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ABSTRACT

Taiwan is more susceptible to earthquakes and typhoons because of the unique 
geographical position in the Northwestern Pacific Rim. It is necessary to understand 
the effects of such frequent natural disturbances on land cover change for water-
shed management and disaster mitigation. This study applied both global and local 
Moran’s I statistics to analyze the spatial autocorrelation of landslide patches in a 
natural disturbed watershed in eastern Taiwan. The land cover maps extracted from 
FORMOSAT-2 satellite images acquired in 2005, 2008, and 2011. A logistic regres-
sion model validated to predict occurrence probability of change trajectory. Results 
showed that spatial pattern of homogeneous landslide patches presented on small 
scales; while heterogeneous landslide pattern was on larger scales. Landslide patches 
had higher positive spatial autocorrelation and indicated that as regional hotspots in 
study area. After the trajectory calculation and classification, two unchanged and five 
changed trajectories dominated the study area. The most significant transformation 
of land cover was from forest to landslide and channel. In addition, a fittest logistic 
regression model predicted the occurrence probability of change trajectory in the 
study area. Among these environmental variables for logistic regression, lithology 
was the most important spatial determinant for the change trajectories. Curvature and 
aspect variables were also significant. This spatial statistical model was helpful for 
predicting the occurrence probabilities of the change trajectories.
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1. INTRODUCTION

Land cover is one of the most fundamental variables 
for watershed management and relates to many parts of 
the human and physical environments (Southworth et al. 
2004). Change in land cover can transform biophysical 
surface features and lead to direct impacts on hydrological 
cycle, atmosphere, and the ecosystem services (Zomlot et 
al. 2017; Homer et al. 2020; Talukdar et al. 2020; Yin et al. 
2020). Detection of land cover change can contribute vital 
information for the sustainable development and environ-
mental protection of the watershed. Hence, it is necessary 
to assess land cover change at various scales for sustainable 
land management.

Land cove change, a complex, dynamic process, may 
take place due to natural and/or anthropogenic reasons and be 
affected by the local conditions, regional contexts, govern-

ment policies, and external influences (Mertens and Lambin 
2000; Verburg et al. 2010). However, change in land cover is 
more complicated and unique in Taiwan than other countries 
because of its two geographic locations. Firstly, the Taiwan 
orogeny is forming along a complex plate boundary between 
the Eurasian and Philippine Sea plates where Longitudinal 
Valley of eastern Taiwan, serving as a suture zone on land, 
experiences intensive collision, resulting in frequent earth-
quakes (Hao et al. 2019). Strong motion of earthquake is a 
principal trigger of slope failures, landslides, and rock falls 
(Wu et al. 2006a, b; Chang et al. 2011; Mozziconacci et al. 
2013). Secondly, located in the northwest Pacific, Taiwan, 
one of the most intense tropical cyclones (typhoons) prone 
areas in the world, is affected by an average number of 3 - 4 
typhoons striking the island per year (Janapati et al. 2019). 
Eastern Taiwan is more likely to be affected by typhoon 
since most of the typhoons hitting Taiwan make landfalls 
along the east coast of Taiwan (Su et al. 2012). Typhoons’ 
extreme rainfall cause hazardous landslides, debris flows, 
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and floods (Chen 2007; Janapati et al. 2019). The particular 
positions in eastern Taiwan represent one of the few places 
in the world where earthquakes and typhoons frequently 
happen and, therefore, provide a rare opportunity to evaluate 
the role of natural disturbances in dynamics of land cover 
change for environmental protection and disaster mitigation. 
Taimali watershed, a typical example of forested watershed 
in eastern Taiwan, was chosen for this research due to fierce 
typhoons causing losses or damage of property, infrastruc-
ture, and lives over the past decade.

Land properties vary greatly along the different envi-
ronmental gradients, so land cover types often exhibit spa-
tial dependency or autocorrelation (Li et al. 2009). Cliff and 
Ord (1981) pointed out that spatial autocorrelation exists 
where there is a systematic spatial variation in values across 
a given area. In general, measures of spatial autocorrelation 
include global and local indexes. Global measures of spa-
tial autocorrelation assume spatial stationarity and produce 
a single value that summarizes the entire study area (Wulder 
et al. 2007). On the contrary, local measures of spatial auto-
correlation put emphasis on local variations within patterns 
of spatial dependence and are useful for identifying spatial 
relationships (Anselin 1995). Several techniques have been 
developed to measure both global and local spatial autocor-
relations. Moran’s I statistic, one of the most popular mea-
sures, was widely used to estimate general patterns of spa-
tial dependency and frequently applied in the study of land 
cover change. The global Moran’s I is a global parameter 
for measuring spatial dependency in whole large area (Cliff 
and Ord 1981); whereas, the local Moran’s I examines the 
individual locations and recognizes the hotspots based on 
a comparison with the neighboring samples (Zhang et al. 
2008). Since landslide occurrence is the most substantial 
change of land cover in the study area, Moran’s I index was 
employed to identify the hotspots.

There are several ways to monitor land cover change, 
including the proportion, annual rates and spatial distribu-
tion of change. Furthermore, the change trajectory is also 
applicable to describe spatially explicit representations of 
change at the pixel level based on pixel histories (Rindfuss 
et al. 2004; Mena 2008). Land cover change trajectories, a 
succession of land cover types for a pixel in the raster imag-
es of time series over more than two observation years, not 
only allow the illustration of change patterns in the temporal 
dimension, but also consider their continuity and direction 
(Mertens and Lambin 2000; Zhou et al. 2008a, b; Ruiz and 
Domon 2009). Thus, trajectory analysis is applied to iden-
tify a sequence of land cover types for a given sampling unit 
under the influences of natural disturbances over time in the 
present study.

