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ABSTRACT

We developed an automatic debris flow warning system in this study. The system uses a fixed video camera mounted 
over mountainous streams with a high risk for debris flows. The focus of this study is to develop an automatic algorithm for 
detecting debris flows with a low computational effort which can facilitate real-time implementation. The algorithm is based 
on a moving object detection technique to detect debris flow by comparing among video frames. Background subtraction is 
the kernel of the algorithm to reduce the computational effort, but non-rigid properties and color similarity of the object and 
the background color introduces some difficulties. Therefore, we used several spatial filtering approaches to increase the per-
formance of the background subtraction. To increase the accuracy entropy is used with histogram analysis to identify whether 
a debris flow occurred. The modified background subtraction approach using spatial filtering and entropy determination is 
adopted to overcome the error in moving detection caused by non-rigid and similarities in color properties. The results of this 
study show that the approach described here can improve performance and also reduce the computational effort.
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1. INTRODUCTION

Typhoons (hurricanes) are one of the major global 
natural disasters. The heavy precipitation accompanying 
cyclonic storms cause serious damage and there is evidence 
that climate change might result in an increase in storm in-
tensity (Gore 2006). Flooding in mountainous areas, debris 
flows and landslides are major concerns for disaster preven-
tion in regions with steep terrain, especially in Taiwan and 
Japan. Thus, establishing a warning system which can be 
activated in the early stage of a debris flow occurrence is a 
critical need. A successful warning system will protect the 
residents living downstream at a critical moment when even 
a few seconds could save lives. In this study, we discuss the 
use of a video camera system to monitor debris flows using 
intelligent surveillance techniques.

The general concept of a debris flow warning system 
utilizing a fixed video camera mounted at locations on the 
upstream rivers identified as high risk for debris flow is a 
simple one. With high speed broadband network transmis-
sion, the video can be transmitted to a laboratory for pro-
cessing in real-time. When a debris flow occurs, the sys-
tem is able to automatically recognize the initiation of the 
debris flow and send a warning signal. The kernel of de-
tecting debris flows relies on the video (image) processing 
techniques used. In the last few years, vast improvements in 
video camera technology have not only improved resolution 
but also the capability for the detection and recognition of 
the target. With advanced remote sensing techniques, au-
tomatic monitoring has effectively lightened the burden of 
land cover inspection in the field. Here we introduce several 
main approaches using advanced intelligent surveillance 
techniques to detect a moving target (a debris flow) using 
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a CCD (Charge Coupled Device) camera video. We also 
discuss how remote sensing techniques can be applied to 
monitor landslides or debris flows.

Detecting debris flows in a riverbed can be seen as one 
application of moving target detection. There are several 
successful approaches for detecting moving objects in vid-
eo which have many applications in industry, traffic safety, 
and medical care. The optical flow technique is based on the 
fact that the moving object will affect the brightness distri-
bution. The variation in brightness distribution can be used 
to estimate the optical velocity field and the moving object 
is detected by the velocity field. Horn-Schunck (1981) em-
ployed an iterative approach operated with conservation 
and smoothness constraints to estimate the motion velocity. 
Lucas and Kanade (1981) used a least squares method to 
improve the iteration time. Optical flow techniques can per-
form well when the object is rigid. However because of the 
intensive computations needed and high sensitivity to noise, 
this method is unsuitable for real-time applications.

Adaptive background mixture models (Stauffer and 
Grimson 1999) represent another approach for data analy-
sis. Using histogram statistical analysis, the background can 
be estimated from the images and the background model 
is built by a mixture of several Gaussian distributions. In 
adaptive background mixture models, all the video signals 
are analyzed in the histogram. After the background mixture 
model has been processed, the model is used to analyze the 
current frames. If the pixels reside outside of the model, they 
are identified as the moving object. Using histogram analy-
sis, this approach is able to avoid the influence of noise. 
However, the drawback of this technique is that the moving 
object detected is usually not complete.

Another object detection method uses temporal differ-
ences (Dailey et al. 2000), which subtracts the current frame 
from the previous frame and the object is detected by the 
difference between each adjacent pair of frames. The prin-
ciple of temporal difference is simple and substantially re-
duces the computation time. Even though the temporal dif-
ference method is conveniently implemented in real-time, 
if the object moves slowly, the results of object detected 
become poor and the accuracy is reduced. 

