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AbSTRACT

The geoid-to-quasigeoid correction has been traditionally computed approximately as a function of the planar Bouguer 
gravity anomaly and the topographic height. Recent numerical studies based on newly developed theoretical models, how-
ever, indicate that the computation of this correction using the approximate formula yields large errors especially in moun-
tainous regions with computation points at high elevations. In this study we investigate these approximation errors at the 
study area which comprises Himalayas and Tibet where this correction reaches global maxima. Since the GPS-leveling and 
terrestrial gravity datasets in this part of the world are not (freely) available, global gravitational models (GGMs) are used to 
compute this correction utilizing the expressions for a spherical harmonic analysis of the gravity field. The computation of 
this correction can be done using the GGM coefficients taken from the Earth Gravitational Model 2008 (EGM08) complete to 
degree 2160 of spherical harmonics. The recent studies based on a regional accuracy assessment of GGMs have shown that the 
combined GRACE/GOCE solutions provide a substantial improvement of the Earth’s gravity field at medium wavelengths of 
spherical harmonics compared to EGM08. We address this aspect in numerical analysis by comparing the gravity field quanti-
ties computed using the satellite-only combined GRACE/GOCE model GOCO02S against the EGM08 results. The numerical 
results reveal that errors in the geoid-to-quasigeoid correction computed using the approximate formula can reach as much as 
~1.5 m. We also demonstrate that the expected improvement of the GOCO02S gravity field quantities at medium wavelengths 
(within the frequency band approximately between 100 and 250) compared to EGM08 is as much as ±60 mGal and ±0.2 m in 
terms of gravity anomalies and geoid/quasigeoid heights respectively. 
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1. InTROdUCTIOn

The orthometric and normal heights are the most 
commonly adopted concepts for realizations of the verti-
cal reference frames worldwide. These height systems are 
related to the definition of the geoid and the telluroid (or 
more commonly used quasigeoid). An appropriate method 
for the evaluation of the orthometric heights has been dis-
cussed for more than a century. The first theoretical attempt 
is attributed to Helmert (1890). In Helmert’s definition of 
the orthometric height, the Poincaré-Prey gravity gradient 
is used to evaluate the approximate value of mean grav-

ity from gravity observed at the surface point. Later, Ni-
ethammer (1932) and Mader (1954) took into account the 
mean value of the gravimetric terrain correction within the 
topography. More recently, Hwang and Hsiao (2003) in-
troduced additional corrections due to vertical and lateral 
variations in the topographic mass density distribution. A 
rigorous method of computing the orthometric heights us-
ing gravity data and digital terrain and density models was 
introduced by Tenzer (2004) and Tenzer et al. (2005). The 
comparison of various types of the orthometric heights was 
done by Santos et al. (2006). Asserting that the topographic 
mass density and the actual vertical gravity gradient inside 
the Earth could not be determined precisely, Molodensky 
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(1945, 1948) formulated a theory for normal heights. Ac-
cording to his concept, the mean actual gravity within the 
topography is replaced by the mean normal gravity between 
the reference ellipsoid and the telluroid. An approximate 
formula relating the normal and orthometric heights (i.e., 
the geoid-to-quasigeoid correction) can be found in Heis-
kanen and Moritz [1967, Eq. (8-103)]. It was demonstrated 
by several authors that this approximate definition of the 
geoid-to-quasigeoid correction is not accurate especially in 
mountainous regions. To improve the computational accu-
racy, Tenzer et al. (2006) formulated the explicit relation 
between normal and orthometric heights. An alternative ex-
pression was given by Sjöberg (2006). His formulation in-
cludes a topographic roughness term (topographic bias) and 
a term related to the lateral mass density variation within the 
topography for the practical application of the height con-
version. The explicit formula for the geoid-to-quasigeoid 
correction in Tenzer et al. (2005) requires the discretised 
numerical integration which is very time consuming. For 
a fast computation, the spectral expression developed by 
Sjöberg (2006) can then be applied instead and achieve suf-
ficient numerical accuracy. 

