tion of the growth rates.

Fig ures 3 and 4 show re sults from the mod er ately ran -

dom noise con tam i nated syn thetic dataset (i.e., a = 1). In

Fig. 3a, one notes that all PCs of the a = 1 data have greater

ex plained vari ance than those of the a = 0.1 data. Fur ther -

more, sig nal and noise parts of the spec tra are not as clearly

sep a rated as those of the a = 0.1 case. These re sults in di cate

that the PCA is in ef fec tive in dif fer en ti at ing sig nal from

noise in mod er ately ran dom noise con tam i nated data. Sim i -

lar to Fig. 1b, Fig. 3b also shows clearly that both the GSVD

and the Yule-Walker equa tion meth ods are un able to es ti -

mate the fi nite-time growth rates cor rectly from orig i nal

data. These re sults strongly sug gest that one al ways needs to

ap ply some kinds of data fil ter ing to cor rectly es ti mate the

lin ear prop a ga tor and the as so ci ated prop er ties.

Fig ure 4 shows the same as Fig. 2, ex cept for re sults of

the a = 1 case. One notes that the over es ti ma tion of the de cay 

rates by the Yule-Walker equa tion is more se ri ous than that

in the a = 0.1 case. On the other hand, the SVD-CSD still

yields re sults quite sim i lar to the true de cay rates for re tained 

sin gu lar vec tors up to 15. When m = N = 20, be cause the

noise level is rel a tively high and the SVD-CSD is un able to

ap ply fur ther fil ter ing to the data, the over es ti ma tion of the

lin ear re la tion be tween the pre dic tor and the predictand then

leads to a more se ri ous over es ti ma tion of the growth rates

for the first few sin gu lar vec tors. These re sults clearly sug -

gest that the se lec tive data fil ter ing ca pa bil ity of SVD-CSD

can yield a more cor rect es ti ma tion of the prop a ga tor and the 

as so ci ated fi nite-time growth rates than can the Yule-Walker 

equa tion. It is noted that sim i lar anal y ses were also ap plied

to var i ous val ues of t. Their re sults (not shown) are quite

sim i lar to those of t = 1. There fore, the above con clu sions

are valid not just for t = 1 only.

5. SEA SUR FACE TEM PER A TURE ANOM A LIES

In this sec tion, all three meth ods are ap plied to Kaplan’s

SSTA data (Kaplan et al. 1998) to eval u ate their per for -

mance. Kaplan’s SSTA data con sist of the global gridded

(5° ´ 5°) monthly mean SSTA from Jan u ary 1856 to March

2003 (they can be found in http://ing rid.ldeo.co lum bia.edu

/SOURCES/.KAPLAN/.EX TENDED). It was con structed

us ing op ti mal es ti ma tion in the space of 80 PCs to in ter po -
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Fig. 2. The es ti mated lag-1 fi nite-time growth rates re sults of the weakly ran dom noise con tam i nated syn thetic dataset us ing both the SVD-CSD (thick 

solid line) and the Yule-Walker equa tion (dashed line) meth ods. (a), (b), (c), and (d) cor re spond to re sults from the SVD-CSD us ing 20 PCs (m = 20)

and re tained sin gu lar vec tors N = 5, 10, 15, 20 and re sults from the Yule-Walker equa tion us ing 5, 10, 15, and 20 PCs (m = 5, 10, 15, 20), re spec tively.

Sim i larly, The di a mond sym bols in each panel rep re sent the lag-1 fi nite-time growth rates de rived from the nor mal mode growth rates of the syn thetic

data (i.e., 1 + lj).

(a) (b)

(c) (d)
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Fig. 4. The same as Fig. 2, ex cept for re sults of the mod er ately ran dom noise con tam i nated syn thetic data (stan dard de vi a tion a = 1).

Fig. 3. The same as Fig. 1, ex cept for re sults of the mod er ately ran dom noise con tam i nated syn thetic data (stan dard de vi a tion a = 1). For com par i son,

the PCA re sult of the a = 0.1 (dashed line) is also shown in (a).

(a)

(b)

(a) (b)

(c) (d)



late ship ob ser va tions from the UK Met Of fice da ta base

(Parker et al. 1994). The data af ter 1981 rep re sents the pro -

jec tion of the NCEP OI anal y sis (which com bines ship ob -

ser va tions with re mote sens ing data) by Reynolds and Smith

(1994) on the same set of 80 PCs. In this study, only trop i cal

ocean (27.5°S - 27.5°N) data be tween the years 1950 and

2002 are used.

The re sults (not shown) from ap ply ing the GSVD and

the Yule-Walker equa tion to the orig i nal data are sim i lar to

those in Fig. 1 and still are un able to yield cor rect esti -

mations. The es ti mated max i mum lag-1 fi nite-time growth

rates for the PCA fil tered Kaplan’s SSTA from both the

SVD-CSD (m = 80) and the Yule-Walker equa tion as a

function of the re tained sin gu lar modes are shown in Fig. 5.

