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ABSTRACT

As the sigma-p coordinate under hydrostatic approximation can be interpreted as the mass coordinate without the
hydrostatic approximation, we propose a method that upgrades a hydrostatic model to a nonhydrostatic model with relatively
less effort. The method adds to the primitive equations the extra terms omitted by the hydrostatic approximation and two
prognostic equations for vertical speed w and nonhydrostatic part pressure p ". With properly formulated governing equations,
at each time step, the dynamic part of the model is first integrated as that for the original hydrostatic model and then
nonhydrostatic contributions are added as corrections to the hydrostatic solutions. In applying physical parameterizations after
the dynamic part integration, all physics packages of the original hydrostatic model can be directly used in the nonhydrostatic
model, since the upgraded nonhydrostatic model shares the same vertical coordinates with the original hydrostatic model. In
this way, the majority codes of the nonhydrostatic model come from the original hydrostatic model. The extra codes are only
needed for the calculation additional to the primitive equations. In order to handle sound waves, we use smaller time steps in the
nonhydrostatic part dynamic time integration with a split-explicit scheme for horizontal momentum and temperature and a
semi-implicit scheme for w and p’. Simulations of 2-dimensional mountain waves and density flows associated with a cold
bubble have been used to test the method. The idealized case tests demonstrate that the proposed method realistically simulates
the nonhydrostatic effects on different atmospheric circulations that are revealed in theoretical solutions and simulations from
other nonhydrostatic models. This method can be used in upgrading any global or mesoscale models from a hydrostatic to
nonhydrostatic model.
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1. INTRODUCTION

The primitive equations used as governing equations in
atmospheric hydrostatic models include hydrostatic appro-
ximation that replaces the vertical momentum equation by
the hydrostatic balance equation. The approximation is very
accurate when vertical velocity, and hence vertical accele-
ration, is very small. The hydrostatic approximation not
only simplifies the governing equations but also eliminates
sound waves from the solution to avoid the necessity in
handling those fast moving waves in time integration. How-
ever, if one needs to simulate atmospheric circulation with
strong vertical motions, such as thunderstorms or hurri-
canes, a nonhydrostatic model may be desired. In this paper,
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we describe a method that extends a hydrostatic model to a
nonhydrostatic model by adding the terms and equations
neglected by the hydrostatic approximation to the primitive
equations as corrections to the dynamic part solution at each
time step. With this approach, the model can be run as a hy-
drostatic or nonhydrostatic model depending upon the user’s
choice for applications. The only approximation made in
this method is to linearize the pressure tendency equation to
formulate a stable scheme for the nonhydrostatic part time
integration. Since sound wave prediction may be distorted
by linearization, nonhydrostatic models developed by this
method are not suitable to simulate sound wave dominated
phenomena. However, they should be perfectly adequate for
numerical weather prediction (NWP) since sound waves
play an insignificant role on weather changes.
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For a given temperature profile, the hydrostatic appro-
ximation makes height and pressure monotonically depend
on each other so that pressure can be used as a vertical coor-
dinate. To better handle bottom boundary conditions, the ter-
rain-following sigma-p coordinate, defined aso = (p - pz,,) /
(Psurface - P1op)» 15 usually used as the vertical coordinate in
hydrostatic models. Laprise (1992) introduced a new con-
cept that if we interpret the hydrostatically balanced part of
pressure as the air mass weight above the area, the sigma-p
coordinate can still be used in nonhydrostatic models and it
is called the mass coordinate. When interpreting the hydro-
static pressure as air mass weight per area, we can formulate
the governing equations for a fully compressible atmosphere
without the hydrostatic approximation in the mass coordi-
nates. Consequently, the governing equations, and hence
the whole codes, of a hydrostatic model can be used as the
major part of a nonhydrostatic model extended from the
hydrostatic model. In the dynamic integration of the non-
hydrostatic model, after the hydrostatic tendency has been
calculated the nonhydrostatic tendency from terms and equ-
ations omitted by the hydrostatic approximation can then be
added to complete the time step. This correction type time
integration for the dynamic part works as the time splitting
integration, with which different terms are integrated by dif-
ferent numerical methods. In the physics part time integra-
tion after the dynamic integration at each time step, all
physical parameterization packages of the original hydro-
static model can be directly applied for the nonhydrostatic
model as they share the same vertical coordinate. The chal-
lenge in this approach is to organize the governing equations
into a form that hydrostatic and nonhydrostatic terms are
separable, and to select proper prognostic variables and
numerical schemes for which the time integration is stable
and efficient. The Weather Research Forecasting (WRF)
model also uses mass coordinates in its two dynamic cores:
NMM developed at the National Centers for Environmental
Prediction (NCEP, Janjic et al. 2001) and ARW developed
at the National Center for Atmospheric Research (NCAR,
Klemp et al. 2007). However, we choose different prog-
nostic variables and different numerical methods in han-
dling sound waves. These differences will be discussed in
section 4.