The practical computation of the geoid-to-quasigeoid 
correction according to Sjöberg (2006) requires three types 
of global models: the global geopotential model (GGM), 
global terrain, and topo-density models. Whereas a compi-
lation of the global topo-density models is still restricted by 
the absence of reliable global density data, the global terrain 
models are available to a very high accuracy and resolu-
tion. The global topographic model DTM2006.0 (Pavlis et 
al. 2007) is provided with a spectral resolution up to degree 
2160 of spherical harmonics. The same spectral resolution 
is used to describe the gravitational field by the coefficients 
of the Earth Gravitational Model 2008 (EGM08; Pavlis et 
al. 2012). The DTM2006.0 and EGM08 were made avail-
able by the US National Geospatial-Intelligence Agency 
EGM development team. The EGM08 and DTM2006.0 
coefficients complete to degree/order 2160 could be used 
to compute the geoid-to-quasigeoid correction (Sjöberg and 
Bagherbandi 2012). 

In association with the precise modeling of gravity field 
two satellite missions provide information which consider-
ably increased the accuracy of existing GGMs and signifi-
cantly improved its applications in various scientific fields: 
the Gravity Recovery and Climate Experiment (GRACE) 
launched in 2002 and the Gravity Field and Steady-State 
Ocean Circulation Explorer (GOCE) launched in 2009. 
These missions are somewhat complementary. The GOCE 
gravity gradiometry provide the gravity field to a spatial res-
olution of ~100 km or better but is relatively inaccurate at 
long wavelengths (above 700 - 1000 km). The GRACE K-
band ranging inter-satellite observations provide the precise 
information on a low-frequency gravity spectrum. The com-
bined GOCE/GRACE solutions thus provide a more accu-

rate estimation of the Earth’s static gravity field (as well as 
its temporal variations). Since the EGM08 coefficients were 
generated without using GOCE data, the accuracy of the 
computed gravity field quantities at medium wavelengths 
should improve when using the latest available GGMs. 
In this study we use the satellite-only combined GOCE/
GRACE model GOCO02S (Goiginger et al. 2011), which is 
provided with a spectral resolution complete to degree 250 
of spherical harmonics, to compute the gravity field quanti-
ties (the free-air gravity anomaly and geoid-to-quasigeoid 
correction values). The GOCO02S gravity field quantities 
are then compared with the EGM08 results in order to as-
sess the expected improvement of gravity field at medium 
wavelengths. The study area is situated in Himalayas and 
Tibet, where the investigated gravity field quantities reach 
extreme values. 

2. THEORy 

The computation of gravity field quantities from the 
GGM coefficients utilizes a spectral representation of grav-
ity field by means of spherical harmonics. The disturbing 
potential T (i.e., the difference between the Earth’s gravity 
potential W and the normal gravity potential U) at an arbi-
trary point (r, Ω) is computed using the following expres-
sion (e.g., Heiskanen and Moritz 1967)
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where R = 6371 × 103 m is the Earth’s mean radius (which 
approximates the geocentric radii of the geoid surface), Yn, m  
are the (fully normalized) spherical harmonic functions of 
degree n and order m, Tn, m are the (fully normalized) coeffi-
cients of the disturbing potential, and nmax  is the upper sum-
mation index of spherical harmonics. The 3-D position is 
defined in the system of spherical coordinates (r, Ω), where 
r is the spherical radius and Ω = (φ, λ) denotes the spherical 
direction with the spherical latitude φ and longitude λ. 

The geoid height N is defined by the well-known 
Bruns’ (1878) formula in the following form
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where 0c  is the normal gravity calculated at the reference 
ellipsoid using, for instance, Somigliana’s (1929) formula. 
The disturbing potential T in Eq. (2) is computed at the 
geoid surface. The geocentric radius of the geoid surface is 
denoted as rg. 

