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AbsTRACT

We present a theory and numerical algorithm to directly determine the time-varying along-track geopotential difference 
and deflection of the vertical at the Gravity Recovery and Climate Experiment (GRACE) satellite altitude. The determina-
tion was implemented using the GEOGRACE computer program using the K-band range rate (KBRR) of GRACE from the 
Level-1B (L1B) product. The method treated KBRR, GPS-derived orbit of GRACE and an initial geopotential difference as 
measurements used in the least-squares estimation of the geopotential difference and its formal error constrained by the energy 
conservation principle. The computational procedure consisted of three steps: data reading and interpolation, data calibration 
and estimations of the geopotential difference and its error. The formal error allowed removal of KBRR outliers that contami-
nated the gravity solutions. We used the most recent models to account for the gravity changes from multiple sources. A case 
study was carried out over India to estimate surface mass anomalies from GEOGRACE-derived geopotential differences. The 
10-day mass changes were consistent with those from the MASCON solutions of NASA (correlation coefficient up to 0.88). 
Using the geopotential difference at satellite altitude avoids the errors caused by downward continuation, enabling the detec-
tion of small-scale mass changes.

Key words: GRACE, Geopotential difference, K-band ranging, Mass anomaly, Regional gravity solution
Citation: Tangdamrongsub, N. and C. Hwang, 2016: Along-track geopotential difference and deflection of the vertical from GRACE range rate: Use of 
GEOGRACE. Terr. Atmos. Ocean. Sci., 27, 29-42, doi: 10.3319/TAO.2015.08.11.01(T)

1. InTRODUCTIOn

The Gravity Recovery and Climate Experiment mis-
sion (GRACE; Tapley et al. 2004) has been used for map-
ping the Earth’s time-varying gravity field for more than a 
decade. Most of the regular products released to the scien-
tific community are based on series expansions of global 
functions such as spherical harmonics at one-month inter-
val, which have limited temporal and spatial resolutions. 
Because of the loss of higher-resolution gravity change 
signals in both space and time in a global solution, several 
scientific centers have produced improved versions of the 
GRACE gravity solutions that are different from the regular 
products in the spatial and temporal resolutions. Depending 
on the processing method, the spatial resolution of GRACE 
gravity from a global solution is about 250 km (half of the 

Nyquist wavelength). Thus, enhancing the GRACE spatial 
resolution to resolve small-scaled features is one of the key 
efforts in the new gravity products. Some sample enhanced 
global gravity solutions are provided in the form of geopo-
tential coefficients to certain degrees and order with varying 
nominal temporal resolutions, e.g., the 10-day solution from 
the Groupe de Recherches de Geodesie Spatiale (GRGS) 
(Bruinsma et al. 2010) and the 1-day solution from the IGG 
(Institut für Geodäsie und Geoinformation) (Kurtenbach et 
al. 2012). Because gravity variations in a particular region 
may not be extracted effectively when the global solution is 
used, a regional solution has also been attempted in the last 
half decade. Currently, the only available regional gravity 
product is the 10-day/4° solution from the Goddard Space 
Flight Center (GSFC) (Rowlands et al. 2005). A regional 
solution may capture local mass change signatures not seen 
in a global solution as the short wavelength components are 
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normally limited (e.g., maximum harmonic degree/order 
60) in the latter.

Most of the GRACE gravity solutions are provided as a 
ready-to-use product in the form of, e.g., spherical harmonic 
coefficient, equivalent water thickness, for which several 
geophysical corrections (except hydrological correction) 
have been applied. The comparison between the solutions 
is not very consistent because different data centers applied 
different methodologies and background models. Such 
methods also prevent the users from applying their own 
geophysical corrections (background models) to regionally 
extract the gravity signatures. Therefore, it is believed that 
an alternative gravity product is needed for users interested 
in improving GRACE gravity solutions at both the global 
and regional scales. For example, Han et al. (2011) showed 
that GRACE along-track K-band range rate (KBRR) mea-
surements could be used to detect major earthquakes that 
could not be seen in the monthly, global-function-based 
gravity products. Ramillien et al. (2011), Tangdamrongsub 
et al. (2012) used GRACE measurements to determine geo-
potential differences, which were in turn used to improve 
regional gravity signatures.

The objective of this paper is to illustrate the 
GEOGRACE (GEOpotential from GRACE) computational 
procedure of a computer program giving the basic theo-
ries for the program. GEOGRACE allows users to obtain 
a wide range of gravity solutions depending on the options 
(e.g., resolution, signal target). This opens an opportunity 
for improving the gravity solution in both theoretical and 
practical aspects. GEOGRACE was developed based on 
Han et al. (2006) and Tangdamrongsub et al. (2012) with a 
state-of-art modification. Extending from Tangdamrongsub 
et al. (2012), a numerical method and a clear procedure to 
estimate satellite-to-satellite geopotential differences and 
its formal error at the GRACE satellite altitude using the 
public GRACE L1B (Level-1B) product (Case et al. 2010) 
is described. The along-track geopotential difference is 
determined at the finest observation interval, i.e., 5 s. The 
background models are stated clearly for flexible model 
modifications. The surface mass anomalies derived from 
geopotential differences over India were computed to dem-
onstrate the potential of our numerical method.

