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ABSTRACT

The Yuli Belt exposed in the retro-wedge of the eastern part of the Taiwan 
orogen hosts slivers of a heterogeneous unit of blueschist-facies rocks. However, 
the question pertaining to its palaeogeographic provenance is still debated despite 
new geochronological data. This is largely because the structural geometries and 
kinematics of the Yuli Belt’s tectonic contacts with its adjacent units are improperly 
understood. This paper presents new structural data from field work along several 
river transects in the Yuli Belt, which we combine with published data into a new 
tectonic model. Fieldwork and microstructural analyses indicate three deformation 
phases in the Yuli Belt. Based on cross sections and a review of available P-T-t data, 
we suspect that blueschist-facies units could have been emplaced on top of green-
schist-facies metasedimentary units along a thrust during a first deformation phase 
D1. This assembly was later thrust over the Eurasian-derived Tailuko Belt along 
the Shoufeng Fault during D2, as suggested by W-plunging stretching lineations on 
fault-parallel foliation planes. D3 produced E-vergent folds with W- to NW-dipping 
axial planes, refolding earlier foliations as well as the D1 nappe contact. We suspect 
that this E-vergent folding could be related to top-E backthrusting observed along the 
Shoufeng Fault, involving its reorientation from an initially E-dipping to a presently 
W-dipping contact. The blueschist-facies metamorphic unit of the Yuli Belt likely 
represents a mid-Miocene fragment of oceanic crust and mantle issued in the South 
China Sea. It could hence be considered as part of the suture between the Eurasian 
and the Philippine Sea plates.
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1. INTRODUCTION

Sutures or suture zones are variably sized allochtho-
nous tectonic units occurring in every collisional orogen, 
separating tectonic units of contrasting palaeogeographic 
origin (Gansser 1964, 1980; Dewey 1987; Grasemann and 
Huet 2016). They typically contain ophiolitic fragments 
that represent relics of formerly larger amounts of oceanic 
crust and mantle lithosphere initially separating the conti-
nental units before subduction (Moores 1970; Moores and 
Vine 1971; Gansser 1980; Condie 2016). Put more simply, 
sutures are fossil collisional plate boundaries. Quite often, 
sutures form brittle or mylonitic shear zones that accom-
modated large amounts of contractional strain, providing 

testimony of plate convergence. Sutures regularly represent 
strongly tectonised zones with large lithological and meta-
morphic heterogeneity of mappable units, which are further-
more often spatially disrupted. Among the many heteroge-
neous lithologies encountered in suture zones, high-pressure 
metamorphosed rocks always receive particular attention, 
because they provide undisputable proof for subduction pro-
cesses preceding collision (e.g., Stern 2005). This is also the 
case for the famous Yuli Belt of Taiwan, a tectonic unit on 
the eastern side of Taiwan’s Central Range (Fig. 1). Its oc-
currences of blueschist-facies rocks have been the focus of 
continued petrological and geochronological investigations 
since the pioneering work of Yen (1959). The Yuli Belt con-
tains lithologically heterogeneous blueschist-facies rocks in 
what is referred to as tectonic or exotic blocks (Table 1), 
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which, according to numerous authors (e.g., Jahn and Liou 
1977; Liou 1981; Yui et al. 2012; Tsai et al. 2013), are sur-
rounded by an intensely deformed metasedimentary unit of 
lower metamorphic grade (Table 1 and Fig. 2). Internally, 
some of the high-pressure blocks are considered tectonic 
mélanges themselves, exhibiting four petrographically dif-
ferent types of glaucophane-bearing rocks (Tsai et al. 2013) 
with intervening metasediments such as garnet-bearing 
blackschists (Beyssac et al. 2008) or garnet paragonite mica 
schists (Keyser et al. 2016). Recent geochronological work 
on the blueschists has yielded a Lu-Hf age of 5.1 ± 1.7 Ma 
(Sandmann et al. 2015; see Table 2 for an overview of hith-
erto obtained geochronological data from the Yuli Belt) – 
rendering it one of the youngest blueschists belts worldwide 
(Ota and Kaneko 2010).

The metasedimentary unit of the Yuli Belt (i.e., all units 
other than the aforementioned blueschist-bearing tectonic 
blocks) has been differentiated into four units (Wang et al. 
1992; Yi et al. 2012), namely the Hutoushan Schists, Sen-
jung Schists, Hungyeh Schists, and Albite spotted Schists. 
In the case of the first three units, lack of metamorphic index 
minerals and lithological similarities (mostly metapelitic to 
metapsammitic schists with variable amounts of carbona-
ceous matter) make it challenging to map differences be-
tween these lower amphibolite- to greenschist-facies units 
in terms of their structural position within the Yuli Belt. The 
sole more diagnostic lithology within the metasedimentary 
unit are the albite-bearing spotted schists (e.g., Yang and 
Wang 1985; see Table 1 for further references; Fig. 2).