Trajectories of land cover change can be partitioned 
into stable and dynamic types. Stable type is featured by 
pixel histories that are unchanging over time; whereas dy-
namic type is characterized by pixel histories with varied 

classes across the time series (Mena 2008). Owing to the 
features of the dependent variable, binary logistic regression 
is a favorable method for analyzing the probability of land 
cover change trajectories and is utilized in this research. Lo-
gistic regression is a method for estimating the probability 
of occurrence of an event from dichotomous data by use of 
a set of variables (Bui et al. 2011). Many studies applied the 
logistic regression to estimate the probability of change for 
each pixel, especially for detecting instability factors and 
mapping landslide susceptibility (Bai et al. 2010; Lin et al. 
2010; Nandi and Shakoor 2010; Bui et al. 2011). However, 
few studies have assessed the probability of change on each 
pixel for land cover change trajectories (Braimoh and Vlek 
2005; Mena 2008).

This research combines the applications of spatial au-
tocorrelation, trajectory analysis, and logistic regression 
to provide more spatially explicit and detailed informa-
tion on land cover change dynamics under frequent natural 
disturbances, by utilizing FORMOSAT-2 satellite images 
acquired in 2005, 2008, and 2011 within the Taimali wa-
tershed. The main objectives of this study are to (1) assess 
spatial autocorrelation of landslide patches using global and 
local Moran’s I statistics; (2) detect the dynamics of land 
cover change trajectories under frequent natural disturbanc-
es; and (3) establish a spatial statistical model based on lo-
gistic regression for projecting the occurrence probabilities 
of land cover change trajectories.

2. METHODOLOGY
2.1 Study Area and Natural Disturbances

The Taimali watershed principally lies in Jialan and 
Liqui, Jinfeng Township, Taitung County of eastern Tai-
wan. The research area, a total area of 211.5 km2, is a typi-
cal mountainous watershed dominated by forest, and its el-
evation ranges from 3 to 3090 m at 57.6% average slope. 
Buildup and farmland account for less than 1.8% of the total 
study area. They are mostly located in the lower Taimali 
watershed where Jialan is the only one major settlement 
with a total population of about 1400 from 2012 to 2015 
based on the population statistics of Taimali Household 
Registration Office (2015). On the other hand, forested 
land, covering 83.7% of land area, is the predominant land 
cover type during the study period. Forest chiefly occupies 
the upper and middle Taimali watershed; where the most 
notable land cover conversion occurs in relation to forest 
converting into landslides and channels over the study pe-
riod. Under the influence of powerful earthquakes and ty-
phoons, the Taimali watershed underwent remarkable land 
change. Recently, there were three large earthquakes whose 
moment magnitudes (Mw) were larger than 6 in southeast-
ern Taiwan, including the Chengkung Earthquake (Mw 6.8) 
in 2003, the Taitung Earthquake (Mw 6.1) in 2006, and the 
Jiashian Earthquake (Mw 6.3) in 2010. These earthquakes 
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resulted in rock falls and landslides (Wu et al. 2006b; Hu et 
al. 2007), substantial coseismic ground displacements (Wu 
et al. 2006a), and many people injured (Rau et al. 2012). 
In addition, based on the typhoon database established by 
the Central Weather Bureau (CWB) of Taiwan, there were 
23 typhoons hitting Taiwan during the period 2005 - 2011. 
Among them, it is reported that three typhoons striking the 
Taimali watershed produced heavy rainfalls and triggered 
severe debris flows, landslides, and floods, including the 
Typhoon Haitang in 2005, the Typhoon Morakot in 2009, 
and the Typhoon Fanapi in 2010 (Fig. 1).

2.2 Image Classification and Accuracy Assessment

The land cover in the Taimali watershed relied on 
FORMOSAT-2 images obtained from the Spatial Informa-
tion Research Center (SIRC) of National Taiwan Univer-
sity. The image classification performance was achieved 
by applying the ERDAS IMAGINE version 9.2 software 
(Leica Geosystems Inc.). The supervised classification al-
gorithm with the maximum likelihood decision rule was 
applied to classify all the images. Three remote sensing 
images with 8-m resolution, acquired in 2005, 2008, and 

2011, were classified into four land cover classes: landslide 
patches, forest matrix, human-made patches, and channel 
corridors. More comprehensive information about the land 
cover classification can refer to the research by Yeh and 
Liaw (2015). In order to evaluate the accuracy of classifi-
cation of remotely sensed data, the current study utilized 
stratified random sampling to produce 256 reference points, 
whose values conducted a consistency check with the class 
values of the classified image (Jensen 2005).

2.3 Spatial Autocorrelation Assessment

For quantitative variables, Moran’s I index is the most 
commonly used index to assess the global level of spatial 
autocorrelation (Cliff and Ord 1981; Li et al. 2009). Mo-
ran’s I index indicates the degree of similarity or dissimilar-
ity between the values of the variable considered and ranges 
approximately from +1 to -1 (Uuemaa et al. 2008). Moran’s 
I value near +1 indicates clustering, while a value near -1 
indicates dispersion, and 0 or near to 0 represents no spatial 
autocorrelation, that means a random pattern (Fernandes et 
al. 2011). Global Moran’s I index is defined as following 
(Uuemaa et al. 2008; Li et al. 2009):

Fig. 1. Location of the study area with typhoon tracks.
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where Xi and Xj are the values of the observed variable at 
sites i and j; n the total number of sites; i = 1, 2, . . ., n and 
j = 1, 2, . . ., n (i ≠ j), μ the mean of all Xi and Xj; Wij the 
weights representing proximity relationships between sites i 
and j; they form together a spatially 0 - 1 contiguity matrix.

A correlogram, a graph where spatial correlation values 
(in our case Moran’s I) are plotted on the ordinate against 
distance interval (lag) among sites on the abscissa, can vary 
only from +1 to -1, depending upon whether the correlation 
between locations is positive or negative (Rossi et al. 1992; 
Mander et al. 2010; Legendre and Legendre 2012). The cor-
relogram, one of the most commonly used spatial structure 
functions, allows one to quantify spatial dependence and 
partition it amongst distance classes (Legendre and Legen-
dre 2012). In this study, we applied the PASSaGE software 
(Rosenberg and Anderson 2011) for calculating Moran’s I 
values with 20 different lag distances from 0.5 to 10 km. 
Each interval of lag distance was 500 m. Results were used 
to construct the correlogram graphs of Moran’s I values ver-
sus lag distances.