2. METhODs
2.1 Along-Track Geopotential Difference

The primary GRACE measurements are the K-band 
range (KBR) and range rate (KBRR) observed between sat-
ellites A and B. We used KBRR to determine the geopo-
tential differences. The theories used in GEOGRACE are 
based largely on the works of Jekeli (1999) and Han et al. 
(2006). A new least-squares parameter estimation technique 
and a new accelerometer calibration technique are presented 
in this paper and in GEOGRACE, along with other features. 

The convention used in the paper is the convention used for 
matrix operations. For example, this paper uses xTy for the 
inner product of vectors x and y instead of x·y. The observa-
tion equation for a KBRR, ABto , can be expressed as (Han 
et al. 2006)

( , ), ~ (0, )e f r r e NAB AB AB KBRR
2t v+ =o o  (1)

where f is a function of the relative position and velocity, e 
is the residual of ABto  following the normal distribution with 
a zero mean and an error variance of KBRR

2v . The subscript 
AB indicates the relative (differentiated) quantity between 
the A and B satellites, ( , , )r r r r T

1 2 3=  and ( , , )r r r r T
1 2 3=o o o o  

are the satellite coordinate and velocity vectors in the iner-
tial frame, respectively. The function f can be expressed as 
( )r eAB

T
ABo , where e r rAB AB AB=  is a unit vector along the 

line-of-sight direction of satellites A and B.
In order to compute geopotential differences from 

GRACE we used KBRR observations with constraints, 
based on the energy conservation concept. Under the ideal 
condition, potential and kinetic energies are conserved, but 
in reality surface perturbing forces (e.g., atmospheric drag 
and solar radiation) are commonly break the conservation 
state. According to this idea, Jekeli (1999) derived the fol-
lowing approximation equation for the satellite-to-satellite 
geopotential difference:

( , , )F r r V V E E E C 0( )AB AB AB AB AB
kin

AB AB AB
rot diss

0= - - + + =o  (2)

where F is a function containing the relative position, veloc-
ity and geopotential difference between satellites A and B, 
Ekin is the kinetic energy, Erot is the energy due to the Earth’s 
rotation, Ediss is the dissipation energy and CAB(0) is an in-
tegration constant. The term EAB

rot  can be improved using a 
geopotential model, but this is a subject for future study and 
not pursued here. The expressions EAB

kin , EAB
rot , EAB

diss  can be 
found in Appendix A. In Eqs. (2) and (A2), all input vectors 
were obtained from the GRACE L1B product. As such (see 
also section 3), the relative positions and velocities were 
from GNV1B and accelerometer data were from ACC1B 
(GNV1B and ACC1B are the terms given to the orbit and 
accelerometer products at ftp://podaac-ftp.jpl.nasa.gov/all-
Data/grace). However, the non-gravitational acceleration 
[vector a in Eqs. (A1) and (A2)] measured by the onboard 
accelerometers contains instrument-induced errors in the 
satellite reference frame (SRF, Wu et al. 2006), which must 
be removed (see section 2.2).

Equations (1) and (2) are the basic equations for pa-
rameter estimation and are linearized in the least-squares 
parameter estimation with constraints given below. The pa-
rameters to be estimated in this study are included in the 
vector ( , , )r r VAB AB AB

T= o . In practice, we use

ftp://podaac-ftp.jpl.nasa.gov/allData/grace
ftp://podaac-ftp.jpl.nasa.gov/allData/grace
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x = x0 + Δx (3)

where x0 is a vector containing a priori values of the pa-
rameters to be estimated and Δx is its correction vector. 
However, it is not possible to estimate the 7 parameters si-
multaneously in x using only Eqs. (1) and (2). Therefore, 
we used additional observation equations from the GPS-de-
rived relative position and velocity vectors (total 6) and the 
geopotential difference of GRACE A and B (total 1). The 
geopotential difference observation was computed using 
Eq. (A2) in Appendix A, based on the GPS-derived position 
and velocity vectors and the assumption that CAB(0) is zero. 
Note that CAB(0) was determined during the accelerometer 
data calibration (see below). With a KBRR observation at a 
given epoch the linearized observation equation is

( , )A x f r r A x yAB AB AB x x0 0
0

e tD D D= - - = -=o o6 @  (4)

where 0e  and A are the observation residual and design ma-
trix (a row vector) and Δy0 is the observation. The matrices 
in A elements are shown in Appendix B. In order to solve all 
7 parameters (6 for GPS and one for the geopotential), we 
introduced 7 additional pseudo observations as