The kinematics of the Shoufeng Fault, the tectonic 
contact between the Yuli Belt and the westerly adjacent Tai-
luko unit (Yen 1963), are little investigated. Lin et al. (1984) 
described the Shoufeng Fault as an NNE-striking and 70 - 
80°W-dipping and topographically discernible feature, but 
no outcrop-scale faults were found. Recent geological maps 
(e.g., Lin and Chen 2016) depict the Shoufeng Fault essen-
tially unchanged since Ho (1986). Chen et al. (2017) revised 
the fault trace (Fig. 2). However, the tectonic relationship 
between blueschist-facies units and the metasedimentary 
unit is poorly constrained.

In this study, we reinvestigated the tectonic evolution 
of the Yuli Belt with particular emphasis on the structural 
relationships between its blueschist-facies rocks and the 
metasedimentary unit. We build on recent geochronological 
results (e.g., Chen et al. 2017), incorporating own structural 
data from several river transects. Three new cross-sections 
across the Yuli Belt were constructed, suggesting that the 
blueschist-facies unit tectonically overlies the metasedi-
mentary unit along a thrust that was later tightly folded 
together with the adjacent units of the Yuli Belt. Finally, 
relying on a simple plate tectonic reconstruction, we suggest 
that the Yuli Belt blueschist-facies unit could have originat-
ed from the oceanic crust of the South China Sea before its 
subduction below the Philippine Sea Plate. Since this unit 

at present occupies a structural position between series de-
rived from Eurasia and those from the Philippine Sea Plate, 
it represents part of the suture zone.

2. PLATE TECTONIC SETTING AND REGIONAL 
GEOLOGY

Several geodynamic events have shaped Taiwan 
throughout the Cenozoic (Fig. 3). The collision between the 
Eurasian passive continental margin and the Luzon island 
arc of the overriding Philippine Sea plate formed (and keeps 
forming) the spectacular topography of the Taiwan mountain 
belt since about 4 to 6 Ma (Chang and Chi 1983; Suppe 1984; 
Teng 1990; Yu and Chou 2001; Lee et al. 2015; Fig. 1). The 
Philippine Sea plate moves towards NW at 60 - 90 mm yr-1 
(e.g., Seno 1977; Yu et al. 1997). In the south of Taiwan, 
Eurasian lithosphere subducts southeastward underneath the 
Philippine Sea plate. This geometry is inherited from the in-
tra-oceanic subduction of South China Sea lithosphere under-
neath the Philippine Sea plate, which commenced after the 
end of spreading in the South China Sea at around the early 
Middle Miocene (c. 16 Ma; Taylor and Hayes 1983; Sibuet 
et al. 2002; Fig. 3). While intra-oceanic subduction still pre-
vails south of Taiwan along the Manila trench (e.g., Angelier 
1986; Reed et al. 1992; Malavieille et al. 2002), advanced 
collisional shortening on the island of Taiwan has already 
led to the exposure of blueschist-facies rocks in the Yuli Belt 
of the eastern Central Range (Huang et al. 2006; Yui et al. 
2012; Fig. 2).

Spreading of the South China Sea commenced at ap-
proximately 34 Ma (e.g., IODP Site U1435; Li et al. 2017) 
and stopped at c. 15.5 Ma (based on magnetic anomalies; 
Taylor and Hayes 1983; Briais et al. 1993; Sibuet et al. 
2002). Subsequently, the oceanic lithosphere of the South 
China Sea started subducting under the Philippine Sea 
Plate as early as c. 15 - 16 Ma (Huang et al. 2006). This 
was inferred from ages of island arc rocks from Taiwan’s 
Coastal Range, which forms a northward extension of the 
Luzon arc. Magmatism in the Coastal Range commenced 
in Early to Middle Miocene, as recorded by Rb-Sr, K-Ar, 
Ar-Ar, and fission track geochronological studies (e.g., Chi 
et al. 1981; Richard et al. 1986; Juang and Chen 1990; Lo 
et al. 1994; Lo and Yui 1996; Fig. 3). This is supported by 
more recently obtained U-Pb zircon ages of c. 14.2 Ma in 
the Chimei complex (Shao et al. 2015). Geochronological 
studies on the East Taiwan Ophiolite (ETO) contained Lichi 
Mélange yielded U-Pb magmatic zircon ages of 14 - 17 Ma 
(Shao et al. 2015; Hsieh et al. 2017; Huang et al. 2018; Lin 
et al. 2019). Similar ages of 15.6 ± 0.3 and 16.0 Ma were 
also obtained by U-Pb dating of zircons from blueschists 
in the Yuli Belt (Chen et al. 2017), suggesting very similar 
early Middle Miocene protolith ages as for the mafic rocks 
in the ETO (Table 1 and Fig. 3).