In addition to the temporal difference method, back-
ground subtraction can also be used to detect a moving 
object (Fathy and Siyal 1995; Lipton et al. 1998; Chalid-
abhongse et al. 2003; Cheung and Kamath 2004; Piccardi 
2004; Chen et al. 2009). The background subtraction method 
builds a reference background from the video and subtracts 
the background from the current frames (foreground) to de-
tect the moving object. Background subtraction is a simple 
and widely used method in steady camera applications be-
cause the computational effort is low and the moving object 
is completely detected. However, this method is sensitive 
to changes in illumination. Therefore the detection perfor-
mance may be affected. Background subtraction is based on 

the background estimation so the timing of background es-
timation and update is a critical issue. Several groups have 
successfully developed some modifications of background 
subtraction to overcome the drawbacks. Fathy and Siyal 
(1995) used the edge detection method to reduce the effect 
of the illumination of the environment. Lipton et al. (1998) 
used a classification matrix to classify the targets (e.g., hu-
man, vehicle) and background; therefore the target tracking 
can be carried out using background subtraction. Cheung 
and Kamath (2004) used robust techniques to overcome the 
interference of illumination changes in moving vehicles de-
tection in urban traffic video. Chalidabhongse et al. (2003) 
and Piccardi (2004) compared the performance of several 
approaches that based on background subtraction. Their 
studies analyzed the speed, memory requirements, accuracy 
and discussed the benefits and limitations for selecting the 
most suitable method for various applications.

With progress in artificial intelligence and pattern rec-
ognition techniques, the methods for object surveillance 
have improved. Nevertheless, debris flows are usually a 
non-rigid object having similar color with the background 
color. Using the methods mentioned above may not pro-
vide sufficient performance. Here we describe an algorithm 
which has the characteristics of low computational effort so 
that real-time detection can be implemented. Together with 
a broad band high speed network transmission, an effective 
warning system can be realized.

2. METHODS

The moving object detection algorithm proposed by 
Chen and Ren (2011) is shown in Fig. 1. The camera video 
frames have to be converted to smaller and more useful data, 
which not only increases the sensitivity but also decreases 
the computing effort. In the proposed algorithm, the back-
ground subtraction is the kernel to detect the moving object. 
The color of the debris flow is similar with the background 
and some spatial approaches (filters) can be used to remove 
the noise. After subtraction and spatial filtering, the moving 
object can be identified. In order to detect the moving object 
precisely, we use the entropy function to evaluate the uncer-
tainty level and this index can be used to determine whether 
the debris flow occurred (Chen et al. 2009).

2.1 Computation Reduction

Most video camera sensors are able to detect three pri-
mary colors, named RGB (Red, Green and Blue). Because 
three channel images represent a three-fold increase in data 
computation times, reducing the channel number should be 
an effective approach to realize real-time image processing. 
Chen and Ren (2010) compared the performance of the clas-
sification approach (Fisher’s Linear Discriminant Analysis, 
FLDA) and the color coordinate transformation (YUV).  
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In FLDA (Fisher 1938), the frames with debris and non-
debris flow are selected as the training sample. Each group 
(debris and non-debris pixels) can have an estimated covari-
ance matrix of “between class” and “within class” (Fig. 2). 
The value of “ratio matrix” dividing the “between class” and 
“within class” can be seen as an index to evaluate whether 
these two groups of pixels (debris and non-debris) can be 
separated. FLDA uses eigenvector decomposition to search 
the projection vector to maximize the ratio. The projection 
vector is one of the eigenvectors of the ratio matrix with the 
vector corresponding to the maximum eigenvalue. The op-
timum separation component can be obtained by projecting 
the 3 channels frames (RGB) to the vector (one of the eigen-
vectors) which corresponds to the maximum eigenvalue.
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In the YUV color system, Eq. (1) shows the formula 
of transformation between RGB and YUV. RGB is the 3 
primary colors in YUV, Y is luminance, and U and V rep-
resent chrominance. In YUV mode, the Y component (lu-
minance) should contain the most information to determine 
whether a debris flow has occurred or not. Because when a 
debris flow occurs, the river usually reveals a white or high 
brightness for the image. Besides the color variation, the Y 
component also includes more than 90 percent of the total 
energy of the image (Y = 0.299R + 0.587G + 0.114B). In 
addition, the Y component can be acquired only by a simple 
transformation from RGB to YUV (Chen and Ren 2010),  
the simple procedure can also contribute to reducting the 
computational effort.