The Moran’s I values can be expected to be normally 
distributed, which allowed testing their significance through 
the comparison of the standardized deviates against those 
of the standard normal distribution (Cliff and Ord 1981). 
Usually, the Moran’s I could be standardized to Z for testing 
the significance, and supposes approximate normality of Z 
(Salvador 2000). For instance, Z score larger than 1.96 is at 
the significant level of 0.05. In this study, we standardized 
the Moran’s I values to Z values, and calculated statistical 
significance (p < 0.05).

We also calculated the local Moran’s I, which is a 
measure of contagion that includes the effect of the spa-
tial neighborhood (Fernandes et al. 2011). Local Moran’s I 
has a spatial autocorrelation value for each sampling pixel, 
rather than the single value of the global Moran’s I for an 
entire area. Local Moran’s I index is described as following 
(Anselin 1995; Zhang et al. 2008).
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In general, the spatial clusters of local Moran’s I val-
ues could be categorized into four groups (Ping et al. 2004; 
Zhang et al. 2008): (1) high-high cluster (high values in a 
high value neighborhood); (2) low-low cluster (low values 
in a low value neighborhood); (3) high-low cluster (a high 
value in a low value neighborhood); and (4) low-high clus-
ter (a low value in a high value neighborhood). The high-
high spatial clusters can be regarded as “regional hotspots”, 

while the low-low clusters are “cool spots”, and both high-
low cluster and low-high cluster are spatial outliers (Zhang 
et al. 2008).

2.4 Method of Trajectory Calculation

This study develops a categorical map that demon-
strates the land cover change trajectories at the pixel level. 
Each land cover class is described as a code in the land cover 
raster layer as 1, 2, 3, and 4 to represent the landslide patch-
es, forest matrix, human-made patches, and channel corri-
dors, respectively. The trajectory layer shows a sequence of 
codes for each pixel, which can be called trajectory codes. 
When there are fewer than 10 classes of land cover, the tra-
jectory codes can be calculated by the following equation 
(Mena 2008; Wang et al. 2012, 2013):
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where TCij is the trajectory code of the pixel at row i and 
column j in the trajectory layer; n is the quantity of the time 
points; (Ct1)ij, (Ct2)ij, and (Ctn)ij are the codes in land cover 
layers of different time points at the given pixel, and they 
must be ranked by time points in ascending order. Trajec-
tory codes are established through formula calculation by 
applying the raster calculator in ArcGIS 9.3.1 in this study. 
For example, the trajectory of land covers that converts 
from forest to landslide, and then to landslide on a pixel 
over three time points is marked as 211 (forest → landslide 
→ landslide), and so on.

2.5 Environmental Variables

One major goal of this study is to build a spatial model 
of probability of land cover change trajectories. Because the 
most remarkable change trajectory was from forested land 
into landslides in this study area, eight environment vari-
ables were chosen chiefly according to data availability and 
projection models for landslide occurrence in reference to 
previous studies (Lin et al. 2010; Bui et al. 2011; Zhou et 
al. 2018). Eight environmental variables were selected for 
following analysis, including lithology, distance to faults, 
rainfall, distance to rivers, elevation, slope, aspect, and cur-
vature (Fig. 2). To obtain a better understanding of land 
cover change prone areas in each environmental variable, 
the continuous environmental variables (distance, elevation, 
slope, and so on) were classified into several small intervals 
by breakpoints in reference to previous research by Bui et 
al. (2011) and Zhou et al. (2018). These variables are de-
scribed as follows.

Lithology is considered as an underlying driving factor 
for landslide occurrence (Bai et al. 2010; Lin et al. 2010; 
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Bui et al. 2011). Geologic formations in the study area are 
composed of three strata including the Pilushan Formation 
(code 1), the Lushan Formation (code 2), and the Tananao 
Schist (code 3).

There are two faults in the study area, and their spatial 
distribution is similar to the letter Y shape. One fault passes 
across the central part of the Taimali watershed in a north-
south direction, and the other fault is elongated in a northeast 
to southwest direction at the northern part of the Taimali wa-
tershed. The distance to faults is calculated by measuring the 
straight-line distance to faults with ArcGIS Spatial Analyst 
Tools and is categorized into five classes: 0 – 2000 , 2000 - 
4000 m, 4000 - 6000 m, 6000 - 8000 m, and > 8000 m.

Because there is no weather station in the study area, 

Kriging interpolation is used to estimate the average annual 
rainfall of the study area. An average annual rainfall map is 
produced by applying the ordinary Kriging method with the 
spherical semivariogram model based on the rainfall dataset 
from the neighboring 12 weather stations. Average annual 
rainfall is divided into four classes: 2000 - 3000 mm, 3000 - 
4000 mm, 4000 - 5000 mm, and 5000 - 6000 mm.

Under the effects of the natural disturbances, sediment 
from landslides deposited in channels caused the channel ex-
pansion. Therefore, distance to rivers is calculated by mea-
suring the straight-line distance to the Taimali stream based 
on the remote sensing images in 2005 with ArcGIS Spatial 
Analyst Tools and is categorized into five classes: 0 - 300 m, 
300 - 600 m, 600 - 900 m, 900 - 1200 m, and > 1200 m.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. Environmental variables in the study area.
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Elevation data are taken from a Digital Terrain Mod-
el (DTM) provided by the Aerial Survey Office, Forestry 
Bureau, Council of Agriculture, Taiwan. The resolution of 
DTM is 40 m × 40 m. Elevation is categorized into six class-
es: 0 - 500 m, 500 - 1000 m, 1000 - 1500 m, 1500 - 2000 m, 
and > 2000 m.

The slope gradient is extracted from the DTM, and 
then divided into six slope gradient categories: 0° - 5°, 5° - 
15°, 15° - 25°, 25° - 35°, 35° - 45°, and > 45°.

The aspect is also extracted from the DTM, and the 
aspect image is classified and labeled with nine identifiers 
based on Miliaresis (2008). In the distribution map of as-
pect, azimuth N stands for 337.5° to 22.5°, NE for 22.5° to 
67.5°, E for 67.5° to 112.5°, SE for 112.5° to 157.5°, S for 
157.5° to 202.5°, SW for 202.5° to 247.5°, W for 247.5° to 
292.5°, NW for 292.5° to 337.5°, and F for flat terrain that 
is an undefined aspect.