There are other vertical coordinates used in nonhydro-
static models, such as the sigma-z coordinate in the Coupled
Ocean/Atmosphere Mesoscale Prediction System (COAMPS,
Hodur 1997) and the sigma-p* coordinate in the Fifth-
Generation Penn State/NCAR Mesoscale Model (MMS5,
Dudhia 1993) and the Purdue Mesoscale Model (PMM, Hsu
and Sun 2001). The sigma-p* coordinate defines the vertical
coordinate by a reference surface pressure p* that is constant
in time and varies in height only. Therefore, the sigma-p*
coordinate is equivalent to the sigma-z coordinate. The
sigma-z coordinate has an advantage in that the coordinate is
not changed with time. However, the sigma-z coordinate

involves with a rigid upper lid that can artificially increase
pressure or reduce mass (Klemp et al. 2007). In the MMS5,
the non-conserving problem is minimized by ignoring di-
abatic terms in the pressure prediction equation (Dudhia
1993). The mass coordinate is favored over the sigma-z co-
ordinate in the WRF-ARW dynamic core because of mass
conservation and convenience in switching to hydrostatic
integration (Klemp et al. 2007).

2. GOVERNING EQUATIONS

For a hydrostatic model, the primitive equations in the
sigma-p coordinates can be written as:
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is horizontal wind velocity, fis the Coriolis parameter, f =
2Qsing, ¢ is the geopotential of a sigma-p level, ¢ = gz, -

J. 10 RTd In o, Qr is diabatic heating rate, F. is momentum

friction, and S is moisture source. For simplicity we have
chosen py,, = 0 in defining the sigma-p coordinate. Equa-
tion (3) is a form of the continuity equation derived from
the transformed continuity equation for any general coordi-
nate 77 (Kasahara 1974):

CApC +V,-l7+a—77=0
dt\  on ’ on

The hydrostatic balance Eq. (5) is the vertical momentum
equation with the hydrostatic approximation, i.e., dw/dt =
0. The pressure tendency equation becomes a trivial equa-
tion with the hydrostatic approximation (see Appendix)
and the pressure can be diagnosed from the surface pres-
sure 7y as p = 7,0.

To add nonhydrostatic components to the primitive
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equations, we select vertical velocity (w) and the non-
hydrostatic part of pressure (p’), defined as the difference
between total pressure and hydrostatic pressure, as two extra
prognostic variables. Following Laprise (1992), we can
write the governing equations without the hydrostatic ap-
proximation in the mass coordinates as:
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where w is vertical speed, &t is hydrostatic pressure, & =
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The pressure tendency Eq. (10) involves the very delicate

balance between heating and divergence. We can rewrite

this equation in terms of hydrostatic and nonhydrostatic

pressure as:
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Since & is much greater than p’ for circulation related to
weather prediction and dp'/dt is important mainly for sound
waves, we simplify this equation by first assuming the
nonhydrostatic part of pressure plays no significant role on
the hydrostatic part of pressure (or mass) tendency calcula-
tion. As demonstrated in the appendix, in the mass coordi-
nates, if only the hydrostatic part of pressure is used in cal-

culating D5 by Eq. (A7), a trivial equation for the hydro-
static pressure tendency can be obtained by adding the con-
tinuity and thermodynamic equations together as:

C .
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By subtracting Eq. (13) from Eq. (12), a nonhydrostatic
pressure tendency equation can be obtained as:

dp, /CI’ ’ QT
= 4+ D = —_ 14
a7 c D pC‘,T (14)