Chen and Ren (2010) also compared classification 
(FLDA) and color coordinate transformation (YUV) using 

an entropy value which had been used to determine if a de-
bris flow has occurred (Chen et al. 2009). Figure 3 shows 
the entropy of Fisher’s LDA and YUV. It is obvious that the 
YUV shows better performance for determining the occur-
rence of a debris flow. Therefore the luminance component 
(YUV, Y component) can be considered as containing more 
information which is correlated with debris flow and there-
fore is used in the following procedure.

2.2 Background Subtraction

The main concept of background subtraction is using 
the background frame to subtract the current frames where 
the revealed pixels are considered as the moving object 
pixels (Fathy and Siyal 1995; Lipton et al. 1998; Chalidab-
hongse et al. 2003; Cheung and Kamath 2004; Piccardi 2004; 
Chen et al. 2009). In our method, the standard background 
subtraction is the kernel of the algorithm. When the object 
is non-rigid (river) and has similar spectral characteristics  

Fig. 1. The flow chart of the proposed method.

Fig. 2. The principle of Fisher’s LDA.
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(visible light, color) with the background, it is necessary to 
carry out additional processing after background subtraction 
to improve the accuracy. The approach used in this study 
focused on the processing after subtraction (sections 2.3 and 
2.4), thus improving the performance of the spatial filters 
and algorithms. For the background subtraction, the back-
ground is estimated as the average of the first 30 frames. 
According to the background color properties (containing 
only a river or stream, uniform light source), the background 
update step is not necessary.

2.3 Spatial Filtering

After background subtraction, the difference between 
the background and the current frame is displayed. The 
moving object can be clearly identified only when the color 
(object) appears distinct from the background. However, 
when a debris flow occurs, the color of the debris flow is 
similar to normal river condition and the colors for both of 
the object (debris flow) and background (normal current) 
also have non-rigid properties. The color similarity and non-
rigid property might cause blurring of the result. Therefore, 
spatial filtering approaches, including a median filter or 
morphology approach can be used to reconstruct the data 
following subtraction. 

2.3.1 Median Filter

After subtraction, the detection is still affected by the 
non-rigid characteristic and the color similarity between the 
moving object and the foreground, resulting in noise. The 
median filter (Tukey 1977) has properties that can eliminate 
the noise (e.g., salt and pepper noise) and reserve the edge 
features (Haralick and Shapiro 1993; Baxes 1994; Yin et al. 
1996). In this study, a 2-D (2 dimensional) median filter was 
implemented using a 2-D mask to process every pixel follow-
ing subtraction and the window size is assigned. Equation (2)  
represents the 2-D median filter:

, }N r s N# #-,{y Median x( )( )ij i r j s= + +  (2)

yij is the median value placed in the central position, xij is the 
original data point at the center of the filter, N is the filter 
size. There are 2 steps: the first is arranging the values in 
ascending order within the mask region, and selecting the 
median as the median value. The second step is using the 
median value to replace the value in the central position of 
the mask. The mask shape is defined by the user, such as a 
square, circle, or cross. In general, the mask is usually the 
square of the odd pixels. For example, Fig. 4a shows that 
a 3 × 3 mask was assigned. After sorting the pixel values 

Fig. 3. Comparison of Fisher’s LDA and YUV by entropy. (a) The entropy derived by Fisher’s LDA. (b) The entropy derived by YUV. The dot 
indicates the time when the debris flow occurr.

(a)

(b)
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in ascending order, the fifth-ranked is 20 which is used as 
the median value. In Fig. 4b, the median value (20) was re-
placed to the central position (100) as the pixel value. By 
replacing the central pixel value, unusual pixel values are 
removed and the edge character will be preserved.