The five major morphotectonic units making up the 
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(a)

(b)

Fig. 1. Plate tectonic map of Taiwan and its greater surroundings showing main tectonic units. The Philippine Sea Plate moves towards the Eurasian 
Plate at a rate of c. 60 - 90 mm yr-1 and subducts underneath it along the Ryukyu trench. The South China Sea (part of Eurasian Plate) subducts be-
neath the Philippine Sea Plate along the Manila Trench. The extinct South China Sea spreading ridge and magnetic lineations after Yeh et al. (2010); 
global topography model ETOPO1 (Amante and Eakins 2009); continent-ocean boundary (COB) from Sibuet et al. (2016).

Rock type Protolith Age Inferred Origin

Yuli Belt

Matrix
albite-garnet prophyroblastic schists 

(“spotted schists”) 1, 2, 3, 4 terrigenous clay? protolith ages 
unknown

paragonite-white mica metapelitic schists 5 pelagic clay?

Tectonic 
blocks

serpentinite 6 peridotite

protolith ages 
unknown Middle-Late Miocene 

accretionary prism 15, 16 PSP fore-arc 12, 17

rodingite 6 metasomatized mafics

meta-gabbro 7 gabbro

meta-plagiogranite 8 plagiogranite

epidote amphibolite 7, 8, 9, 10 gabbro, basalt

greenschist 7, 8 basalt

garnet-epidote amphibolite 6 tuff, basalt?

glaucophane schists 9, 10, 11, 12, 13, 14 tuff, basaltic andesite, 
Mn-rich pelagic clay? ~15 Ma 16, 18

Lichi Mélange

Matrix Sheared mudstone without stratification 3.5 - 3.7 Ma a, b, c; 
3.4 - 4.3 Ma i

Tectonic 
blocks

ophiolitic rocks (East Taiwan Ophiolite/ETO), incl. Ultramafics 
(serpentinized harzburgite, serpentinite breccia) d, e, gabbro f, dikes of 

dolerite and plagiogranite g, pillow basalts f

Mid-Late  
Miocene f, h, j SCS d, e, f

sedimentary rocks Mio-Pliocene a, b SCS d, e

Table 1. Comparison of the Yuli Belt and the Lichi mélange.

Note:  References for Yuli Belt: 1: Yang and Lin 1982; 2: Lin et al. 1984; 3: Yang and Wang 1985; 4: Chiang 2003; 5: Shen and Yang 1996; 6: Lan 
and Liou 1981; 7: Liou 1981; 8: Lan and Liou 1984; 9: Yen 1966; 10: Liou et al. 1975; 11: Jahn and Liou 1977; 12: Jahn et al. 1981; 13: Lo 
and Yui 1996; 14: Juang and Bellon 1986; 15: Liou and Ernst 1984; 16: Chen et al. 2017; 17: Beyssac et al. 2008; 18: Lo et al. 2020. Refer-
ences for Lichi Mélange: a: Chi et al. 1981; b: Chang and Chi 1983; c: Barrier and Muller 1984; d: Suppe and Liou 1979; e: Suppe 1984; f: 
Lin et al. 2019; g: Shen et al. 1984; h: Suppe et al. 1977; i: Chen et al. 2015; j: Lo et al. 2020.
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Fig. 2. Geological map of the metamorphic units exposed in the eastern part of Taiwan’s Central Range (modified after Lin and Chen 2016). The 
Lichi Mélange is after Huang et al. (2006). The Yuli Belt hosts exotic blueschist-facies meta-igneous and ultramafic rocks (Hm) that we consider 
tectonically emplaced on top of an amphibolite- to greenschist-facies, polyphasely deformed metasedimentary unit (Yl). The diagonally dashed 
area of the Yuli Belt is adopted from Chen et al. 2017. Occurrences of spotted schists (Sp) are based on Yi et al. (2012) and Lo (2018). Locations 
of outcrops in Fig. 7 and thin sections in Fig. 9 are marked by small letters. Longitudinal Valley Fault (LVF) is from Shyu et al. (2005). Geological 
units outside Tananao Complex and Chulai Formation are not differentiated. Sources for the geochronological data in superscripts: 1: 3.3 ± 1.7 Ma 
(Yui et al. 2014); 2: 5.1 ± 1.7 Ma (Sandmann et al. 2015); 3: 15.4 - 16.0 Ma for blueschist; 1900 - 1700, 1000 - 900, 850 - 700, 200 - 65, and 65 - 8 
Ma for metasediments (Chen et al. 2017).
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Fig. 3. Tectonostratigraphic chart reviewing timing of major geodynamic events around Taiwan. Recent geochronological ages are highlighted. 
Note discrepancies on the onset of continent-arc collision and uncertainties on the timing of pre-collisional metamorphism in the Yuli Belt. Sources: 
(1) Taylor and Hayes 1983; (2) Briais et al. 1993; (3) Sibuet et al. 2002; (4) Hsu et al. 2004; (5) Lan et al. 1996; (6) Richard et al. 1986; (7) Juang 
1988; (8) Juang and Chen 1990; (9) Lo et al. 1994; (10) Chen et al. 1992; (11) Yang et al. 1995; (12) Lin and Watts 2002 and Lin et al. 2003; (13) 
Pelletier and Stephan 1986; (14) Page and Lan 1983; (15) Chang and Chi 1983; (16) Huang et al. 1983; (17) Jahn and Liou 1977; (18) Jahn et al. 
1981; (19) Juang and Bellon 1986; (20) Lo and Yui 1996; (21) Yu and Chou 2001; (22) Chi et al. 1981; (23) Huang et al. 2006; (24) Chen et al. 2001; 
(25) Tian et al. 2019; (26) Chen et al. 2017; (27) Hsieh et al. 2017; (28) Lin et al. 2019; (29) Huang et al. 2018; (30) Teng 1990; (31) Sandmann et 
al. 2015; (32) Yui et al. 2014. Geologic time scale after Gradstein et al. (2012).
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Taiwan mountain belt are illustrated as tectonostratigraphic 
columns in Fig. 4 (Ho 1986; Chen and Wang 1995). From 
west to east and separated by major faults, these are the 
Western Foothills, the Hsuehshan Range, the Backbone 
Slates, the Tananao Complex, and the Coastal Range. Ta-
nanao Complex and Coastal Range are separated by the 
Longitudinal Valley Fault (LVF, Figs. 2 and 4). Units west 
of the LVF are derived from the Eurasian Plate. The West-
ern Foothills, the Hsuehshan Range, and the Backbone 
Slates comprise the imbricated, parautochthonous Cenozoic 
passive margin sequence of sandstones, conglomerates, ar-
gillites and slates structurally below the Tananao Complex 
(e.g., Yue et al. 2005; Beyssac et al. 2008). The deformation 
of those three imbricates involves the pro-wedge of Taiwan 
fold-and-thrust belt with the earliest fabrics of east-dipping 
bedding planes (S0) and slaty cleavage (S1) (e.g., Pelletier 
and Hu 1984; Fisher et al. 2007; Naylor and Sinclair 2007; 
Supplementary, Table S1). East of the LVF is the Coastal 
Range, consisting of Neogene calc-alkaline arc volcanics 
and associated volcanodetrital sediments, as well as the 
Huatung forearc basin deposits (e.g., Huang et al. 2018). A 
progressive increase in continental contamination of andes-
itic magmas correlates with progressively younger ages in 
Coastal Range volcanic rocks (e.g., Chi et al. 1981; Dorsey 
1992; Shao et al. 2015). The transition from oceanic to in-
cipient continental subduction likely induced the subduction 
of a slice of the forearc lithosphere (e.g., Malavieille et al. 
2002; Wu et al. 2008; Sandmann et al. 2015). The forearc 
lithosphere of the Philippine Sea Plate is suspected to sub-
duct beneath the Coastal Range at about 22°N and is prob-
ably absent north of 24°N, shortly before the cessation of 
island-arc magmatism (Kao et al. 2000; Sibuet et al. 2002; 
Shyu et al. 2011).