Curvature is mathematically defined as the change in 
slope angle along a very small arc of the curve, and can be 
expressed as the inverse of the radius of a circle that is tan-
gent over a small arc of the curve (Ohlmacher 2007). The 
curvature is positive for convex landforms (e.g., hills and 
ridges), the curvature is negative for concave ones (e.g., de-
pressions and valleys), and the curvature is zero for flat ones 
(Florinsky 2012).

2.6 Logistic Regression Analysis

In this study, each pixel of trajectory layer was reset 
as either value 1 if “with change” or value 0 if “without 
change”. Because this is a binary variable, either 1 or 0, 
the logistic regression model can be applied to describe the 
probability of land cover change. The logistic regression 
model, based on the logistic function, can be expressed in 
the equation (Bai et al. 2010; Kleinbaum and Klein 2010):

( )P Y e1 1
1

z= = + -  (4)

where P is the probability of occurrence of land cover 
change for each pixel, which ranges between 0 and 1 on a 
S-shaped curve. The value z can be substituted for the linear 
sum expression of 0b  plus 1b  times X1 plus 2b  times X2, 
and so on to kb  times Xk:

z X X Xk k0 1 1 2 2 gb b b b= + + + +  (5)

where 0b , a constant term, is the intercept of the model, ib  
(i = 1, 2, …, k) are the slope coefficients of the model, and Xi 
(i = 1, 2, …, k) are independent variables of interest. To find 
the best fitting set of parameters, maximum likelihood (ML) 
estimation is used to estimate the parameters in the model. 
Logistic regression was performed by the SPSS software 

package using the forward stepwise method.
Model fitting via logistic regression is sensitive to col-

linearities among the independent variables (Hosmer and 
Lemeshow 2000). The tolerance (TOL) and variance infla-
tion factor (VIF) can be applied to discern multicollinearity 
in this situation. The TOL is defined as 1 - R2, where R2 
is the coefficient of determination calculated by regressing 
each variable on all the other independent variables (Allison 
1999). The lower the TOL value, the higher the multicol-
linearity. A TOL value less than 0.2 demonstrates the pres-
ence of multicollinearity between independent variables, 
and a value less than 0.1 reveals serious muliticollinearity 
among them (Menard 2002). The VIF is obtained from the 
reciprocal of tolerance and shows an inflated value of vari-
ance of the coefficient in comparison with its value in the 
absence of collinearity (Allison 1999). TOL and VIF have 
no formal cutoff values to determine whether multicol-
linearity is present between variables. Allison (1999) sug-
gests that a TOL value less than 0.4, that is, the VIF value 
greater than 2.5, may reveal the presence of multicollinear-
ity. In this study, variables with TOL < 0.4 and VIF > 2.5 
are rejected from the logistic regression analysis.

The R2 statistic, also called the coefficient of determi-
nation, which represents the proportion of variation in the 
data accounted for by a linear regression model, is not ap-
propriate for use with the logistic regression model (Hilbe 
2009). The -2 Log likelihood (-2LL) is generally a measure 
of lack of fit, conceptually the opposite of R2 in multiple 
regression, which is an index of variance (Osborne 2015). 
Cox and Snell R2 and Nagelkerke R2, a kind of the pseudo-
R2 statistics, were appropriate for logistic models (Bai et 
al. 2010; Lin et al. 2010; Bui et al. 2011). Cox and Snell 
R2 and Nagelkerke R2 could indicate how much the vari-
ability of the dependent variable may be explained by all 
included predictor variables (George and Mallery 2010). 
The model fit is better when the values of Cox and Snell R2 
and Nagelkerke R2 are higher. Both two pseudo-R2 statistics 
were applied in this study to assess the model fit.

Implementing a validation for the prediction results is 
regarded as one of the important and essential procedures 
in prediction modeling (Chung and Fabbri 2003). The ac-
curacy of logistic regression analysis in modeling the prob-
ability of land cover change can be evaluated by the area 
under the curve (AUC) values and the relative change in-
tensity (RCI) values. The area under the receiver operating 
characteristic (ROC) curve provides a measure of the logis-
tic regression model’s ability to classify cases into one of 
two groups (Hosmer and Lemeshow 2000). The AUC value 
ranges from 0 to 1, and higher values indicate better fit. As 
a general rule, an AUC value greater than 0.7 is considered 
acceptable (Hosmer and Lemeshow 2000). Besides, the RCI 
is used to understand change intensity in a region compar-
ing with other regions in a watershed. The RCI has a value 
of 1 when the change ratio in the region equals that in the 
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entire watershed, and increases when the change ratio in the 
region is larger than that in the entire watershed. The RCI 
is calculated by the following equations (Wang et al. 2012):

RCI Rzc Rec=  (6)

Rzc Azc Az=  (7)

Rec Aec Ae=  (8)

where RCI can be expressed by the proportion of the change 
ratio in a region (Rzc) to that in the entire watershed (Rec). 
The (Rzc) equals the proportion of changed area in the re-
gion (Azc) to the entire area of the (Az). The (Rec) equals 
the proportion of changed area in the entire watershed (Aec) 
to the entire area of the watershed (Ae).

3. RESULTS AND DISCUSSION
3.1 Spatial Autocorrelation

Three land cover maps of the study area (2005, 2008, 
and 2011) were produced from FORMOSAT-2 images clas-
sification (Fig. 3). For these three images, the overall classi-
fication accuracies range from 83.98 to 90.23%, with Kappa 
coefficients ranging from 0.80 to 0.88. The resulting four 
classes were used in the trajectory analysis to detect dynamic 
processes of land cover change. The area of the forestland, 
the most dominant type in this watershed, was 198.0 km2 in 
2005, but reduced to 187.8 km2 in 2008, with a further reduc-
tion to 177.1 km2 in 2011. On the contrary, the area of the 
landslide patches rapidly enlarged from 2.1 km2 in 2005 to 
10.7 km2 in 2008, and further extended to 17.6 km2 in 2011. 
The landslide area dramatically increased due to the natural 
disturbances of earthquakes and typhoons.