Results from both the Yule-Walker equa tion and the SVD-

 CSD show monotonically in creas ing growth rates with re -

tained sin gu lar vec tors. Nev er the less, those from the Yule-

 Walker equa tion have lower growth rates than those for the

SVD-CSD. As can be seen in Fig. 5b, no in sta bil ity can be

found in the re sults from the Yule-Walker equa tion for re -

tained sin gu lar vec tors less than 4. Does the Yule-Walker

equa tion un der es ti mate the growth rates? Fig ure 6 shows the 

es ti mated fi nite-time growth rates for the PCA fil tered Ka -

plan’s SSTA from both the SVD-CSD and the Yule-Walker

equa tion as a func tion of the sin gu lar vec tors for (a) 5, (b)

10, (c) 15, and (d) 20 re tained sin gu lar vec tors, re spec tively.

Note that the growth rate curves from the Yule-Walker

equa tion are pre dom i nantly asym met ri cal to wards the decay 

states (growth rates < 1), while those from the SVD-CSD

are more anti-sym met ri cal about the neu tral state (growth

rate = 1). The re sults of the Yule-Walker equa tion in di cate

that the vari abil ity of Y(t  +  1) can not be well main tained by

AY(t). To show this is in deed the case, the ra tios be tween the

to tal vari ance of AY(t) and Y(t  +  1) are cal cu lated. They are

0.96, 0.94, 0.93, and 0.92, re spec tively. These re sults show

the vari abil ity of Y(t + 1) is not fully re cov ered by AY(t)

when the Yule-Walker equa tion is used to es ti mate A. Fur -

ther more, the damp ing of the vari abil ity of Y(t + 1) in -

creases as more PCs are used. Con versely, the anti-sym met -

ri cal distribution re sults of the SVD-CSD are what one

would ex pect when the vari abil ity of Yd (t  +  1) can be faith -

fully repro duced by AdYd (t). These re sults clearly sug gest

that, due to the in ca pa bil ity of dif fer en ti at ing lin ear re lated

and un re lated vari abil ity be tween the pre dic tor and the pre -
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Fig. 5. The es ti mated max i mum lag-1 fi nite-time growth rates for the PCA fil tered Kaplan SSTA as a func tion of the re tained sin gu lar vec tors us ing

both the SVD-CSD and the Yule-Walker equa tion meth ods. The thick solid line cor re sponds to the re sults ob tained by ap ply ing the SVD-CSD to the

first 80 PCs. The dashed line cor re sponds to the re sults ob tained by ap ply ing the Yule-Walker equa tion to the same num ber of PCs as used for the re -

tained sin gu lar vec tors. (a) shows re sults for all re tained sin gu lar vec tors. (b) shows a blown-up view of (a), for the first 20 re tained sin gu lar vec tors.

(a)

(b)



dictand, the Yule-Walker equa tion may overly un der es ti -

mate the growth rates. As for dif fer ent choice of t (re sults

are not shown), al though the es ti mated growth rates are

generally larger than those of t = 1, the con clu sions are

sim i lar.

The dif fer ences be tween these two ap proaches are

shown not only in the growth rates but also in the sin gu lar

vec tors. Be cause the orig i nal data has been PCA fil tered, the

sin gu lar vec tors so de rived are lin ear com bi na tions of the

retained PC modes. Fig ure 7 shows the op ti mal sin gu lar

vectors (the most un sta ble sin gu lar vec tors) de rived by the

Yule-Walker equa tion as a func tion of the re tained PC modes 

for m = N = 2, 4, ×××, 20, re spec tively. As all the cor re -

sponding op ti mal growth rates are close to unity, the pat -

terns between the pre dic tor and the predictand are very sim i -

lar for each given m. Fur ther more, the op ti mal mode con -

stituents in crease as more PCs are re tained. How ever, the

relative con tri bu tion of each PC mode to the op ti mal mode

does not show a dra matic change with the in crease of the

retained PCs. This is be cause the Yule-Walker equa tion is

covariance based. The sin gu lar vec tors so de rived not only

de pend on the lin ear re la tion be tween the pre dic tor and the

predictand but also on their vari ance. Since most vari ance of

the pre dic tor and the predictand is ex plained by the first few

PCs, the covariance struc ture be tween the pre dic tor and the

predictand is also pri mar ily con trolled by these few PCs.

There fore, even though the lin ear re la tion ship may change if 

more PCs are re tained, the op ti mal modes so de rived are

relatively in sen si tive to the vari a tion of the re tained PCs.