The Tananao Complex crops out as a narrow belt west 
of the LVF and bears evidence of polymetamorphism and 
multiple deformations (e.g., Ernst and Jahn 1987). Tradi-
tional nomenclature subdivides the Tananao Complex into 
the western Tailuko Belt and the eastern Yuli Belt (Ho 
1986; Chen and Wang 1995), separated by the Shoufeng 
Fault (Yen 1963; Figs. 2 and 4). The Tailuko Belt consists 
of Permian marbles, variegated Mesozoic metapelites, and 
greenschists (Liou 1981), intruded by the Late Cretaceous 
Kanagan granitic gneiss (Jahn et al. 1986; Figs. 2 and 4). The 
Yuli Belt is dominantly composed of greenschist facies, of-
ten highly carbonaceous quartz-mica schists with blocks of 
metabasites up to blueschist facies (Fig. 2). Three larger ex-
posures of these blocks are the Wanjung, Juisui, and Chinsui 
Hsi areas (Yen 1963; Liou et al. 1975; Liou and Ernst 1984; 
Yui and Lo 1989; Tsai et al. 2013; Table 2 and Fig. 2). The 
Yuli Belt’s eastern contact with the Eocene (?) Chulai For-
mation of the Backbone Slates is a sharp boundary in terms 
of lithology and metamorphic grade, previously interpreted 
as an unconformity (Stanley et al. 1981; Ho 1986). How-
ever, based on comparable ages on detrital zircons from the 

Yuli Belt metasediments and the northern part of the Chulai 
Formation (Lin and Chen 2016) as young as Miocene, the 
Chulai Formation has been recently reinterpreted as part of 
the metasediments of the Yuli Belt (e.g., Chen et al. 2017, 
2019; Conand et al. 2020).