Since the amount of total landslide area increased sig-
nificantly over the study period, this research focused on 
the spatial autocorrelation analysis of landslides using both 
global and local Moran’s I statistics. The global Moran’s 
I on three different dates versus the 20 different distance 
lags was shown in Fig. 4. These correlograms showed that 
higher positive autocorrelations were present for landslide 
occurrence at shorter lag distances for all three dates. Al-
though the Moran’s I values at first lag distance of > 0 to 
≤ 500 m were lower than that at second lag distance of > 
500 to ≤ 1000 m in 2005 and 2011, Moran’s I obviously 
decreased faster before the critical scale (about 2.5 km) for 
all three dates. Hence, 2.5 km was discerned as a critical 
scale in this study. This result revealed that spatial pattern 
of homogeneous landslide patches occurred at small scales. 
Although negative spatial autocorrelations occasionally oc-
curred over some distance lags, Moran’s I values became 
lower and more stable after the critical scale. This result 

indicated that spatial pattern of heterogeneous landslide 
patches occurred at large scales. Moreover, compared with 
the correlograms of all three dates, highest Moran’s I value 
(0.50) was detected in 2011 at a lag distance of > 500 to ≤ 
1000 m. Besides, all Moran’s I values at each lag distance 
in 2011 were higher than that in 2005 and 2008. The finding 
suggested that stronger spatial autocorrelation of landslide 
patches existed in 2011. The area percentage of landslide 
patches increased from 1.0% in 2005, 5.1% in 2008, to 
8.3% in 2011. The total areas of landslide patches almost 
expanded 8 times between 2005 and 2011 (Yeh and Liaw 
2015). Based on the correlogram analysis, the higher Mo-
ran’s I value at shorter lag distances in 2011 may be resulted 
from the strong clustering effect of landslide occurrences on 
specific areas.

In this study, local Moran’s I values were standard-
ized to Z scores and mapped by applying the ArcGIS 9.3.1 
(Fig. 5). Local Moran’s I can identify the landslide patches 
with high values at its neighbors as “hotspots”. Through the 
spatial analysis and calculation using the PASSaGE soft-
ware (Rosenberg and Anderson 2011), landslide patches 
with high-high spatial cluster can be regarded as a regional 
hotspot. This spatial distribution of regional hotspots pro-
vided site-specific information for management of degraded 
areas. Totally there were 27 grids whose Z score was larger 
than 1.96 at the significant level of 0.05 in 2005, whereas 
there were 72 grids with Z score larger than 1.96 in 2011 
(Fig. 5). This result indicated that the number and area of 
landslide hotspots were expanding dramatically from 2005 
to 2011. A research identifying the landslide hotspots in the 
entire island of Taiwan also revealed that southern Taiwan 
and catchments in the southern portion of eastern Taiwan 
became landslide hotspots after 2009, mainly attributed to 
Typhoon Morakot (Lin et al. 2017).

3.2 Land Cover Change Trajectories

The trajectory layer of land cover change was pro-
duced through trajectory calculation based on three land 
cover maps. There 44 different trajectories were identified 
(Fig. 6), including four unchanged trajectories (84.47%) 
and 40 changed trajectories (15.53%). The selection of the 
main trajectories in the study area followed the criteria sug-
gested by Mena (2008). The trajectories covering less than 
1% of the total watershed were excluded from the following 
analysis because they might be derived from the artifacts of 
classification error. As a result, there were top seven trajec-
tories and all of them were larger than 1% of the total study 
area. These trajectories included two unchanged and five 
changed trajectories, and occupied 95.08% of the watershed 
area. Among them, the most dominant trajectory was the 
unchanged forest cover (222) comprising 80.32% of the wa-
tershed area. The other unchanged trajectory was channel 
cover (444) with 3.01% of the watershed area. Moreover, 
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(a)

(b)

(c)

Fig. 3. Classified land cover maps of the study area from 2005 to 2011.

Fig. 4. Global Moran’s I correlogram for landslide occurrences.
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(a)

(b)

(c)

Fig. 5. Spatial distribution of local Moran’s I for landslide occurrences.

Fig. 6. Total land cover trajectories in the Taimali watershed.
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the other five changed trajectories occupied 11.75% of the 
watershed area, including the trajectories 221 (5.14%), 211 
(2.13%), 224 (1.77%), 212 (1.60%), and 244 (1.11%). The 
two first ones, 221 and 211, denoted the conversions from 
forests to landslides; whereas the trajectories 224 and 244 
represented the conversions from forests to channels. Be-
sides, the trajectory 212 signified natural revegetation on 
landslides or channels. The Taimali watershed is a repre-
sentative of forested mountainous watershed and located in 
typical humid tropical monsoon climate. Previous studies 
revealed that earthquakes and typhoons often induced the 
conversions from forests to landslides (Chang et al. 2007; 
Lin et al. 2010) and sediment from landslides was frequent-
ly deposited in channels (Tsai et al. 2013). Furthermore, 
landslide scars and disturbed, bare land are usually reveg-
etated quickly in the humid tropical climate (Douglas et al. 
1999). Due to the physical environmental features of eastern 
Taiwan, several kinds of land cover change trajectories are 
prone to happen in this study area.

3.3 Change Analysis in Connection with Environmental 
Variables

After the trajectory layer was acquired, spatial distri-
bution of change trajectories revealed the relationship be-
tween change trajectories and environmental variables. In 
this study, the values of selected main change trajectories 
in the trajectory layer were reset as 1, and then the values 
of other trajectories were reset as 0. Consequently, a binary 
map with value 1 or 0 of land cover changes were produced 
(Fig. 7). This binary map overlaid with the maps of eight 
environmental variables to measure the percentage of the 
land cover changes and RCI value (Table 1).

Pilushan and Lushan Formations comprised almost the 
entire watershed and each one covered nearly half of the 
watershed. However, RCI values larger than 1 found in the 
formations of Pilushan and Tananao Schist indicated that 
land cover changes were highly concentrated in them. In 

fact, more than 80% of the total changed area was located 
in Pilushan Formation. It seemed that Pilushan Formation 
was prone to land cover change because of relatively fragile 
geological conditions. A case study conducted in the Luye 
catchment, north to our study site, also showed that land-
slide ratio in Pilushan Formation is higher than Tananao 
Schist due to its weaker rock strength and more joint num-
bers (Shih and Chen 2010).