By analogy with Eq. (2), the quasigeoid height ζ (i.e., 
the height anomaly) is defined as (Molodensky et al. 1960) 
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where Qc  is the normal gravity at the telluroid. The compu-
tation of the normal gravity value Qc  can be done accord-
ing to the expression given in Heiskanen and Moritz [1967,  
Eq. (2-123)]. The disturbing potential T is in this case cal-
culated at the surface point. The geocentric radius of the 
surface point is denoted as rP.

The geoid-to-quasigeoid correction is defined approxi-
mately as a function of the simple planar Bouguer gravity 
anomaly ΔgSB and the topographic height H of computa-
tion point. With reference to Heiskanen and Moritz (1967, 
Chapters 8-12 and 8-13), we write
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where c  is the integral mean of the normal gravity along 
the normal between the reference ellipsoid and the telluroid. 
The simple planar Bouguer gravity anomaly ΔgSB  in Eq. (4) 
is given by (ibid.)
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where G = 6.674 × 10-11 m3 kg-1 s-2 is Newton’s gravitational 
constant, o

tt  is the mean topographic mass density, and Δg 
is the (free-air) gravity anomaly. We note that either the nor-
mal or orthometric heights can be used to compute both the 
geoid-to-quasigeoid correction [in Eq. (3)] and the Bouguer 
gravity anomaly [in Eq. (4)].

A more accurate expression for computing the geoid-
to-quasigeoid correction in the spectral domain was given by 
Sjöberg (2006); see also Sjöberg and Bagherbandi (2012). 
It reads 
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The last constituent on the right-hand side of Eq. (6), 
i.e., Vbias

t c , defines the topographic bias. This bias repre-
sents the error in the analytical downward continuation of 
the external gravitational potential inside the topographic 
masses. For the adopted constant topographic mass density 
distribution, the term Vbias

t  is computed according to the fol-
lowing spectral expression (Sjöberg 2007)
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The computation of the topographic bias in the spectral 
domain is numerically stable when using a low-degree series. 
Ågren (2004) and Sjöberg (2007), however, demonstrated 
that the computation became unstable at a very-high degree 
spherical harmonic terms of a power series of topographic 
heights. The terms : , , , ...H Y i 1 2 3,
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where Pn is the Legendre polynomial of degree n with the 
argument t equal to cosine of the spherical distance ψ be-
tween the spherical directions X and Xl; i.e., t = cosψ. 

3. RESUlTS

The numerical analysis was conducted at the study 
area bounded by the parallels of 22 and 60 arc-deg northern 
latitudes and the meridians of 60 and 120 arc-deg eastern 
longitudes comprising the Himalayas and Tibet Plateau. All 
computations were realized on a 1 × 1 arc-deg geographical 
grid. 

The GOCO02S coefficients were used to compute the 
gravity field quantities with a spectral resolution complete to 
degree 250 of spherical harmonics. The same spectral reso-
lution was used to compute the gravity field quantities using 
the EGM08 coefficients. The results from both models were 
compared. The topographic bias was computed in spectral 
domain using the coefficients of the global topographic 
model DTM2006.0 complete to degree/order 250. The nor-
mal gravity field quantities were computed according to the 
GRS-80 parameters (Moritz 1980). The average density of 
the upper continental crust 2670 kg m-3 (see Hinze 2003) 
was adopted as the topographic mass density. We note here 
that authors of EGM08 and DTM2006.0 recommended us-
ing the full series expansion (up to the maximum available 
degree and order). However, for the comparison with the 
GOCO02S results we used the same maximum degree of 
expansion for all three models. 

The GOCO02S and EGM08 coefficients were used 
to generate (free-air) gravity anomalies. The regional map 
of the GOCO02S gravity anomalies is shown in Fig. 1. 
The GOCO02S gravity anomalies vary between -182 and  
217 mGal with the mean of -10 mGal and the standard de-
viation is 39 mGal. The differences between the GOCO02S 
and EGM08 gravity anomalies within the study area are 
shown in Fig. 2. These differences vary from -51 to 60 mGal;  
the mean and RMS of differences are 0 and 7 mGal respec-
tively. 