3. NEW MESO- TO MICROSCALE 
OBSERVATIONS IN THE YULI BELT

3.1 Mesoscale Structures in the Metasedimentary Unit

We made new outcrop-scale structural observations 
in the metasedimentary unit along several rivers cross-
ing the Yuli Belt (Fig. 2). Mutual overprinting relation-
ships between the observed structural elements suggest 
that they were formed during three successive deforma-
tion phases, termed D1, D2, and D3 in the following  
(Figs. 5, 6, 7, and 8). The S1 foliation forms a compositional 
layering, discernible for instance in the often graphite-rich 
metapelites to metasandstones in the Mugua Hsi area, where 
it is found to be overprinted by a moderately NW- to W-
dipping S2 foliation developing a spaced crenulation or 
pressure-solution cleavage (Figs. 7a and 8-1). Closer to the 
Shoufeng Fault, e.g. along the Shoufeng Hsi itself, S2 folia-
tions usually form a more densely spaced and pervasive W- 
to NW-dipping compositional layering (Fig. 8-2), carrying 
rare WSW-plunging stretching lineations (Fig. 8-2) that we 
tentatively interpret as being associated with shear displace-
ment along the Shoufeng Fault itself during deformation 
phase D2 or D3 (Fig. 2).

We found S2 to be often folded during a later defor-
mation phase D3 (Figs. 7b, c, d, and 8-2). On the outcrop 
scale, the intensity of this D3 deformation depends on the 
lithology. S3 foliations form an open axial plane to crenula-
tion cleavage that is well-developed in the metapelitic lay-
ers, and absent in the metapsammites (Fig. 7b) owing to the 
competence contrast. In proximity to the Shoufeng Fault, 
axial planes dip clearly to the west (Fig. 8-2). On a regional 
scale, we interpret S3 to form gently to moderately W-dip-
ping axial planes associated with kilometer-scale E-vergent 
folding of the entire Yuli Belt succession (Figs. 5 and 6), 
most likely in conjunction with a major phase of E-facing 
back-folding of eastern parts of the Taiwan orogen (Yeh 
2004; Fisher et al. 2007), termed here D3.

Cross section A-B (Fig. 5) also portrays a late-stage 
brittle normal fault (Hunyeh Hsi Fault), which shows only 
minor offset and that is hence considered of no importance 
here. In general, however, late stage brittle faulting is well 
documented in the eastern Central Range (e.g., Crespi et al. 
1996; Table S1).

3.2 Shoufeng Fault

Previous maps have depicted the Shoufeng Fault as a 
quasi-vertical planar discontinuity separating Tailuko and 
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Fig. 4. Schematic tectonostratigraphic columns portraying the stratigraphic ranges of the major tectonic units and their mutual fault-bound relation-
ships shown (based and modified after Yue et al. 2005; Brown et al. 2012; Chen et al. 2017; Huang et al. 2018, and references therein). We concep-
tually treat the blueschist-facies rocks of the Yuli Belt as occupying the position of part of the suture zone separating Eurasian and Philippine Sea 
plates, bound by a floor thrust and a roof thrust. The Longitudinal Valley Fault possibly overprinted the earlier roof thrust.
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Yuli Belts. We have partly remapped the trace of the north-
ern segment of the Shoufeng Fault to better agree with the 
actually observed gently NW- to W-dipping S2 foliations 
observed in several river transects (Figs. 2, 5, and 6). The 
southern part of the Shoufeng Fault still follows the inter-
pretations of Lin and Chen (2016), but also depicts the al-
ternative trace suggested by Chen et al. (2017; Fig. 2, thinly 
dashed red line). Dip direction and dip of S2 foliations are 
mostly W- to NW-dipping and remain constant across the 
contact. Also, the lithological and fabric transitions across 
this fault (e.g., Kuyuan schist of Tailuko Belt and Yuli Belt 
metasedimentary unit, along Hunyeh Hsi and Lakulaku 
Hsi, Figs. 2, 6, and 8) are gradual. Both Kuyuan schist and 
Yuli Belt metasedimentary unit appear very similar to un-
distinguishable in the field, as they are mainly composed 
of quartz-mica schists. We suspect that the juxtaposition of 
Yuli and Tailuko Belts across the Shoufeng Fault may have 
occurred during an early W-directed transport direction (D2 
phase). This interpretation is made on the notion that the 
Yuli Belt metasediments experienced elevated pressures of 
up to 1.5 GPa (Conand et al. 2020), which have not been 
reported in the westerly adjacent Tailuko Belt. We suspect 
that the Shoufeng Fault became reoriented and reactivated 
with an opposite slip sense during a later phase of E-vergent 
backfolding (termed here D3 phase; Figs. 7e, f). Evidence 
for such top-SE shear was found in an outcrop of spotted 
schists from Xinwuliu Hsi, close to the Shoufeng Fault 
(Figs. 7e, f, 9h). There, S-C’ fabrics with a C-foliation (dip 
direction and dip 317/46) and C’ shear bands (dip direc-
tion and dip 282/31) have accommodated SE-directed shear 
(Figs. 7e, f, 9h). We interpret these top-SE senses of shear 
to also belong to D3 phase of backfolding, which overprints 
earlier (D2) top-W emplacement fabrics along the Shoufeng 
Fault.