2.3.2 Morphology

Even though the median filter eliminates most of the 
noise, the non-rigid property and color similarity sometimes 
cause serious defects that the median filter cannot process 
(e.g., breach, holes or rough boundary). The mathematical 
morphology approach was born in 1964 by Matheron and 
Serra. The basic concept is that the object shape of an im-
age can be changed by a structure element (Gonzalez et al. 
2004). The structure element is usually defined as a matrix 
or a vector for a mask to process the image pixel by pixel 
(analogous to convolution). The basic morphology opera-
tor is dilation and erosion which follow the rules to expand 
and shrink the image. Most of the morphology methods are 
based on the combination of these two operators. Closing 
and opening are typical applications. 

5( )A B A B B$ H=  (3)

Equation (3) shows the procedure for closing operator, 
where B is structure element, A is the image data. 5  is dila-
tion operation, and H  is erosion. Closing consists of erosion 
after dilation and the opening operator consists of dilation 
after erosion. Both opening and closing are smoothing op-
erations for an object. The opening operator breaks narrow 
isthmuses and removes thin protrusions. The closing opera-
tor has the opposite effect that melts narrow breaks and long 
thin ditches, reduces small holes and fills gaps in the con-
tour (Gonzalez et al. 2004). Figure 5 shows an example to 
demonstrate the performance of these operators. Figure 5a 
is the original binary (pixel value is 0 or 1) image and for 
this study the structure element is defined as Fig. 5b. The 
effect of dilation is shown in Fig. 5c, with the object ex-
panded. Figure 5d shows the erosion operator. The effect of 
opening and closing (combination of dilation and erosion) 
was shown in Figs. 5e and f. Compared to the original object 
(Fig. 5a) and the closing result (Fig. 5e), the closing is able 
to fill the thin gulfs in the contour. Therefore, the morpholo-
gy closing is employed in our algorithm to enable the shape 
of the moving object to be more complete. By means of the 
spatial filtering process, the noise and irregular pattern (e.g., 
thin gulfs) can be eliminated and the moving object better 
represents a realistic debris flow.

2.4 Entropy Determination
The main goal of this study is to identify debris flows 

using a video camera monitoring system. Although the 

image of a debris flow can be enhanced in each frame by 
subtraction and spatial filter approaches, each frame should 
have an index to evaluate whether it contains a debris flow 
or the normal current. This study employs entropy function 
as the index to evaluate the status of the moving object. 
Chen et al. (2009) used entropy to the frames after back-
ground subtraction. Figure 6 compares the histogram for 
background subtraction between frames with non-debris 
and debris flow current. Figures 6a and b show the back-
ground subtraction results of non-debris and debris flow. In 
Figs. 6c and d the histogram is obviously different for non-
debris and debris flow frames. Therefore the histogram sta-
tistic should have the potential to evaluate the occurrence 
of a debris flow. 

Fig. 4. The example of 2-D median filter. (a) The first step of median 
filter. (b) The second step of median filter.

(a) (b)

Fig. 5. The example of Mathematical Morphology. (a) The original 
image. (b) The structure element. (c) The result of dilation. (d) The 
result of erosion. (e) The result of closing. (f) The result of opening.

(a) (b)

(c) (d)

(e) (f)
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Entropy is one of the main principles of information 
theory (Shannon and Weaver 1963). It is based on the prob-
ability of each state by the histogram of subtraction result 
in each frame. Although entropy measures the amount of 
information, it also can be used to evaluate the distribution 
or uncertainty of a data set, in Eq. (4):

logP PnH i i i1= - =/  (4)

Entropy H represents the uncertainty level, P is probability 
with each gray scale, i is the gray scale (8 bit: 0 ~ 255). The 
magnitude of entropy represents the sum of the quantity of 
information in the frame. In this study it is used to evaluate 
the uncertainty in the video frames. For example, Fig. 6c has 
a narrow distribution indicating lower entropy. In contrast, 
Fig. 6d has a wider distribution showing higher entropy. 
Consequently, the entropy analysis obtains a score to rep-
resent the uncertainty of the data set. This score (entropy 
value) is used to indicate whether a debris flow has occurred 
in the frame.