Since Eq. (13) is a trivial equation, it will not be included in
the time integration and the pressure tendency Eq. (12) is
simplified to Eq. (14) under this assumption. We further
linearize Eq. (14) by replacing p’ in the second term with a
time-independent reference pressure p as:

dp’ ~ C/} '
— + p—D, ~
I p C 3 p

9
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The first simplification is equivalent to assuming the hy-
drostatic and nonhydrostatic pressure tendencies are ba-
lanced independently. The further linearization made in
Eq. (15) is to formulate a stable semi-implicit scheme for
integrating dw/dt and dp'/dt equations. By substituting the

pressure-tendency Eqgs. (13) and (15) into the thermody-

namic equation Aar + RT D, = &, we find the tempera-
dt C, - C,

ture tendency equation to be:
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Therefore, we need to add u—3 to the tem-

p C,
perature tendency equation for energy conservation after
linearizing the nonhydrostatic pressure tendency equa-
tion.
With the simplification, the extra terms and equations
added to the primitive equations for a nonhydrostatic model
can be summarized as:
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or  RT o dinr, . dLJ _ (p = PRTD, waves in the model solution during time integration.
ot C,p dt dar ) pC, If model integration is selected to include nonhydro-
dT o, static components, dry dynamic hydrostatic tendencies ar
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t H
dw gw _ i =F (19) fore the dynamic integration divided by the length of the time
dt 7, 0o k ! step. Equations (17) to (20) are then integrated with a suitable

method to handle fast moving sound waves. In our develop-

ment, we use an explicit-split scheme to integrate Egs. (17),

(20) (18), and the horizontal part Eq. (20) and a semi-implicit
v v scheme to integrate Eq. (19) and the vertical part Eq. (20).
Since our original hydrostatic model is integrated by a flux

g = J‘” (ﬂp'j dine Q1) form of Egs. (1) to (4), we will now express Egs. (17) and (18)

p in a flux form as well. We rewrite the Eqs. (17) to (20) as:
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where

drostatic Egs. (1) to (4) is first integrated as they are done in
the original hydrostatic model. In our original hydrostatic
model, the governing Egs. (1) to (4) are numerically solved o u ~ o¢’ p' or,
by fourth order central differencing in the horizontal on stag- Ri, = ( jH —frweosm - m—— &

gered C grids and second order central differencing in the
vertical on staggered sigma levels. The vertical staggering -,
carries vertical velocity at the full levels and all other va-
riables at the half levels. The time integration is conducted
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RH, = —(u@ + v@ + o"@) +f(ucosz/7 — vsin@),
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and @ is the angle between Y and north directions.

The right hand side terms of the above equations are inte-
grated with the time scheme used in the hydrostatic integra-
tion, as they are involved with Rossby and gravity waves.
However, the left hand side terms are integrated with the
following methods to handle sound waves. A forward-
backward scheme with a smaller time step is used in inte-
grating the second and third terms of Egs. (22) and (23) and
the third term of Eq. (26). In this time integration, the se-
cond and third terms of Egs. (22) and (23) are integrated
forward and then the third term of Eq. (26) is integrated
backward after the winds have been updated. An implicit
scheme with the same small time step of the forward-
backward scheme is used in integrating the second terms
of Egs. (25) and (26). The implicit scheme integrates these
terms by solving a tri-diagonal matrix. Once p’ has been
updated to the next regular time step, Eq. (24) can be easily
integrated with dp'/dt computed from the p’ change in this
time step. Two or three smaller time steps per regular time
step are usually enough to handle the sound wave integra-
tion. The smaller time step integration for the left hand side
terms is illustrated with the following equations:
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where u represents (7 u), v represents (7,v), h, and h, re-
present the second and third terms of Eqs. (22) and (23),
respectively, H, and H, represent the right hand side terms
of Egs. (22) and (23), a and 8 represent the coefficients of
d/do derivatives in the second terms of Egs. (25) and (26), /
and J represent the right hand side terms of Egs. (25) and
(26), and m represents the third term of Eq. (26). For a
given regular time step &, the (rn + 1) small time step inte-
gration at level £ can be written as:

= St + H,l @
W=+ Stl-h(p) + H,) ] (28)
with =l e eEg o) - &) + L (29)
and

p]:n+l :pjlvn + §t[ﬁ~kN(wlr‘7*) _B]Zv+l(w]:'*+l
G ) o

where @ and f are « and p weighted by layer thickness
factors associated with the vertical differencing, and p"fk
and w"" are weighted averages between small time steps n
and (n+ 1), i.e., p =vp" "'+ (1 —v) p" with0.5<v < 1
representing the degree of implicitness. A default value of
v=0.8 is typically used in the integration. As with all vari-
ables known at the time steps Nand n, #” * ' and 7" * ! can be
easily calculated by Egs. (27) and (28). Once #"*' and
7" * ! are computed, the m term of Eq. (30) can be evaluated
and w" "' and p" "' can be calculated by a tri-diagonal ma-
trix solver after one or the other of them is eliminated
through substitution. We choose to eliminate w for solving
p"" ! with boundary conditions p"" * ' = 0 at the model top
and w =V - Vz, at the surface. The linearization made in
Eq. (15) or (20) allows us to formulate Eq. (30) without p’

involved in the coefficient f.

4. COMPARISON WITH THE WRF MODEL

Both dynamic cores of the WRF model use the mass co-
ordinates but with different prognostic variables and numer-
ical methods. Similar to our choice, the NMM core chooses
temperature, rather than potential temperature, as a prog-
nostic variable for convenience in computing the gas law
and applying physics packages. On the other hand, the ARW
core chooses the potential temperature for convenience in
energy conservation. However, the major differences among
the two WRF dynamic cores and our method are in adding
the nonhydrostatic contributions to the primitive equations.
We add w and p' as two additional prognostic variables, and
add the third momentum Eq. (19) and nonhydrostatic pres-
sure tendency Eq. (20) as two additional equations to close
the system. The WRF-NMM core adds w and total pressure
p as two additional prognostic variables. However, it adds
three prognostic equations: the third momentum equation,

pressure tendency equation, and the definition of wg =§
. . - VRT ,
together with the constraint of @= @ + I —do ' to ac-

P
commodate a complicated time integration method that
splits the dynamic integration into two energy conserving
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subsystems. The method uses an implicit scheme to solve for
w, p, and T, the Adams-Bashforth scheme for the advection
terms, the backward scheme for the pressure gradient force
term, and the trapezoidal scheme for the Coriolis term. The
WRF-ARW core also adds w and total pressure p as two
additional prognostic variables, while it adds the third mo-

mentum equation and wg :% together with the gas law to

close the system. It integrates the governing equations by a
time-split scheme similar to our method described in the
previous section except: (i) it uses a third-order Runge-
Kutta scheme in the large time step integration; (ii) it con-
siders moisture in the density calculation; and (iii) it in-
cludes the prediction of mass change in the small time step
integration for sound waves.

As suggested by Laprise (1992), nonhydrostatic equa-
tions formulated with the mass coordinates can be solved by
either adding a prognostic equation for pressure or a prog-
nostic equation for the geopotential. Two dynamic cores of
the WRF choose to add the prognostic equation for the geo-
potential, while we choose to add the prognostic equation
for pressure. The choice of adding the prognostic equation
for pressure makes the terms involved with sound waves
easy to identify for formulating the time-split scheme. On
the other hand, special care must be made to ensure consis-
tency between pressure and mass prediction. We solve this
problem by separating the pressure prediction into mass con-
servation and p' prediction. All three methods discussed
here include some kind of linearization in their numerical
schemes. We linearize the prognostic equation for p’, the
WRF-ARW core linearizes the gas law when it computes
pressure perturbation in the small time step integration, and
the WRF-NMM core linearizes the coefficient of a second-
order differential equation solved iteratively to close the
implicit scheme for w and p. The WRF-NMM core and our
method use efficient second-order time schemes in the time
integration. Only the WRF-ARW core uses a more expen-
sive higher order time scheme in the time integration. The
third-order Runge-Kutta scheme is very accurate in calculat-
ing the advection to preserve the shape of the material trans-
ported, which is important for cloud and aerosol modeling.
However, for NWP applications, as our model is designed
for, a second order time scheme is sufficient since major nu-
merical errors come from spatial differencing rather than the
time scheme and a relatively small time step is usually re-
quired by the CFL linear stability condition.