3.3 Microstructural Observations from the Spotted 
Schist Subunit

The mineralogically most distinctive unit within the 
metasedimentary unit of the Yuli Belt is the albite spotted 
schists, separately mapped in Fig. 2, relying on Lin et al. 
(1984), Yi et al. (2012), and Lo (2018). The spots in these 
metapelites are formed by albite and - to a smaller amount 
- garnet and titanite porphyroblasts (Yang and Wang 1985; 
Fig. 9). The characteristic mineral assemblage of these 
schists is albite, garnet, muscovite, chlorite, titanite, ± tour-
maline, ± calcite, and ± rutile (Chiang 2003), as well as a 
variable amount of carbonaceous matter. Our observations 
suggest that the growth of albite porphyroblasts with gra-
phitic inclusions predated the formation of the S3 foliation. 
This is evidenced in a sample from the Juisui/Hunyeh Hsi 
area (Fig. 9g), which shows that asymmetrically rotated al-
bite with graphitic inclusions and chlorite in pressure shad-
ows forms a porphyroclast with respect to the older S2 fo-

liation. In the sample from Xinwuliu Hsi, albite and titanite 
form porphyroclasts that are pre-kinematic with respect to 
the younger foliation (Fig. 9h). This younger foliation forms 
pervasive C-planes with enrichment of carbonaceous mate-
rial. S-C’ type of shearing clearly transposes an older com-
positional layering S that can be identified in isolated micro-
lithons. Chlorite is locally observed to form at the expense 
of biotite and grows in the main foliation, implying that this 
fabric formed at greenschist-facies conditions. In combi-
nation, these observations suggest that peak-metamorphic 
conditions in the spotted schists were attained before the D3 
event that locally forms the penetrative fabrics observed. 
This would be in support of our hypothesis portrayed in 
cross sections (Figs. 5 and 6), according to which the nappe 
structure within the Yuli Belt was refolded during D3.

4. DISCUSSION
4.1 Structural Position of the Yuli Belt High-Pressure 

Blocks with Respect to Adjacent Units

By correlating outcrop-scale observations with cross 
sections, we interpreted the high-pressure metamorphosed 
blocks to form allochthonous nappe outliers (or erosional 
relics) of a formerly more contiguous thrust sheet, which em-
placed subducted and exhumed portions of crust and mantle on 
top of the lower-grade metasedimentary unit (Figs. 5 and 6).  
In the following, we term this fault “Juihsi Thrust” after 
the locality with the largest exposures of blueschist-facies 
rocks (Fig. 5). Nappe emplacement must have occurred af-
ter peak-P-T conditions in the high-pressure unit have been 
reached. This interpretation is supported by contrasting P-T-
conditions in the blueschist-facies and the metasedimentary 
units (Supplementary, Fig. S1). Peak pressures and temper-
atures obtained for the high-pressure unit (c. 1.0 to 1.7 GPa 
and 500 - 550°C, respectively; Beyssac et al. 2008; Tsai et 
al. 2013; Sandmann et al. 2015; Keyser et al. 2016; Baziotis 
et al. 2017; Lo 2018; Fig. S1) are higher than those of the 
metasedimentary unit (c. 0.3 - 0.9 GPa and 500 - 546°C, 
respectively; Chiang 2003; Beyssac et al. 2008; Fig. S1), 
although more recent work suggests substantially higher 
pressures, but lower temperatures for the metasediments 
(up to 1.5 GPa and 330 - 400°C; Conand et al. 2020). These 
contrasting P-T-conditions nourish our assumption of two 
tectonic units that require to be separated by a thrust. The 
juxtaposition of high-pressure blueschist unit and metasedi-
mentary unit along this thrust occurred very likely during 
D1 or early D2; certainly before the refolding of all units 
during D3 and likely concomitant with late-stage retrogres-
sion at greenschist facies conditions below c. 3 kbar and 
370°C (Figs. S1, 10). This is in agreement with our cross 
sections with the west-dipping axial planes formed during 
D3 (Figs. 5, 6, and 8b). D3 refolding and back-thrusting, in 
combination with later erosion, was responsible for the sep-
aration of high-pressure rock occurrences in map view. The 
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idea of the existence of such thrusts was first proposed by 
Yang and Wang (1985). We emphasize that our model of an 
allochthonous tectonic blueschist unit within the Yuli Belt 
is in agreement with published P-T-data and our structural 
cross sections, but is, as yet, not corroborated by any more 
detailed outcrop-scale structural observations along the con-
tacts between the blueschist-facies and metasedimentary 
unit. Future research should hence focus on investigating 
kinematics and fault-related fabrics along these contacts. 
This will allow to test (or falsify) our model further.