The DTM2006.0 coefficients were used to generate the 
topographic bias according to Eq. (7). The result is shown in 
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Fig. 3. The topographic bias within the study area is every-
where positive and reaches the maxima of 3.7 m. The mean 
value is 0.4 m and the standard deviation is 0.8 m. 

The geoid-to-quasigeoid correction was computed ac-
cording to Eq. (6) using the GOCO02S and DTM2006.0 
coefficients. The result is shown in Fig. 4. It varies between 

-0.15 and 3.62 m with the mean of 0.32 m and the standard 
deviation is 0.80 m. The same computation was done using 
the EGM08 and DTM2006.0 coefficients. The differences 
between the values of the geoid-to-quasigeoid correction 
computed using the GOCO02S and EGM08 coefficients 
(complete to spherical harmonic degree 250) are shown in 

Fig. 1. GOCO02S gravity anomalies generated on a 1 × 1 arc-deg geographical grid with a spectral resolution complete to spherical harmonic degree 
250. Values are in mGal.

Fig. 2. Differences between the GOCO02S and EGM08 gravity anomalies generated on a 1 × 1 arc-deg geographical grid with a spectral resolution 
complete to spherical harmonic degree 250. Values are in mGal.
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Fig. 5. These differences are between -0.20 and 0.13 m; the 
mean and RMS of differences are 0.00 and 0.01 m respec-
tively. 

4. dISCUSSIOn

The practical computation of the geoid-to-quasigeoid 

correction according to Eq. (6) was done in two numerical 
steps. First, the disturbing potential values at the surface and 
geoid points were generated from the GOCO02S (as well 
as EGM08) coefficients. The topographic bias term was 
then calculated using the DTM2006.0 coefficients. As seen 
from the results in Figs. 3 and 4, the topographic bias rep-
resents a significant contribution to the geoid-to-quasigeoid  

Fig. 3. Topographic bias generated on a 1 × 1 arc-deg geographical grid using the DTM2006.0 coefficients complete to degree/order 250. Values 
are in meters. 

Fig. 4. Geoid-to-quasigeoid separation generated on a 1 × 1 arc-deg geographical grid using the GOCO02S and DTM2006.0 coefficients complete 
to spherical harmonic degree 250. Values are in meters.
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correction. According to Sjöberg and Bagherbandi (2012), 
this contribution is about 90%, while only about 10% is at-
tributed to the disturbing potential term. The topographic 
bias in Eq. (7) is defined as a function of variable topog-
raphy while adopting a constant topographic density. This 
term is thus strongly correlated with the height of computa-
tion point as well with the surrounding terrain configuration 
(especially in the close proximity of computation point). 
The consideration of surrounding terrain in the topographic 
bias is the principal difference compared to the approximate 
definition in Eq. (4), where only the topographic height of 
computation point is taken into account in the functional 
model. For a more accurate computation, the constant top-
ographic density in Eq. (7) should be replaced by a more 
realistic mathematical model of the actual topographic den-
sity distribution. Since current knowledge about the actual 
density distribution is still restricted by the lack of geologi-
cal (rock density) data especially in the chosen study area, 
consideration of a more realistic density model is not appli-
cable. Another substantial difference between the approxi-
mate and accurate computational models in Eqs. (4) and 
(6) is associated to a different definition of gravity values. 
In the approximate formula [Eq. (4)], the free-air gravity 
value at computation surface point is assumed. Note that 
the Bouguer gravity reduction is here formally considered 
as the topographic term [with analogy to the topographic 
bias in Eq. (6)]. Conversely, the difference between the dis-
turbing potential values on the surface and geoid points in 
the first two constituents on the right-hand side of Eq. (6) 
equals the integral mean of the gravity disturbance along the 

plumbline within the topography (multiplied by the topo-
graphical height). Hence, the approximate definition in Eq. 
(4) uses the free-air gravity anomaly at the surface point, 
while the accurate model utilizes implicitly the mean value 
of the gravity disturbance along the plumbline within the 
topography. For more details about these theoretical aspects 
of a rigorous definition of the geoid-to-quasigeoid correc-
tion we refer readers to Tenzer et al. (2006). 