5. IDEALIZED CASE TESTS

We have tested this method of extending a hydrostatic
model to a nonhydrostatic model by 2-dimensional (2D)
mountain waves and density flows associated with a cold
bubble. In these idealized tests, the nonhydrostatic model is
modified to be two dimensional with 481 grid points in the

horizontal and 87 levels (for mountain wave simulation) or
77 levels (for cold bubble simulation) in the vertical. The
model is integrated with dry dynamics only. To control
boundary reflection at the model top, we treat the top 15
model layers as sponge layers where second-order vertical
diffusion is applied to u and 7, Rayleigh type damping is
applied to w and p’, and second-order horizontal diffusion
is applied to vertical difference ou and 6T and p'. Radiative
type boundary conditions (Orlanski 1976) are used at lateral
boundary points where no gradient is assumed at the inflow
boundary and extrapolation is made at the outflow boundary.
We treat 25 grid points next to each lateral boundary as a
lateral boundary zone where second-order horizontal dif-
fusion is applied to all prognostic variables to control bound-
ary noise. In addition to these boundary treatments, weak
diffusion of the fourth-order in the horizontal and second-
order in the vertical are applied at interior grid points.

In mountain wave tests, we first repeat the 2D mountain
wave simulations conducted by Dudhia (1993) for testing
the MMS5. In these numerical simulations, a bell-shaped
mountain Ay(x) = ho/ [1 + (x/a)]is used. In this expres-
sion, a represents the half width and 7/, represents the maxi-
mum height of the mountain. Five different half-width
mountains, 100 m, 1, 10, 100, and 1000 km together with A
=400 m are selected to test the accuracy of the model in sim-
ulating five different characters of linear mountain waves
discussed in Queney (1948) and Dudhia (1993). As in the
MMS5 simulations, the grid resolution Ax is 1/5 of the half
width and the time step is proportional to the grid resolution
with Az=1 s for Ax =200 m. Coriolis force is included in all
five simulations with Coriolis parameter /= 1.0 ¢*. The ini-
tial conditions are in geostrophic and hydrostatic balance
with Uy =10 m's” zonal wind and zero meridional wind ev-
erywhere. Temperature and height are initialized with a con-
go6
60z
temperature, and 1000 hPa pressure at ground (z = 0). These
conditions give N, /U, = 0.4, which corresponds to linear
mountain waves (Laprise and Peltier 1989). The only dif-
ference in our simulation setup is that we use 481 grid
points in the horizontal direction and 87 levels in the ver-
tical. The dispersive nature of the nonhydrostatic mountain
waves causes large amplitude waves to propagate into model
boundaries. As very crude boundary condition treatments
applied at the top and lateral boundaries, we need more grid
points in the model domain to ensure the boundary noise will
be kept far away from the region where we are looking for
steady solutions. The vertical resolution is 13 hPa in the
bottom 60 levels and is gradually reduced to 7 hPa in top 16
levels. With this selection the sponge layer is above 105 hPa
(approximately 12.2 km.)

For convenience in comparison, we plot our simulation
results at 2160 time steps in the same way as that presented

stant stratification of N, = =0.01 s, 300 K surface
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in the MMS5 simulations, i.e., 50 grid points in each side of
the mountain peak and up to 10 km from the ground with the
400 m mountain at the surface. Figure 1 shows the vertical
velocity of the five mountain wave simulations from our
nonhydrostatic model. The simulations capture the charac-
teristics of the linear mountain waves from theoretical and
numerical studies (Queney 1948; Dudhia 1993); that is, that
the wave is evanescent for ¢ = 100 m, downstream pro-
pagation for a = 1 km, upright for @ = 10 km, influenced by
the inertial force for a = 100 km, and non-stationary for a =
1000 km. The flow pattern, wave length, and wave ampli-
tude all agree well with the MMS5 simulations. To examine
the nonhydrostatic effects on these steady mountain waves,
we have conducted the same experiments but without
nonhydrostatic contributions (Fig. 2). The results clearly
show that nonhydrostatic effects are significant mainly for
cases with N a/U, < 1, as predicted by early theoretical stud-

ies (Laprise and Peltier 1989). To check the impact of the
free-slip lower boundary condition on the nonhydrostatic
mountain waves, we conduct another 1 km half-width
mountain simulation with viscosity. The viscosity is mod-
cled by the surface stress 7, = C,J/ ||, with C;=0.01, and

free atmosphere stress T = k G_V’ with £ = 0.001, at the bot-
oo

tom Y4 sigma levels. The viscosity does not change the main
characteristics of the mountain wave, except to signifi-
cantly reduce the wave amplitude (Fig. 3) and make the solu-
tion converge very slowly to a quasi-steady state (not
shown). The result is consistent with the theoretical studies
in that characteristics of linear mountain waves are deter-
mined by Uy, Ny, a, and f, but not viscosity.