4.2 Palaeogeographic Origin of the Yuli Belt and a 
Kinematic Evolutionary Scheme

We consider the dominantly mafic to ultramafic and 
subordinately metasedimentary blueschist-facies tectonic 
blocks of the Yuli Belt to have been derived from the oce-
anic crust of the South China Sea. This interpretation is 
based on a number of arguments outlined in the following. 
We minted our arguments into a new kinematic evolution-
ary three-stage scheme for the Yuli Belt (Fig. 11) and into 
a palaeogeographic sketch of the South China Sea and the 
Philippine Sea for 15 Ma (Fig. 12).
(1)  Available protolith ages for the blueschists, constrained 

from U-Pb LA-ICP-MS dating of zircons, are around 
15.4 - 16.0 Ma (Chen et al. 2017; Lo et al. 2020), mak-

ing them well comparable in age with gabbros from the 
easterly adjacent, unmetamorphosed ETO accreted to 
the base of the Lichi Mélange (Hsieh et al. 2017; Huang 
et al. 2018; Lin et al. 2019; Table 1 and Fig. 2). These 
ages are about the youngest possible for oceanic crust 
issued at a mid-oceanic ridge of the South China Sea 
(Table 1), which ceased spreading at about 15.5 Ma (see 
section 2 and Fig. 2). The geochemical composition of 
basalts and gabbros in the ETO has affinities towards 
a mid-ocean ridge or back-arc basin setting (Lin et al. 
2019), although the debate about the origin of the Lichi 
Mélange is ongoing (e.g., Chang et al. 2000; Huang et 
al. 2018). Based on these geochemical data and ages, 
some of the metamorphic rocks in the Yuli Belt prob-
ably have affinities with the ETO at the base of the 
Lichi Mélange. Therefore, we conjecture that the most  
probable locus, where both the Yuli Belt blueschists and 
the ETO originated, was to either side of a spreading 
ridge of the South China Sea (Fig. 11a). We took this 
idea further by positioning the original locus of these 
units onto a simple palaeogeographic reconstruction for 
15 Ma (Fig. 12). Assuming that both the present-day 
plate convergence rate of 7 - 8 cm a-1 (Seno 1977; Yu et 
al. 1997) and the NW-SE-oriented convergence direc-
tion between Eurasian and Philippine Sea plates (after 
Seno 1977) were constant during the last 15 Ma, we 

Fig. 9. Microscopic features of albite spotted mica schists from the Hunyeh Hsi and Xinwuliu Hsi areas of the Yuli Belt, respectively. (g)-1 and (h)-1 
are in plane-polarized light; (g)-2 and (h)-2 in cross-polarized light. (g): albite-chlorite-mica schists in the Hunyeh Hsi area of Fig. 7d with pres-
sure solution cleavage affecting an asymmetric albite σ-porphyroclast in metapelites. (h): albite-quartz-mica schists from the Xinwuliu Hsi area of  
Fig. 7g, showing mylonitic foliations with top-to-SE sense of shear during D3. Abbreviations: Ab = albite; C = carbonaceous material; Chl = chlo-
rite; Bt = biotite; Qz = quartz; Ti = titanite; Wm = white mica.
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roughly aligned the possible original palaeogeograph-
ic locations of both Yuli Belt and ETO on three posi-
tions along this trajectory (red and blue dashed stars in  
Fig. 12b). Given large uncertainties on the trend of the 
subducted parts of the spreading ridges (cross-hatched 
area in Fig. 12b), all three pairs of stars mark positions, 
where South China Sea oceanic crust might have formed 
near a mid-oceanic ridge at c. 15 Ma. However, only 
the southeasternmost pair of red and blue dashed stars 
is in good agreement also with the amount of plate con-
vergence that has occurred since 15 Ma, amounting to 
roughly 1100 km using the simple assumptions above. 
This “preferred” position is conspicuously close to the 
position of the Manila trench reconstructed by Lee and 
Lawver (1995; blue line in Fig. 12b), which we hence 
prefer over the two alternative reconstructions of Sibuet 
et al. (2002; green line in Fig. 12b) and Wu and Suppe 
(2018; red line in Fig. 12b). These latter reconstructions 
would only be viable if substantially slower conver-
gence rates operated (Wu and Suppe 2018).

In our kinematic evolutionary sketch (Fig. 11a), we 
show an intraoceanic subduction zone already operating at 
15 Ma. This takes account of (i) the oldest reported ages for 
subduction-related magmatism in the Coastal Range dating 
back to the Late Oligocene (Table 1 and Fig. 3), (ii) maxi-
mum stratigraphic age constraints of the Tuluanshan Fm. in 
the Coastal Range (Fig. 4) as well as (iii) plate tectonic re-
constructions for 15 Ma as discussed above, which show the 
Manila Trench at variable longitudes in the western Philip-
pine Sea (Lee and Lawver 1995; Sibuet et al. 2002; Wu and 
Suppe 2018; Fig. 12b).
(2)  Subduction of the oceanic crust and lithosphere forming 

the Yuli Belt blueschists must have commenced soon 
after ~15 Ma (e.g., Jahn et al. 1981; Lo and Yui 1996), 
with peak metamorphic conditions reached between 15 
and 10 Ma (Chen et al. 2017). At the same time, the ETO 
has escaped the fate of being subducted, implying that it 
must have been frontally accreted to the wedge forming 
along the Manila trench (Fig. 11b). We suspect that the 
metasedimentary unit of the Yuli Belt, with deposition-
al ages inferred to be as young as mid-Miocene (Chen 
et al. 2017; Figs. 3 and 4), could have originated as an 
extensional allochthon derived from the Eurasian distal 
passive margin, which occupied a paleogeographic po-
sition between the proper passive margin and the blue-
schist unit prior to its subduction (Fig. 11a). Despite the 
absence of any geochronological data on metamorphic 
conditions from this unit, we further suspect that it must 
have closely followed the blueschist unit into subduc-
tion (Figs. 11b, S1).