The inaccuracies in computed values of the geoid-to-
quasigeoid correction are mainly due to three sources of 
errors. The largest contribution to the total error budget 
is more likely due to uncertainties within the actual topo-
graphic mass density distribution. The approximation error 
due to using the constant topo-density value introduces the 
same relative error in the computed topographic bias, pro-
vided that the density errors propagate proportionally to the 
errors in the topographic bias. For the maximum value of 
the topographic bias of 3.7 m (see Fig. 3), the relative den-
sity error of 10% corresponds to the maximum error in com-
puted topographic bias of about 37 cm. It is obvious that the 
largest errors due to density uncertainties are mainly found 
in mountainous regions with variable geological structure. 
The inaccuracies in computed correction values caused by 
the errors of terrain model can formally be attributed to the 
height error of computation point and the height errors with-
in surrounding terrain configuration. If the height errors of 
surrounding terrain have a prevailing random character, they 
cancel out by averaging. The most significant then becomes 
the errors in heights of computation points. To quantify 
this error, we can use the approximate formula in Eq. (4).  

Fig. 5. Differences between the GOCO02S and EGM08 values of the geoid-to-quasigeoid separation computed on a 1 × 1 arc-deg geographical grid. 
Units are in m. The topographic bias for both GGM solutions was computed using DTM2006.0.
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When substituting from Eq. (5) to Eq. (4), it is clear that 
the largest inaccuracy in the computed value of the geoid-
to-quasigeoid correction is due to the height uncertainty in 
the computed Bouguer reduction term. An error analysis ac-
cording to the Gauss error propagation law reveals that the 
errors in computed correction are Nfg -  related to the height 
error Hf  via G H4N o

t
H

1,f r t c fg -
- . For the maximum topo-

graphic heights (< 9 km), the height error of 10 m causes the 
error of about 2 cm in the geoid-to-quasigeoid correction. 
For the elevation of 1 km, the same height error of 10 m 
causes an inaccuracy in the computed correction value of 
only about 2 mm. In our numerical realization, the errors 
in computed correction are due to the DTM2006.0 omis-
sion and commission errors. The third main source of er-
ror is due to the uncertainties in input gravity data. In our 
numerical scheme these errors are due to the omission and 
commission errors of used GGMs. Here we investigated the 
errors as a result of the EGM08 commission errors at me-
dium wavelengths. This has been done by comparing the 
GOCO02S and EGM08 results. This comparison revealed 
large differences. As seen in Fig. 2, the differences in the 
computed (free-air) gravity anomalies are within ±60 mGal. 
The corresponding differences in the geoidal heights shown 
in Fig. 4 are within ±0.2 m. We note that the differences in 
the computed values of the geoid-to-quasigeoid correction 
very closely agree with the geoid/quasigeoid height differ-
ences between GOCO02S and EGM08. The differences in 
computed values of the gravity anomalies and geoid/quasi-
geoid are obviously highly spatially correlated but the grav-
ity differences have a prevailing higher-frequency pattern. 
As also seen in Figs. 2 and 4, the spatial structure of these 

Fig. 6. Approximation errors in the computed values of the geoid-to-quasigeoid separation using Eq. (4). Values are in meters. 

differences indicates that they are attributed to a medium-
wavelength GGM spectrum. This is confirmed based on the 
analysis of the degree and cumulative geoidal height dif-
ferences between GOCO02S and EGM08 (see Fig. 6). The 
cumulative geoid height differences Nf  up to degree N were 
computed from

n 2=
R C S, ,N n m n m

N
2 2f d d= +

m

n

0=
^ h//        (9)

where C ,n md  and S ,n md  are the differences between the GO-
CO02S and EGM08 coefficients. The corresponding degree 
geoid height differences nf  were computed as 

R C S, ,n n m n m
2 2f d d= +

m

n

0=
^ h/      (10)

The significant degree geoid height differences are 
seen approximately above spherical harmonic degree 100. 
It was demonstrated in recent studies that the GOCE grav-
ity gradiometry data improved the accuracy of the GGM 
coefficients at this part of the gravity spectrum (see e.g., 
Pail et al. 2010; Goiginger et al. 2011). The low degrees of 
GOCO02S are primarily determined by GRACE, whereas 
the GOCE gravity gradiometry observables start to signifi-
cantly contribute at degree about 100. Beyond degree 150, 
the combined model is dominated mainly by GOCE.