Each of the five classes of distance to faults covered 
about 20% of the study area. The RCI values descended 
with the increment of distance to faults. This result suggest-
ed that the high intensity of land cover change was situated 
within the region of 0 - 6000 m distance to faults. The re-
gion adjacent to faults underwent land cover changes, prob-
ably due to the fragile geologic structure in the neighbor-
hood of the faults. A study conducted by Lee et al. (2018) 
also revealed that the area of high landslide susceptibility 
was located near the boundaries of fault zones.

The rainfall regions with 4000 - 5000 and 3000 - 4000 
mm took up the two greatest proportions of the study area. 
However, the two biggest RCI values were found in the 
rainfall regions of 4000 - 5000 and 5000 - 6000 mm with 
1.85 and 1.37, respectively. Moreover, nearly 88% of the 
total changed area was located in both rainfall regions. Land 
cover conversion from forested land into landslides was the 
most remarkable change trajectory and mainly located in the 
upper and middle Taimali watershed over the study period. 
The upper and middle Taimali watershed with higher rainfall 
experience concentrated and extensive land cover changes. 
A study carried out in northern Vietnam by Bui et al. (2011) 
also indicated that highest concentration of landslides oc-
curred in the two highest rainfall classes and a large amount 
of rainfall considerably impacts the landslide activity.

The changed ratios presented a decreasing trend with 
the increasing distance to rivers. The RCI values also dis-
played the same trend and the greatest RCI value 1.74 was 
found within the region of 0 - 300 m distance to rivers. This 
result revealed that the high intensity and large extent of 

Fig. 7. Binary map of land cover trajectories.
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Variable Class Area (km2) Area (%) Changed area (km2) Changed ratio (%) RCI

Lithology

Pilushan 98.78 46.70 20.33 20.58 1.75

Lushan 109.28 51.66 4.06 3.72 0.32

Tananao 3.47 1.64 0.51 14.58 1.24

Distance to faults

0 - 2000 m 44.52 21.05 6.78 15.23 1.29

2000 - 4000 m 39.90 18.86 6.98 17.48 1.49

4000 - 6000 m 43.44 20.54 5.98 13.77 1.17

6000 - 8000 m 41.27 19.51 3.85 9.33 0.79

> 8000 m 42.41 20.05 1.31 3.08 0.26

Rainfall

2000 - 3000 mm 38.21 18.06 0.19 0.49 0.04

3000 - 4000 mm 62.95 29.76 2.80 4.46 0.38

4000 - 5000 mm 73.56 34.78 15.98 21.73 1.85

5000 - 6000 mm 36.80 17.40 5.92 16.09 1.37

Distance to rivers

0 - 300 m 74.99 35.45 15.39 20.52 1.74

300 - 600 m 49.11 23.21 5.31 10.81 0.92

600 - 900 m 31.28 14.79 2.21 7.06 0.60

900 - 1200 m 20.50 9.69 1.00 4.88 0.41

> 1200 m 35.65 16.85 1.00 2.79 0.24

Elevation

0 - 500 m 42.43 20.06 4.42 10.42 0.88

500 - 1000 m 94.76 44.79 9.58 10.11 0.86

1000 - 1500 m 44.46 20.82 6.25 14.20 1.21

1500 - 2000 m 17.67 8.35 3.27 18.51 1.57

2000 - 2500 m 9.41 4.45 1.23 13.02 1.11

> 2500 m 3.22 1.52 0.15 4.53 0.38

Slope

0° - 5° 4.13 1.95 0.35 8.56 0.73

5° - 15° 14.53 6.87 1.94 13.36 1.13

15° - 25° 45.55 21.53 3.88 8.53 0.72

25° - 35° 84.23 39.82 9.28 11.01 0.94

35° - 45° 52.55 24.84 7.63 14.51 1.23

> 45° 10.55 4.99 1.82 17.22 1.46

Aspect

N 18.82 8.90 1.59 8.43 0.72

NE 32.17 15.21 4.50 14.00 1.19

E 37.81 17.87 5.36 14.19 1.21

SE 30.89 14.60 4.34 14.06 1.19

S 25.73 12.16 3.77 14.65 1.24

SW 24.81 11.73 2.45 9.87 0.84

W 24.12 11.40 1.57 6.51 0.55

NW 17.16 8.11 1.31 7.64 0.65

F 0.03 0.02 0.00 0.00 0.00

Curvature

Concave (-) 101.53 48.00 13.19 12.99 1.10

Flat (0) 5.74 2.71 0.61 10.67 0.91

Convex (+) 104.26 49.29 11.10 10.64 0.90

Table 1. The area statistics and RCI values of environmental variables.
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land cover change were closely adjacent and tied to rivers. 
A previous study performed in central Taiwan by Chang 
et al. (2007) demonstrated that landslides triggered by ty-
phoons were apt to be approaching to stream and landslides 
triggered by earthquakes had an inclination to be close to 
ridge lines. Due to typhoons exerting a stronger influence 
on landslide occurrence than earthquakes during the study 
period, land cover change occurred mainly near the stream 
channel in the current research.

The elevation region of 500 - 1000 m took up the 
greatest proportion of study area at about 45%, but the RCI 
values larger than 1 were found at elevations between 1000 
- 2500 m. When explaining the relationship between eleva-
tion and land cover change, the correlation between eleva-
tion and rainfall and slope should be considered. In our 
study area, the regions with higher elevations are featured 
by greater annual rainfall and steeper slopes, both of which 
are important factors triggering landslides (Bui et al. 2011).