(3)  Exhumation of the Yuli Belt series was facilitated by the 
failure of the upper plate along a lithosphere-scale fault 
forming between the dense, negatively buoyant fore-arc 
lithosphere and the more buoyant magmatic Luzon arc 

upon the entrance of Eurasian continental lithosphere in 
the trench since ca. 6 - 7 Ma (Chemenda et al. 2001). 
Subsequently, ongoing convergence led to subduction of 
the negatively buoyant fore-arc lithosphere by slab ex-
traction (Froitzheim et al. 2003; Shyu et al. 2011; Sand-
mann et al. 2015; Fig. 11c), a mechanism that very ef-
ficiently reduced the overburden on top of the subducted 
material. We conjecture (i) that this mechanism of slab 
extraction was at play both for the blueschist-facies units 
as well as for the metasedimentary unit of the Yuli Belt 
and (ii) that the juxtaposition of these units along the 
floor thrust occurred during this stage (Fig. 10). Roof 
and floor thrust faults of the blueschist-facies unit define 
part of the suture zone between Eurasian and Philippine 
Sea Plates, and they likely formed during this stage of 
fore-arc subduction. We suggest that the easterly ad-
jacent ETO (which is accreted to the base of the Lichi 
Mélange and from which the Yuli Belt is presently sepa-
rated by the LVF), should be considered to constitute 
the remainder of Taiwan’s suture zone. Such an assem-
bly with blueschist-facies oceanic units overlain by un-
metamorphosed oceanic units is also described from the 
Chenaillet Ophiolite in the French-Italian Western Alps, 
where it is attributed to represent the suture between Eu-
ropean and Adriatic units (e.g., Manatschal et al. 2011). 
Furthermore, we suspect that the juxtaposition of the 
Yuli Belt series and Tailuko belt along the Shoufeng 
Fault could have occurred within this timespan.

Finally, we realize that it is increasingly difficult to 
reconcile the Lu-Hf isochron ages of 5.1 ± 1.7 Ma, consid-
ered to reflect peak-pressure conditions during blueschist-
facies metamorphism (Sandmann et al. 2015) with the fact 
that between about 6 - 4 Ma continental lithosphere of Eur-
asia has entered the subduction, dating the transition from 
intra-oceanic subduction to continent-arc collision (Chi et 
al. 1981; Suppe 1984; Fig. 11c). The even younger U-Pb 
ages on zircon rims from nephrite at Fengtien (3.3 ± 1.7 Ma; 
Yui et al. 2014), however, may still be geologically viable, 
as this method possibly dates peak-temperature conditions 
rather than peak-pressures. In this case, Yui et al. (2014) 
would have likely obtained an age at which post-collisional 
shortening during deformation phase D3 was at work. We 
conclude that further geochronological and structural work 
is hence needed to better constrain the timing of peak-met-
amorphic conditions and their structural imprint on the Tai-
wan orogen.

5. CONCLUSIONS

Three new cross-sections across Taiwan’s Yuli Belt 
were constructed, taking new outcrop- to microscope-scale 
structural observations from several river-transects into ac-
count. Our observations suggest that the Yuli Belt was af-
fected by at least three successive deformation phases (D1 to 
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D3). We suspect that high-pressure metamorphic units were 
emplaced on top of metasedimentary units of Yuli Belt along 
a thrust during D1. This assembly was later thrust over Eur-
asian-derived series of the Tailuko Belt along the Shoufeng 
Fault during D2, suggested by (rarely preserved) down-
plunging stretching lineations on W- to NW-dipping folia-
tion planes. E-vergent open to tight folds throughout the Yuli 
Belt with W- to NW-dipping axial planes were produced 
by the D3 phase, refolding earlier foliations as well as the 
D1 nappe contact, during which also the blueschist-facies 
and metasedimentary units were folded. This phase might 
be related to top-E back-thrusting and a reorientation of the 
Shoufeng Fault from an initially E-dipping to a presently W-
dipping contact. We interpret the high-pressure metamorphic 
units to form erosional relics of nappe outliers of a formerly 
more contiguous thrust nappe that hosts part of the suture 
zone in Taiwan. We suggest that the blueschist-facies meta-
morphic unit most likely represents a mid-Miocene fragment 
of oceanic crust and mantle issued in the South China Sea 
before having been subducted, exhumed and ‘sandwiched’ 
between the Tailuko Belt and the easterly adjacent Coastal 
Ranges derived from the Philippine Sea plate.
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