In the second mountain wave test, we compare the sur-
face pressure perturbation of simulated mountain waves
with that computed by a linear theory (Queney 1948; Hsu
and Sun 2001). Following Hsu and Sun (2001), we use a
10 m high mountain to integrate our 2D nonhydrostatic
model to a steady state and multiply the pressure perturba-
tion by 100 to compare it with the analytic linear solution for
a 1000-m high mountain. In this integration, the Coriolis
force is not included and the same model setup for 1-km half
width without viscosity is used. The integration is made for
12960 time steps to ensure a steady state solution is reached.
Since pressure is a prognostic variable in our model, we can
casily calculate surface pressure perturbation as the sum of
the nonhydrostatic and surface hydrostatic pressure pertur-
bations, i.e., Op, = (7, - 7y + p') where 7y is the initial hy-
drostatic pressure at the surface. The simulated surface pres-
sure perturbation matches well with the analytic solution
computed by Hsu and Sun (2001) and the vertical velocity of
the linear wave simulation is very similar to the 400-m
height solution in Fig. 1b, but the amplitude is about 40
times less (Fig. 4).

To simulate density flows associated with a cold bubble,

we set up a numerical experiment following Straka et al.
(1993) and Janjic et al. (2001). The initial conditions are
specified as an atmosphere at rest with 1000 hPa pressure at
the ground and hydrostatic balance above. The initial tem-
perature is specified with a neutral mean stratification of
300 K potential temperature everywhere and temperature
perturbations of a cold bubble, AT(x, z) = -15cos” (7L / 2),
added at the domain central area of L < 1, where L =
i = x)xF + [ - 2.)/zF, xe=0m, z.= 3000 m, x; =
4000 m, and z; = 2000 m. The 77 vertical levels for this test
are selected to have 15 sponge layers above ¢ = 0.442 (ap-
proximately 6.5 km) with a vertical resolution varying from
5 to 18 hPa. We use 100-m horizontal resolution and 0.3 s
time steps in this nonhydrostatic simulation and apply sec-
ond-order diffusion in both horizontal and vertical direc-
tions using the diffusion coefficient K =75 m’s™ as in Straka
et al. (1993) and Janjic et al. (2001). The cold potential tem-
perature perturbations from our 2D nonhydrostatic simu-
lations at initial time, 300, 600, and 900 s are displayed in
Fig. 5. The area shown extends from the model domain cen-
ter to 19.2 km to the right, and from the ground to 4.8 km.
The minor computational noise on zero contours is due to
numerical errors associated with the non-positive definite
schemes used in our model for NWP applications. The hori-
zontal and vertical wind components after 900 s are dis-
played in Fig. 6 with the same setting. The nonhydrostatic
simulation agrees well with the results from the two previous
studies that the density flow exhibits one rotor after 600 s
and three rotors after 900 s generated by the Kelvin-
Helmbholtz instability. We also check the nonhydrostatic
effects on this falling cold bubble by conducting a hydro-
static simulation without the nonhydrostatic components. In
this hydrostatic simulation, we have to use a shorter time
step of 0.1 s for the same grid resolution due to very large
vertical motions generated at initial periods by assuming the
hydrostatic balance. Figures 7 and 8 show the hydrostatic
simulations that correspond to Figs. 5 and 6, respectively.
No rotors are generated in the model simulation without the
nonhydrostatic components. The Richardson number of the
hydrostatic simulation after 300 s is about 0.7, which is too
large for the Kelvin-Helmholtz instability. Hydrostatic ap-
proximation severely distorts the cold bubble simulation at
the initial period of falling when the downward vertical ve-
locity is accelerated by negative buoyancy. In this early pe-
riod, the hydrostatic simulation gives too fast falling and too
noisy density flows (Fig. 9), as is expected when the hydro-
static assumption is violated.