Fig ure 8 shows the same plots as Fig. 7, ex cept for re -

sults from the SVD-CSD with m = 80. The re sem blance

between pat terns of the pre dic tor and the predictand can

still be clearly ob served. How ever, be cause they are de rived

us ing 80 re tained PCs, the op ti mal mode con stit u ents are no

lon ger re stricted only to PC modes less than the re tained

singular vec tors. Fur ther more, the rel a tive con tri bu tion of

each PC mode to the op ti mal mode grad u ally shifts to ward

higher PC modes, as more sin gu lar vec tors are re tained (i.e.,

N in creases). Be cause the SVD-CSD has linearized the re -

lation be tween the pre dic tor and the predictand be fore

estimating the lin ear prop a ga tor, the op ti mal modes thus

derived are cho sen solely ac cord ing to which com bi na tion

of the em pir i cal or thogo nal func tions [EOFs, i.e., col umn

vec tors of Q in Eq. (9)] of the joint pre dic tor and the pre -

dictand ma tri ces will yield the larg est sin gu lar value. There -

fore, the struc tures of the SVD-CSD de rived op ti mal modes

de pend strongly on how many sin gu lar vec tors (or equiv a -

lently, how many col umn vec tors of Q) are re tained.

6. SUM MARY AND DIS CUS SION

The prop a ga tor of a lin ear model plays a very im por tant 
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Fig. 6. The es ti mated fi nite-time growth rates for the PCA fil tered Kaplan SSTA as a func tion of the sin gu lar vec tors for: (a) 5, (b) 10, (c) 15, and (d) 20 

re tained sin gu lar vec tors, re spec tively. The thick solid and dashed lines cor re spond to the re sults ob tained by ap ply ing the SVD-CSD to the first 80

PCs, and from the Yule-Walker equa tion.

(a) (b)

(c) (d)
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Fig. 7. The op ti mal sin gu lar vec tors for the Kaplan’s SSTA de rived from the Yule-Walker equa tion as a func tion of PC modes, from top to bot tom, for

2, 4,…, 20 and re tained sin gu lar vec tors, re spec tively. (a) and (b) show re sults for the pre dic tor and the predictand, re spec tively.

Fig. 8. The same as Fig. 5, ex cept for re sults ob tained by ap ply ing the SVD-CSD to the first 80 PCs of the Kaplan’s SSTA.

(a) (b)

(a) (b)



role in nor mal mode and fi nite-time in sta bil ity prob lems. Its

es ti ma tion will af fect whether the lin ear sta bil ity char ac ter is -

tics of the cor re spond ing dy namic sys tem can be prop erly

ex tracted. Con ven tion ally, the prop a ga tor is es ti mated us ing

the Yule-Walker equa tion with the auto and lag covariance

ma tri ces of the pre dic tor and the predictand. How ever, be -

cause non lin ear and noise in for ma tion of the pre dic tor and

the predictand may also be in cluded in form ing these co -

variance ma tri ces, the lin ear prop a ga tor thereby de rived is

likely to un der es ti mate the lin ear re la tion ship be tween them. 

There fore, in this study the GSVD and SVD-CSD meth ods

have been in tro duced as al ter na tives to the Yule-Walker

equa tion to es ti mate the lin ear prop a ga tor and its as so ci ated

prop er ties for a lin ear model. In ac cord with the ba sic con -

cept of a lin ear model, both meth ods linearize the re la tion

be tween the pre dic tor and the predictand by de com pos ing

them to have a com mon evo lu tion struc ture and then make

the es ti ma tions. With these de com po si tions, the lin ear pro -

pagator and the as so ci ated sin gu lar vec tors can be si mul -

taneously de rived. Fur ther more, the con nec tion be tween the

fi nite-time am pli tude growth rates and the sin gu lar val ues of

the prop a ga tor are clearly es tab lished. Both the GSVD and

the SVD-CSD, to gether with the Yule-Walker equa tion, are

ap plied to two syn thetic datasets and Kaplan’s SSTA data -

sets to eval u ate their re spec tive per for mances. The re sults

show that, be cause of the linearization and flex i ble fil ter ing

ca pa bil i ties, the SVD-CSD al lows the prop a ga tor, the fi -

nite-time growth rates, and the as so ci ated sin gu lar vec tors to 

be more ap pro pri ately es ti mated.

It is noted that the ap pli ca tion of the SVD-CSD is not re -

stricted to lin ear mod els where the pre dic tor and the pre -

dictand use the same field vari ables. There fore, it can be ap -

plied not only to lin ear sta tis ti cal pre dic tion pro b lem, but

also to bias cor rec tion or sta tis ti cal downscaling prob lems.

As for data as sim i la tion and re lated prob lems in nu mer i cal

weather pre dic tion, be cause the lin ear pro p a ga tor is time de -

pend ent, the ap pli ca bil ity of the SVD- CSD to these pro b -

lems is not clear and needs fur ther stud ies.
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