In geodetic literature (e.g., Heiskanen and Moritz 
1967), the geoid-to-quasigeoid correction is conventionally 
defined approximately as the difference between Helmert’s  
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(1890) orthometric and Molodensky’s (1945) normal 
heights. The resulting formula for computing this correction 
is then defined as a function of the planar simple Bouguer 
gravity anomaly and the topographic height of computation 
point [cf. Eq. (4)]. However, this approximation yields large 
errors in the computed correction values, particularly in 
mountainous regions. Santos et al. (2006) demonstrated that 
the inaccuracies revealed via numerical examples at the study 
area situated in the Rocky Mountains using Helmert’s ortho-
metric heights can reach centimeters and locally even deci-
meters. The computation thus typically requires the applica-
tion of a more accurate formula [which is given in Eq. (6)].  
The inaccuracy caused by using the approximate expression 
in Eq. (4) for computing the geoid-to-quasigeoid correction 
is shown in Fig. 7. The approximation errors [i.e., differences 
between the solutions obtained using accurate and approxi-
mate formulas in Eqs. (6) and (4) respectively] are between 
1.56 and -0.67 m; the mean and RMS of approximation er-
rors are -0.07 and 0.14 m respectively. The largest positive 
differences were found at computation points of which el-
evations to exceed about 5 km. The values of the geoid-
to-quasigeoid correction computed according to Eq. (6) are 
thus significantly larger than the corresponding values com-
puted using the approximate formula in Eq. (4). Bretterbau-
er (1986) assumed that the relation between the geoid-to-
quasigeoid correction and elevation is linear. The non-linear 
increase of this correction with elevation was demonstrated, 
for instance, by Flury and Rummel (2009). The non-linear 
character between these two quantities is seen also in Fig. 8.  
The correlation between these two quantities is 0.95. 

5. SUMMARy And COnClUSIOnS

We have applied accurate expression for computing 
the geoid-to-quasigeoid correction at the study area where 

this correction reaches global maxima. The expression 
which utilizes the spherical harmonic representations of the 
Earth’s gravity field and topography was used to calculate 
this correction. The topographic bias was computed using 
the DTM2006.0 coefficients. The correction term related to 
the gravity field (disturbing potential values at surface and 
geoid points) was evaluated using GOCO02S and compared 
with the results obtained from EGM08. All values were 
computed with a spectral resolution complete to degree 250 
of spherical harmonics (which is the maximum resolution 
of GOCO02S). The constant value of topographic density 
2670 kg m-3 was adopted. The computed correction values 
were compared with the corresponding results obtained af-
ter using the approximate formula. The results were then 
compared and analyzed. 

Our results revealed that the geoid-quasigeoid correc-
tion (computed with a spectral resolution up to degree/or-
der 250) vary between -0.15 and 3.62 m. This correction is 
highly correlated with the topography with the maxima at 
computation points with the largest elevations. These val-
ues differ significantly from the values computed using the 
approximate formula. The geoid-to-quasigeoid correction 
computed approximately reaches the maxima up to about  
2 m. This value is much smaller than the maximum of 3.62 m  
obtained when using the accurate formula (computed for the 
maximum degree 250 of spherical harmonics). Sjöberg and 
Bagherbandi (2012) estimated that the maximum value of 
this geoid-to-quasigeoid correction is 5.47 m when using 
the EGM08 and DTM2006.0 coefficients with a spectral 
resolution complete to degree 2160 of spherical harmonics. 
The errors due to using the approximate formula [in Eq. (4)] 
thus can even exceed the value of the correction itself. 