The proportions of study area covered by slope gradi-
ents between 15 - 45° were all larger than 20%. Overall, the 
RCI values increased with the ascending slope grades. The 
gradient regions of 5 - 15°, 35 - 45°, > 45° had the higher 
RCI values of 1.13, 1.23, and 1.46, respectively. The gradi-
ents can be portioned into two types. One is less steep slope 
(5 - 15°) and the other is steep (35 - 45° and > 45°). As 
mentioned above, the most remarkable land cover change 
related to conversions from forest cover to landslides and 
channels over the study period. The former occurred main-
ly on the steep slopes of upper and middle Taimali water-
shed, and the latter took place chiefly along the less steep 
Taimali streamside.

The three greatest proportions of area based on aspect 
classes were northeast, east, and southeast in sum about 
48%. RCI values greater than 1 were located in the slope 
of NE, E, SE, and S. The outlet of Taimali watershed is 
eastward and typhoons with heavy rainfall often strike Tai-
wan from the east. As a result, the eastward slope was the 
dominant region where land cover change easily occurred.

The curvature classes of the study area were primarily 
comprised of concave and convex landforms that occupied 
48 and 49% of the entire watershed, respectively. However, 
the RCI value of concave landform was higher than convex 
and flat landforms. A case study conducted in northeastern 
Taiwan by Lee et al. (2018) developed an integrated land-
slide hazard assessment approach and also indicated that 
concave-shaped topographic features had an adverse effect 
and was the dominant factor triggering landslides.

3.4 Multicollinearity Diagnostics

Multicollinearity among the variables may influence 
the accuracy of logistic regression model. TOL and VIF 
were applied to test the multicollinearity among the eight 
environmental variables. The results showed that some vari-
ables were correlated to other variables based on the criteria 
(rejected by TOL < 0.4 and VIF > 2.5) (Table 2), especially 
for the variable of average annual rainfall (AAR) with low-
est TOL value (0.125) and highest VIF value (7.997). There-
fore, AAR variable was removed, and there was no multi-
collinearity again among other predictor variables (Table 2).

The AAR variable is expected to have a relation with 
the dependent variable because the study site is prone to be 
attacked by frequent typhoon disturbances. Typhoons may 
bring a great amount of precipitation and drive changes in 
land cover. However, the AAR variable excluded based on 
the multicollinearity diagnostics indicated that AAR vari-
able strongly correlated with the other variables. Because 
AAR variable was estimated from the surrounding 12 
weather stations using the Kriging interpolation technique, 
there was some uncertainty about the rainfall estimates. 
Moreover, we attempted to apply other variables related to 
rainfall conditions. Annual maximum 1-day and consecu-
tive 3-day precipitation data in 2005, 2008, and 2011, re-
spectively, were also estimated from the neighboring 12 
weather stations using the Kriging interpolation method to 
represent extreme precipitation events, which were tested 

1st 2nd

Variable TOL VIF TOL VIF

Lithology 0.328 3.047 0.656 1.525

Distance to faults 0.606 1.650 0.870 1.149

Rainfall 0.125 7.997 --- ---

Distance to rivers 0.520 1.921 0.828 1.207

Elevation 0.212 4.715 0.594 1.683

Slope 0.868 1.152 0.869 1.151

Aspect 0.917 1.091 0.917 1.091

Curvature 0.992 1.008 0.995 1.005

Table 2. Statistics of multicollinearity diagnostics for environmental 
variables.
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again in multicollinearity diagnostics. Nevertheless, all an-
nual maximum 1-day and 3-day precipitation variables were 
rejected by the criteria. Because the AAR was correlated to 
elevation and slope variables, it was omitted in the logistic 
regression analysis.

3.5 The Logistic Regression Model

Logistic regression can demonstrate the relation-
ship between a target variable and multiple environmen-
tal variables, and project the occurring probability of land 
cover change trajectories. The measure of -2 Log likeli-
hood (-2LL) indicates how well a model fits the data, and 
smaller -2LL values reveal that the model fits the data better 
(George and Mallery 2010). The -2LL values in the training 
data set decreased from 11622.574 in step 1 to 10056.432 in 
step 7; meanwhile, higher Cox and Snell R2 and Nagelkerke 
R2 values, 0.260 and 0.347, respectively, demonstrate a bet-
ter model fit (Table 3). Besides, the predicted classification 
accuracy of the training data set was 82.4% for changed pix-
els, 62.0% for unchanged pixels, and 72.3% for the overall 
predicted accuracy. These results for model fit analysis in-
dicated that this logistic regression model was reasonable.

The coefficients of independent variables from the fit-
test logistic regression model were showed in Table 4. Larg-
er absolute values of the coefficient revealed that the inde-
pendent variables were the main determinant for occurrence 

probability of change trajectories. Among these variables, 
lithology with highest absolute value of the coefficient was 
the most important spatial determinant for the change tra-
jectories. In this study area, the most notable change tra-
jectory was from forest cover into landslides. Lithology, 
regarded as an underlying driving factor for landslide occur-
rence, exerted the greatest influence on trajectories of land 
cover change. Its negative logistic coefficient indicated that 
the occurrence probability of change trajectories decreased 
with an increase in code value of lithological classes. Thus, 
trajectories of change were dominated mainly by Pilushan 
Formation in the study area. In addition, curvature was the 
second critical variable with negative value of logistic coef-
ficient for the model. The concave landform had higher oc-
currence probability of change trajectory; while the convex 
landform had lowest occurrence probability. Moreover, as-
pect was the third significant determinant for the change tra-
jectory. A negative coefficient of aspect showed that east-
ward slopes raised the likelihood of occurrence of change 
trajectory, including NE, E, and SE. The eastward slopes 
were on the windward slope and were prone to be hit by 
typhoons due to facing the typhoon tracks.

The other environmental variables were significant in 
explaining the change trajectory, but their coefficient val-
ues were lower. Both variables of slope and elevation had 
positive coefficient values, and implied that the likelihood 
of change occurrence risen with ascending gradients and  

Steps -2 Log likelihood Cox & Snell R2 Nagelkerke R2

1 11622.574 0.124 0.166

2 10834.944 0.196 0.261

3 10267.547 0.243 0.324

4 10112.348 0.256 0.341

5 10086.161 0.258 0.344

6 10062.668 0.260 0.347

7 (final) 10056.432 0.260 0.347

Table 3. Summary of model fit with seven independent variables.