2.4.1 Moving Average

Figure 7 shows the entropy of a short section of video 
which includes non-debris and debris flow frames. In Fig. 7 
shows that the original entropy distribution is able to iden-
tify whether a debris flow is present. However, the curve of 
entropy still shows some minor variations. This will affect 
the trend of the curve, sometimes causing fatal error when 
performing slope estimation. Using a short term moving av-

erage (Box and Pierce 1970) should overcome this problem. 
Equation (5) shows the moving average process convolu-
tion procedure:

y n M x n l1
l

M

0

1

= -
=

-6 6@ @/  (5)

where y n6 @ is the averaged output, x n6 @ is the original signal 
and M is the average filter length. Figure 7 shows that the 
moving average smoothes the entropy curve. After calculat-
ing the moving average, the presence of a debris flow can 
be evaluated by the slope and a threshold for the slope of 
the entropy.

3. RESULTS

The proposed algorithm is based on background sub-
traction. Color transformation reduces the computation ef-
fort for real-time implementation. In order to remove the 
effects of non-rigid properties and color similarity (target 
and background), median filtering, morphological closing 
and entropy determination are included. This result shows 
that a debris flow occurrence is properly detected with the 
approach proposed here and is compatible with real-time 
implementation.

3.1 Detection System

The proposed detection algorithm is based on subtrac-
tion of the background and current frames. However the 

Fig. 6. The background subtraction frames and histograms. (a) The frame of background subtraction of non-debris flow. (b) The frame of back-
ground subtraction of debris flow. (c) The histogram of background subtraction of non-debris flow. (d) The histogram of background subtraction 
of debris flow.

(a) (b)

(c) (d)
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moving object in this study is fluid (non-rigid). Therefore 
part of this study focused on improving the accuracy of de-
tection using a morphology filtering technique (Fig. 1). In 
addition to spatial filtering, the entropy is used to evaluate 
the histogram of the result from the subtraction procedure.

3.2 Video Data Sets

Three videos were used (Fig. 8, Table 1). These videos 
include most of the conditions encountered such as: simu-
lated and realistic debris flow, non-debris and debris flow, 
and the river bed in dry and wet condition. Figure 8a shows 
a simulated current flow in the USA; the view point is high 
which is easy to show the whole watercourse. Before any 
debris flow occurs, a limited amount of water flows, simu-
lating a normal condition. Figure 8b shows a realistic debris 
flow in Japan. In this example the river bed is almost dry un-
til a debris flow occurs suddenly. Figure 8c shows a realistic 
debris flow in Taiwan. This example is the most challenging 
for detecting debris flow because the normal current veloc-
ity is high and in addition, the weather conditions include 
heavy rain and fog, which increases the difficulties in de-
tecting a moving object.

3.3 Color Transform
Initially, color transformation has been used to reduce 

each frame from three channels to one channel (Fig. 9). The 
transform was obtained using the YUV transformation ma-
trix [Eq. (1)] and only the Y component (luminance) was 
selected for analysis. The transform uses the function Y = 
0.299R + 0.587G + 0.114B [Eq. (1)] to obtain the luminance 
(Y component), which contains most of the information in 
the video frames. After the processing, the computational 
effort is reduced to about one third and nearly all of the in-
formation content is preserved.

3.4 Selection of Region of Interest (ROI)
In most rivers, the river (debris or non-debris) flows 

in a channel and the target (debris flow) also flow in the 
same path. This characteristic provides an opportunity to 
reduce the required computation and improves accuracy. 
Using this approach, the region in the video frame which 
contains the channel where debris flow is certain to flow 
through must be selected. Figure 10 shows the selection of 
region of interest (ROI) for these three data sets. With the 
ROI technique, the factors which are able to interfere with 

Fig. 7. The comparison between before and after using moving average (MA5) of the entropy.

(a) (b) (c)

Fig. 8. Testing videos. (a) Data 1. (b) Data 2. (c) Data 3.
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accurate detection (e.g., animals or vegetation movement) 
can be eliminated. Another benefit of ROI is the reduction 
in computational effort.

3.5 Subtraction
3.5.1 Region of Interest

Table 1 and Fig. 9 show the ROI procedure and the 
position of the ROI in the data sets. When the detection pro-
cess begins, the first step is creating the background (Fig. 1). 
We used the simplest approach to create background with 
only the first 30 frames selected as the background. In ROI, 
the first 30 frames are selected and the average background 
is obtained (Fig. 10). 