The GOCE gravity gradiometry data improved the ac-
curacy of GGMs especially at medium wavelengths (within 
a frequency bound from about 100 to 250 of spherical har-

Fig. 7. Scatter plot of the geoid-to-quasigeoid separation with the heights of observation points.
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monics). Our results have shown that this improvement is 
significant; the differences found between the computed GO-
CO02S and EGM08 gravity field quantities reach ±60 mGal  
(for the gravity anomalies) and ±0.2 m (for geoid-to-quasi-
geoid correction and consequently also the geoid/quasigeoid 
heights). These results indicate that the EGM08 commis-
sion errors at medium wavelengths cause almost the same 
errors in computed correction values as the topo-density 
uncertainties. 

Acknowledgements  The Swedish National Space Board 
(SNSB) is cordially acknowledged for financial support of 
the project No. 76/10:1.

REfEREnCES

Ågren, J., 2004: The analytical continuation bias in geoid 
determination using potential coefficients and terrestri-
al gravity data. J. Geodesy, 78, 314-332, doi: 10.1007/
s00190-004-0395-0. [Link]

Bretterbauer, K., 1986: Das Höhenproblem in der Geodäsie. 
Österreichische Zeitschrift für Vermessungswesen und 
Photogrammetrie, 74, 205-215.

Bruns, H., 1878: Die Figur der Erde. Ein Beitrag zur europäis-
chen Gradmessung. Publication des Königl, Preussis-
chen geodätischen Institutes, Berlin, P. Stankiewicz.

Flury, J. and R. Rummel, 2009: On the geoid-quasigeoid 
separation in mountain areas. J. Geodesy, 83, 829-847, 
doi: 10.1007/s00190-009-0302-9. [Link]

Goiginger, H., D. Rieser, T. Mayer-Guerr, R. Pail, W.-D. 
Schuh, A. Jäggi, and A. Maier, 2011: GOCO, Consor-
tium: The combined satellite-only global gravity field 
model GOCO02S, European Geosciences Union Gen-
eral Assembly 2011, Wien, 04.04.2011.

Heiskanen, W. A. and H. Moritz, 1967: Physical Geodesy. 

Fig. 8. Degree and cumulative geoidal height differences between the GOCO02S and EGM08 coefficients evaluated up to spherical harmonic 
degree 250.

(a) (b)

W. H. Freeman & Co Ltd, San Francisco, 364 pp.
Helmert, F. R., 1890: Die Schwerkraft im Hochgebirge, ins-

besondere in den Tyroler Alpen. Veröff. Königl. Preuss. 
Geod. Inst., No. 1. 

Hinze, W. J., 2003: Bouguer reduction density, why 2.67? 
Geophysics, 68, 1559-1560, doi: 10.1190/1.1620629. 
[Link]

Hwang, C. and Y. S. Hsiao, 2003: Orthometric corrections 
from leveling, gravity, density and elevation data: A 
case study in Taiwan. J. Geodesy, 77, 279-291.

Mader, K., 1954: Die orthometrische Schwerekorrektion 
des Präzisions-Nivellements in den Hohen Tauern. Ös-
terreichische Zeitschrift für Vermessungswesen, Son-
derheft 15.

Molodensky, M. S., 1945: Fundamental Problems of Geo-
detic Gravimetry, TRUDY Ts NIIGAIK, 42, Geodez-
izdat, Moscow. (in Russian)

Molodensky, M. S., 1948: External gravity field and the 
shape of the Earth surface. Izv. CCCP, Moscow. (in 
Russian)

Molodensky, M. S., V. F. Yeremeev, and M. I. Yurkina, 
1960: Methods for study of the external gravitational 
field and figure of the Earth. TRUDY Ts NIIGAiK, 
131, Geodezizdat, Moscow. (in Russian)

Moritz, H., 1980: Advanced physical geodesy. Series: Sam-
mlung Wichmann: Neue Folge: Buchreihe; Bd. 13, 
Published by Wichmann, Abacus Press in Karlsruhe, 
Tunbridge, Eng.