Variable Coefficient Wald Significance

Lithology -1.050713 376.224 0.000

Distance to faults -0.000286 589.028 0.000

Distance to rivers -0.001799 716.581 0.000

Elevation 0.000708 125.154 0.000

Slope 0.006404 6.231 0.013

Aspect -0.066895 26.792 0.000

Curvature -0.081798 22.654 0.000

Constant 2.896376 473.742 0.000

Table 4. Logistic regression model for the change trajectories.
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altitudes. In contrast, both variables of distance to faults and 
rivers had negative coefficients, indicating that the probabil-
ity of change occurrence decreased with increasing distance 
to faults and rivers.

3.6 Model Validation

This fittest logistic regression model was validated in 
the testing data set. The correct classification percentage was 
calculated to evaluate the performance of the model. The 
predicted classification accuracy of the testing data set was 
81.6% for changed pixels, 64.5% for unchanged pixels, and 
72.9% for the overall predicted accuracy. The model perfor-
mance of testing data set was better than that of training data 
set. Moreover, the AUC value was high up to 0.785, which 
was considered as an acceptable discrimination (Fig. 8). It 
also indicated that classification result based on the logistic 
regression model was satisfactory.

The probability map of change occurrence was pro-
duced by applying the logistic regression model. Some stud-
ies presented that the occurrence probability could be fur-
ther categorized into several classes (Bai et al. 2010; Nandi 
and Shakoor 2010; Bui et al. 2011). In this study, the prob-
ability map was divided into five equal interval classes of 
change likelihood, including very low (0.0 - 0.2), low (0.2 
- 0.4), medium (0.4 - 0.6), high (0.6 - 0.8), and very high 
(0.8 - 1.0) (Fig. 9). Among the five classes of probability, 
the class of very high occurrence probability covered the 
lowest percentage as 5.43% of the study area. In contrast, 
the class of very low occurrence probability had the largest 
percentage as 32.79% of the study area. This result was in 
accordance to the study by Can et al. (2005), which pointed 
out that high probability class should cover a small area. In 
addition, RCI values, measuring the concentration of land 
cover change in a region of the study area, were increasing 
with ascending classes. The greatest RCI value 2.68 was in 
class 5, but the total area was smallest. These results re-
vealed that change trajectory considerably coincided in the 
zones which have higher probability of change and occupy 
a small area (Table 5).

4. CONCLUSION

Analyzing the change trajectories of land cover under 
the effects of natural disturbances, such as earthquakes and 
typhoons, can provide essential information for watershed 
management. In recent years, the effect of global warming 
on typhoon frequency and intensity has also received grow-
ing attention for disaster protection and mitigation. Under 
these circumstances, this study selected a mountainous wa-
tershed experiencing frequent earthquakes and typhoons in 
eastern Taiwan for understanding the influences of natural 
disturbances on land cover change trajectory. The land cover 
maps were extracted from FORMOSAT-2 satellite images 

acquired in 2005, 2008, and 2011. The spatial autocorrela-
tion of landslide patches was analyzed by using global and 
local Moran’s I statistics. A spatial statistical model based 
on logistic regression was developed for predicting the oc-
currence probabilities of land cover change trajectories.

The result showed that higher global Moran’s I val-
ues were present for landslide occurrence at shorter lag dis-
tances for all three dates. It indicated that spatial pattern of 
homogeneous landslide patches occurred at small scales. On 
the contrary, spatial pattern of landslide patches was more 
heterogeneous at large scales. Besides, all global Moran’s 
I values at each lag distance in 2011 were higher than that 
in 2005 and 2008, which suggested that stronger spatial au-
tocorrelation of landslide patches existed in 2011. Based 
on local Moran’s I values, landslide patches had higher 
positive spatial autocorrelation and presented as regional 
hotspots in study area. This spatial distribution of regional 
hotspots provided site-specific information for management 
of degraded areas.

Through formula calculation, selection criteria, and 
trajectory classification, two unchanged and five changed 
trajectories dominated 95.08% of the study area. Individu-
ally, the most dominant trajectory was the unchanged forest 
cover (222) comprising 80.32% of the watershed. However, 
the most significant transformation of land cover was from 
forest to landslide and channel in study area. Considering 
environmental variables, these change trajectories were re-
lated to fragile geological condition, the vicinities of faults 
and rivers, and geomorphological characteristics.

Based on the exploration of the relationship between 
change trajectory and environmental variables, land cover 
change occurring was subject to the geologic condition of 
Pilushan Formation and the vicinities of faults and rivers. 
In addition, land cover experienced highly concentrated 
changes at elevations of 1000 - 2500 m, gradients greater 
than 35°, and on the eastward slope. Besides, the change 
intensity with concave landform was higher.

For multicollinearity diagnostics, the variable of av-
erage annual rainfall was rejected by the criteria. A fittest 
logistic regression model, which accuracy was high up to 
72.3% at all, predicted the occurrence probability of change 
trajectory in the study area. Among these environmental 
variables for logistic regression, lithology was the most 
important spatial determinant for the change trajectories. 
Pilushan Formation dominated the probability of change 
occurrence in the study area. In addition, curvature was the 
second critical variable, and concave landform had higher 
probability of change trajectory. Aspect was also significant 
to influence change trajectory, especially for eastward. This 
spatial statistical model was helpful for predicting the oc-
currence probabilities of the change trajectories.
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Fig. 8. The ROC curve for change trajectories.

Fig. 9. Maps of occurrence probability of change trajectories.

Class number Probability of change Propensity to change Area (km2) Area (%) Changed area (km2) Changed ratio (%) RCI

1 0.0 - 0.2 Very low 69.37 32.79 0.45 0.65 0.06

2 0.2 - 0.4 Low 36.18 17.11 2.06 5.70 0.48

3 0.4 - 0.6 Medium 39.89 18.86 5.60 14.05 1.19

4 0.6 - 0.8 High 54.61 25.82 13.16 24.10 2.05

5 0.8 - 1.0 Very high 11.48 5.43 3.62 31.55 2.68

Total 211.53 100.00 24.90 11.75 1.00

Table 5. Characteristics of occurrence probability for change trajectories.
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