6. SUMMARY

By interpreting the hydrostatic part of pressure as air
mass weight above an area, the primitive equations in the
sigma-p coordinates can be directly used to form the major
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part of the governing equations in mass coordinates for a
fully compressible atmosphere without the hydrostatic ap-
proximation. After adding extra terms to the primitive equa-
tions and two more equations for w and p’ predictions, a hy-
drostatic model can be easily upgraded to a nonhydrostatic
model. The only simplification made in this numerical met-
hod is the linearization of the pressure tendency equation,
which may distort sound wave simulations but has negli-
gible impact on weather forecasts. With this approach, al-
most all codes of a hydrostatic model can be used in upgrad-
ing the model to a nonhydrostatic model. In our efforts to
develop a nonhydrostatic model at the Central Weather
Bureau (CWB) of Taiwan, in additional to modifying the
model driver and output routines to account for extra va-
riables and routine calls, we only need to add two more
routines to compute the right hand side terms of RH( for
Egs. (22) to (26) and perform smaller time step integration
for Egs. (22) to (26). The idealized case tests show that the
proposed method can realistically simulate nonhydrostatic
effects on different atmospheric circulations, which are re-
vealed in theoretical solutions and simulations from other
nonhydrostatic models. The nonhydrostatic mesoscale mo-

del developed by this method at the CWB, Nonhydrostatic
Forecast System (NFS), has been operational since De-
cember 2003 (Leou 2004). The NFS is currently running
twice (or 4 times when a typhoon is approaching Taiwan) a
day with triple nests of 45/15/5 km resolutions for me-
soscale and typhoon forecasts. This method can also be
used in upgrading hydrostatic global models to nonhydro-
static global models.
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APPENDIX
The pressure tendency equation expressed as:
dnp G O

= Al
dt c.’ Cr (AD

can be derived by taking the ‘0 In” operator on the equation
of state p = pRT together with the continuity equation,

dlnp
+ D, =0 A2
54D, (a2)
and the first law of thermodynamics,
dInT R 0,
+ —D, = =
dt c, o Cr (A3)

In a general vertical coordinate G, the 3-dimensional diver-
gence D; can be written as:

D-v.[?_%a_l? @6_0’
’ &z oo do oz
:v.V_a_o'a_V.v +@i£
0z 0o 0z 0o dt
_V.V_a_o-a_V.VZ.'.a_o-_dz.Fa_V.Vz.ya_aa_z
0z 0o oz \ dt 0o oo 0o 0o
=V~V—a—aa—V~Vz+ilna—zj+a—o-a—V~Vz+a—a
0z 0o dt\ Oo 0z 0o oo

=V-V+a—a+i[ln£j
oo dt\ oo

(A4)

. . 0
In both sigma-p and mass coordinates, we find Z __PrE
o Ty
since Op = 7,00 = -pgdz in the sigma-p coordinate and dm
= 1,00 = -pgdz in the mass coordinate. Therefore, in both
coordinate systems, D3 can be expressed as:

-~ 0o dlnp dinz
D, =V -V +— - + — A
’ oo dt dt (A3)
with which the continuity Eq. (A2) can be written as:
dinz, L v.p 4+ 29 _ (A6)
dt oo

Under hydrostatic approximation the pressure is express
as p = m,0. We can apply ‘0ln’ to p = pRT and get dlnmw, +
O0lno = d0lnp + SInT. Therefore, with the hydrostatic ap-
proximation, D3 in Eq. (A5) can be written as:

D, =V - (A7)

Substituting Eq. (A7) into Eq. (A1), the pressure tendency
equation with the hydrostatic approximation can then be
expressed as:

d(Inz,+Ino) . (V 7 6_0' _g . dlnTj
dt oo o dt

+ £D3 = O ,

C, CT
or
dinr, +V.I7+8—O-+ dlnTJriD3 _ O,

dt oo dt C, CcT

(A8)

which is a trivial equation since it is simply the sum of the
continuity Eq. (A6) and thermodynamic Eq. (A4). It is con-
sistent with the fact that under hydrostatic approximation
the pressure can be diagnosed by p = n,c without a prog-
nostic equation.
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