Niethammer, T., 1932: Nivellement und Schwere als Mittel 
zur Berechnung wahrer Meereshöhen. Schweizerische 
Geodätische Kommission.

Pail, R., H. Goiginger, W.-D. Schuh, E. Höck, J. M. Brock-
mann, T. Fecher, T. Gruber, T. Mayer-Gürr, J. Kusche, 
A. Jäggi, and D. Rieser, 2010: Combined satellite 
gravity field model GOCO01S derived from GOCE 

http://dx.doi.org/10.1007/s00190-004-0395-0
http://dx.doi.org/10.1007/s00190-009-0302-9
http://dx.doi.org/10.1190/1.1620629


Mohammad Bagherbandi & Robert Tenzer68

and GRACE. Geophys. Res. Lett., 37, L20314, doi: 
10.1029/2010GL044906. [Link]

Pavlis, N. K., J. K. Factor, and S. A. Holmes, 2007: Terrain-
Related Gravimetric Quantities Computed for the Next 
EGM. Presented at the 1st International symposium 
of the International gravity service 2006, August 28 - 
September 1, Istanbul, Turkey.

Pavlis, N. K., S. A. Holmes, S. C. Kenyon, and J. K. Fac-
tor, 2012: The development and evaluation of the 
Earth Gravitational Model 2008 (EGM2008). J. Geo-
phys. Res., 117, B04406, doi: 10.1029/2011JB008916. 
[Link]

 Santos, M. C., P. Vaníček, W. E. Featherstone, R. Kingdon, 
A. Ellmann, B.-A. Martin, M. Kuhn, and R. Tenzer, 
2006: The relation between rigorous and Helmert’s 
definitions of orthometric heights. J. Geodesy, 80, 691-
704, doi: 10.1007/s00190-006-0086-0. [Link]

Sjöberg, L. E., 2006: A refined conversion from normal 
height to orthometric height. Stud. Geophys. Geod., 50, 
595-606, doi: 10.1007/s11200-006-0037-5. [Link]

Sjöberg, L. E., 2007: The topographic bias by analytical 
continuation in physical geodesy. J. Geodesy, 81, 345-
350, doi: 10.1007/s00190-006-0112-2. [Link]

Sjöberg, L. E. and M. Bagherbandi, 2012: Quasigeoid-to-
geoid determination by EGM08. Earth Sci. Inform., 5, 
87-91, doi: 10.1007/s12145-012-0098-7. [Link]

Somigliana, C., 1929: Teoria Generale del Campo Gravitazi-
onale dell’Ellisoide di Rotazione. Memoire della Soci-
eta Astronomica Italiana, IV.

Tenzer, R., 2004: Discussion of mean gravity along the 
plumbline. Stud. Geophys. Geod., 48, 309-330, doi: 10
.1023/B:SGEG.0000020835.10209.7f. [Link]

Tenzer, R., P. Vaníček, M. Santos, W. E. Featherstone, and 
M. Kuhn, 2005: The rigorous determination of ortho-
metric heights. J. Geodesy, 79, 82-92, doi: 10.1007/s00 
190-005-0445-2. [Link]

Tenzer, R., P. Novák, P. Moore, M. Kuhn, and P. Vaníček, 
2006: Explicit formula for the geoid-quasigeoid separa-
tion. Stud. Geophys. Geod., 50, 607-618, doi: 10.1007/
s11200-006-0038-4. [Link]

http://dx.doi.org/10.1029/2010GL044906
http://dx.doi.org/10.1029/2011JB008916
http://dx.doi.org/10.1007/s00190-006-0086-0
http://dx.doi.org/10.1007/s11200-006-0037-5
http://dx.doi.org/10.1007/s00190-006-0112-2
http://dx.doi.org/10.1007/s12145-012-0098-7
http://dx.doi.org/10.1023/B:SGEG.0000020835.10209.7f
http://dx.doi.org/10.1007/s00190-005-0445-2
http://dx.doi.org/10.1007/s11200-006-0038-4