Figures 11 - 13 show the results from the subtraction 
and filtering ROI procedures for the three data sets (Data 
1 - 3), where (a) is the original video frame, (b) is the frame 
after background subtraction, (c) is after median filtering 

and (d) is after median filtering and morphology closing. In 
Figs. 11 - 13, each figure also contains 4 frames including: 
non-debris flow, warning before a debris flow, warning trig-
ger and continuing warning.

After background subtraction, Figs. 11b and 12b show 
more signals at high frequency before the arrival of the de-
bris flow which are considered as noise. A 3 × 3 median fil-
ter is applied which removes the noise and retains the edges 
(Fig. 11c and 12c). In Figs. 11d - 13d, the morphology used 
a structure element with a square length of 3 for the closing 
operation to fill broken holes (Figs. 11c and 12c). After pro-
cessing, the noise from non-rigid flow background is elimi-
nated and the event should be easily detected. As observed in 
Figs. 11 - 13 for the background subtraction result (Figs. 11 -  
13b, c, d), only when the debris flow reaches ROI, will the 
alarm be properly triggered. 

3.5.2 Whole Image

In whole image process mode, the first 30 frames were 
selected to form the background average. The results of back-
ground subtraction with current frames are shown in Figs. 
14 - 16 of Data 1 - 3. The figures are: (a) the original video 
frame, (b) the subtraction of the current and background, (c) 
the subtraction after median filter, and (d) the subtraction 
after median filter and morphological closing. Each figure 
also contains 4 frames: non-debris flow, warning before a 
debris flow, warning trigger and retaining warning in order 
to compare with the warning triggered.

(a) (b) (c)

Fig. 9. YUV transform (Y component), the white rectangles are region of interest (ROI). (a) Data 1. (b) Data 2. (c) Data 3.

  Video
Information Data 1 Data 2 Data 3

Frames Per Second (FPS) 30 30 12

Format MPEG WMV AVI

Size (pixel) 640 × 480 320 × 240 320 × 240

ROI Size (pixel) 15 × 100 15 × 130 15 × 130

Table 1. Information about the test videos.

Fig. 10. Background of ROI (a) Data 1. (b) Data 2. (c) Data 3.

(a)

(b)

(c)



Monitoring Debris Flows Using Fixed Camera 781

Comparing the background subtraction (Figs. 14 - 16b, 
c, d) between non-debris and debris flow may not appear as 
clear as for the ROI, but the warning alarm is still triggered if 
a debris flow occurs. In the simulated video (Data 1, Fig. 14),  
the flow and the operators’ movement are detected. Although 
the median filter and closing processing give more reasonable 
results, the unallied object (operators) still have influence of 
detection. Figure 15 shows the actual debris flow video in 
Japan. In this experiment, the detection performance is fine: 
even the vegetation movement from the blowing wind is de-
tected. Figure 16 (actual debris flow in Taiwan) shows the 
situation for the difficult weather conditions. Another dif-
ficulty is that the river current is abundant in normal time 
and the moving current could be heavily interfered when the 
debris flow comes. Even after performing media filter and 
closing process, the improvement is still limited.

3.6 Entropy Detection

After subtraction, median filter, and morphological 
closing, the moving object usually could be detected in each 
image subtraction frames. Entropy is used to evaluate the his-
togram distribution of each subtracted result. In subtraction,  
the experiment could be separated to two parts, the ROI (re-
gion of interest) and the whole image. The comparison of 
the performance is discussed below.

3.6.1 Region of Interest

The entropy of each subtracted frame of the ROI is 
shown in Fig. 17. After performing subtraction, the median 
filter, closing and moving average are processed (moving 
average window size is 5, MA5, Fig. 17). The slope process 
is the difference between the current frame and the previous 
10th frame. The slope process could make the determination 
easier which only by a simple threshold, while the entropy 
slope larger than the threshold the warning signal will appear 
(Figs. 11 - 13). In addition, the entropy curve also shows the 
improvement of the performance of proposed approach. In 
Figs. 17a and b the entropy after applying the median filter 
show a larger difference with only performing background 
subtraction and the agreement is slightly better than with 
median filter processing. However, in Fig. 17c the differ-
ence between debris and non-debris flows is minor and the 
performance is similar with all the processes (subtraction, 
median filter, closing and the moving average). Even though 
the disparity is small the slope still could provide enough 
information for identifying debris flows when they occur.

3.6.2 Whole Image

In entropy analysis of whole image mode, the process 
procedure and parameters of moving average and slope are 
the same with ROI. It is obvious that the performance of the 

whole image processing is worse than ROI in all three data 
sets (Fig. 18). In all three cases, only the median filter im-
proved the detection performance. Therefore the morpho-
logical closing apparently did not result in improved per-
formance. Even though the performance is worse than the 
result using the ROI approach, the entropy slope in Fig. 18  
shows that a clear signal to identify debris flow occurred in 
all three data sets.

4. DISCUSSION

Background subtraction is the simplest approach to de-
tect a moving object. However, due to the complexity of 
background and non-rigid target property, the system has to 
add some processing to improve the detection performance. 
Improving the background subtraction (median filter and 
morphology closing) to eliminate the noise and strengthen 
the signal (Figs. 11 - 16) is the focus of this study. After 
subtraction, the entropy function is also employed to evalu-
ate the histogram distribution of the subtraction result and 
the entropy curve (Figs. 17 and 18) is also used to evaluate 
whether a debris flow occurs. Figure 1 shows the proposed 
method composed by several well known image processing 
techniques (such as: color transform, background subtrac-
tion, median filter, morphology, entropy and moving aver-
age). Although these techniques have been used in image 
processing for years, this study develops some improve-
ments to obtain an acceptable performance for real-time 
detection purpose.

A main challenge is that the object has non-rigid (water 
current) properties and the color is similar to the background 
color. In Figs. 11 - 16, the filtering approaches not only elimina-
te the noise of detection but also make the detected object more 
complete. After applying the entropy function the distribution 
of the subtraction result can be evaluated. Figures 17 and 18  
show that detection performance is improved after the spatial 
filtering processing (section 3.6). In addition, the ROI mode 
also makes the detection more accurate by removing the in-
terference caused by operators, vegetation, fog, haze and oth-
ers. Comparing the entropy result between Figs. 17 and 18, the 
ROI has better ability than the whole image mode for debris 
flow detection. Tables 2 and 3 also show the detection accu-
racy of ROI and whole image mode, by subjective threshold 
determination. The results show improved performance and no 
false alarm was triggered. 

In the beginning of the process, the video frames are 
transformed to YUV and only the Y component (luminance) 
is chosen for processing. The transform not only simplifies 
the computation capacity into one third but also reserves 
most of the information in image frames. In addition to col-
or transformation, the ROI selection is another approach to 
reduce the computational effort and also improve the perfor-
mance. For real-time implementation, a video film should 
be obtained at 20 - 30 FPS (frame per second) to acquire 
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Fig. 11. The ROI mode results of ith frame for Data 1. (a) Original video frame. (b) Background subtraction. (c) Median filter. (d) Closing.
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Fig. 12. The ROI mode results of ith frame for Data 2. (a) The original video frame. (b) Background subtraction. (c) Median filter. (d) Closing.
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Fig. 13. The ROI mode results of ith frame for Data 3. (a) The original of video frame. (b) Background subtraction. (c) Median filter. (d) Closing.
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Fig. 14. The whole image mode results of ith frame for Data 1. (a) The original video frame. (b) Background subtraction. (c) Median filter. (d) 
Closing.
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Fig. 15. The whole image mode results of ith frame for original Data 2. (a) The original video frame. (b) Background subtraction. (c) Median filter. 
(d) Closing.
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Fig. 16. The whole image mode results of ith frame for original Data 3. (a) The original video frame. (b) Background subtraction. (c) Median filter. 
(d) Closing.
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Fig. 17. Output entropy with ROI mode. (a) Data 1. (b) Data 2. (c) Data 3. The yellow is the background subtraction. The cyan is median filter. The 
red is closing. The green is moving average of closing. The pink is the entropy slope.
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Fig. 18. Output entropy with a whole image mode. (a) Data 1. (b) Data 2. (c) Data 3. The yellow is the background subtraction. The cyan is median 
filter. The red is closing. The green is moving average of closing. The pink is the entropy slope.
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a smooth broadcast. Table 4 shows that using ROI selec-
tion, the computing speed could reach the general standard  
(20 - 30 FPS). Thus using the complete image model it is diffi-
cult to approach the standard. Comparison of Figs. 17 and 18  
shows that the entropy curve in ROI might be easier to 
detect debris flow than for the complete image case. Con-
sulting the experiment result of ROI selection (Table 4,  
Figs. 17, 18), the size of region selected (ROI) should both 
consider the performance of computing efficiency and de-
tection accuracy.

The proposed method is tested using three different de-
bris flow videos (involving a laboratory experiment and actu-
al field debris flow described in section 3.2). Each of the test 
video also involves situations of debris and non-debris flow. 
In theory the tests should be adequate to apply to a real world 
debris flow. The algorithm utilizes the variation of entropy 
to trigger the warning alarm. Even though a series of process 
(median filter, morphology, moving average and slope) is 
used to trigger the signal more clearly, the warning threshold 
still needs to be established subjectively. The threshold is 
usually designed according to experience. If a better test is 
conducted, then an improved threshold could be estimated. 
Unfortunately the number of available databases from fixed 
camera instrumentation for monitoring debris flows are too 
few. Therefore a subjective threshold was assigned for this 
study. Nevertheless, a wide range of situations was consid-
ered in the testing of the 3 image sets, so the results represent 
a significant advance towards a practical solution.

Another drawback of the proposed system is that even 
though the detection performance using ROI is acceptable, 
in complete image mode, proper detection is affected by a 
moving background. The movement of operators, trees, fog 

or current flow causes errors (Figs. 14 - 16). Even though a 
debris flow occurred and the warning signal has been trig-
gered (Table 3, Fig. 18), the whole image mode still requires 
improvements. In the future, using an object tracking tech-
nique may be able to reduce the interference.

As a result of advances in monitoring and network 
transmission, fixed cameras have been rapidly installed 
on high risk debris flow regions in some mountainous ar-
eas. This study used an installed hardware (fix monitor and 
broadband network) as the basement to develop a real-time 
automatic debris flow (or landslide) detection system. Al-
though there have been some other approaches such as: 
radar/NIR motion sensor or steel wire which could obtain 
similar results, the algorithm proposed here adds software 
to the original monitoring computer which does not increase 
costs off the system. In addition, the real-time fixed camera 
system not only detects debris flow automatically but also 
provides visual information to help the local government for 
evacuation or rescue decision-making.

Another practical problem is related to the video or net-
work system malfunctions. Does the system still work in ex-
treme conditions? In some extreme conditions (i.e., extreme 
rainfall), the fixed camera and the network system might be 

 Videos 
Frames Data 1 Data 2 Data 3

Total 297 1184 480

Non Debris Flow 134 729 355

Debris Flow 163 455 125

False Warning Before Debris Flow 0 0 0

Table 2. False alarm of debris flow with ROI mode.

Table 3. False alarm of debris flow with whole image mode.

 Videos 
Frames Data 1 Data 2 Data 3

Total 297 1184 480

Non Debris Flow 74 796 404

Debris Flow 223 388 76

False Warning Before Debris Flow 0 0 0

Table 4. Computational efficiency (FPS, frames per second).

 Videos
FPS Data 1 Data 2 Data 3

ROI 21.37 49.26 49.02

Original 4.77 17.79 17.79
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destroyed by a landslide or debris flow. Because the pro-
posed system is a real-time image processing system, the 
images are transmitted to the laboratory in real-time. Before 
a fixed camera system is destroyed during extreme condi-
tions, the alarm signal should have been triggered already.

5. CONCLUSIONS

This study designs an algorithm for monitoring debris 
flows from a fixed video system. Using background sub-
traction, spatial filtering and entropy determination, chal-
lenges related to non-ridge and color similarity properties 
can be overcome and the moving object (debris flow) can 
be properly detected. In addition, approaches using YUV 
transform and ROI selection also show improvements for 
detecting debris flows. The proposed system not only has 
high accuracy for debris flow detection but also requires 
low computational capacity for real-time implementation. 
This video monitoring system is effective for detecting de-
bris flows or landslides.
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