I x Yps ps pse D= -  (5)

The term pse  is a residual vector of the GPS-geopo-
tential observations, Ips is a 7 × 7 identity matrix, the vector 
Yps is computed as Y X Xps ps ps 0= - , where Xps and Xps 0  are 
vectors containing the 6 GPS-derived observations and one 
geopotential difference observation, and their initial values, 
respectively. Combining Eqs. (4) and (5), we have

,
A
I x

y
Y A x Y P

ps ps ps

0 0
0
2 1e

e
e

vD
D

D R= = - = - = -; ; =E E G  (6)

( ); , ...,P diag P i 1 8i= =  (7)

where P  is the weight matrix (diagonal) containing 8 di-
agonal elements (Pi), including three diagonal elements for 
the three elements in ro  and one for VAB. In GEOGRACE the 
numerical values for the elements in P  are:
i = 1: inverse of KBRR error variance ( KBRR

2v- )
i = 2 - 4: inverse of the position errors variance  
( ( ) ( )r A r B

2 2 1
v v+ -6 @ )

i = 5 - 7: inverse of the velocity errors variance  
( ( ) ( )r A r B

2 2 1
v v+ -
o o6 @ )

i = 8: inverse of the geopotential difference error variance  
( V

2
AB

v- )
The magnitudes of v  for Pi were based on the results 

of Jekeli (1999) and Wu et al. (2006). See also Tangdam-
rongsub et al. (2012) for specific values. Note that a zero 

value or a large value of VAB
v  implies that the parameter VAB 

is fixed or completely unknown. In addition to the 8 obser-
vation equations we added one constraint equation to the 
solution, based on the energy integral in Eq. (2):

,B x F F Fc x x0 0
0

e D= - = - =  (8)

where ce  and B are the residual and design matrix (a row 
vector) of the constraint (see below) equation, respectively. 
F0 is the a priori value of the constraint. Appendix B shows 
the elements in B. By using the least-squares method with 
a small variance for the constraint, the xDU  parameters can 
be estimated as

x A PA PA
s

B B Y1 TT T
2

1

D = +
-

c mU  (9)

where s2 is a small error variance associated with the con-
straint equation (Koch 1987). In GEOGRACE we use  
s = 10-20. The a posteriori variance of the unit weight is es-
timated using

n u q
PT

0
2 ev e= - +
W  (10)

where e  is the residual vector associated with xDU , n is the 
total number of observation equations, u is the number of 
parameters to be estimated and q is the number of constraint 
equations. For each epoch we have n = 8, u = 7, and q = 1. 
The error covariance matrix of the estimated parameters is 
computed as

A PA
s

B B1
x

T T
0
2

2

1

/ v= +D

-
c mWU  (11)

As an example, Fig. 1 shows the standard geopoten-
tial differences errors estimated from GEOGRACE at a 5-s 
interval using 30 days of GRACE data in April 2007. In  
Fig. 1 the background model corrections were not applied 
to the raw GRACE KBR measurements. The magnitudes of 
the standard errors were 6 - 7 orders smaller than the esti-
mated geopotential differences. Figure 1 shows that some of 
the tracks (formed by GRACE A and B) contain large stan-
dard errors that require further processing such as outlier 
removal and filtering. Such large standard errors were due 
to the large 0

2
vW  in Eq. (10). Errors shown in Fig. 1 provide 

clues on the quality of the estimated geopotential differ-
ences. Specifically, the standard errors from Eq. (11) could 
be used to identify large errors originating from the KBR 
measurements. This is particularly useful for KBR quality 
check for a regional solution aimed at looking for gravity 
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change signals due to, e.g., seismic events and small-scaled 
hydrological events.

2.2 Calibrating Accelerometer Data

The accelerometers on-board GRACE satellites are 
important for removing the non-gravitational accelerations 
acting on the GRACE satellites. To demonstrate the im-
portance of accelerometer data, Fig. 2 shows the residual 
geopotential (the estimated geopotential minus a reference 
gravitational potential generated based on GGM03S to de-
gree and order 180; see Table 1). The residual geopotentials 
of GRACE A were at the level of 106 m2 s-2, which was too 
large. With the raw accelerometer measurements applied, 
the geopotentials of GRACE A were about the same order 
of magnitude as before and contain a negative trend. This 
drives the need to calibrate the accelerometer data separately 
for GRACE satellites A and B. In this paper the accelerom-
eter data calibration was carried out in SRF by estimating 
the following three components (bias, scale, and drift)

Ediss(cal) = Ediss(raw) - Kae (12)

where Ediss(cal) and Ediss(raw) are the calibrated and raw dissi-
pative energy, respectively. The term Ediss(raw) can be com-
puted using the dissipative energy part in Eq. (A1) when a is 
obtained from the raw accelerometer data. The last term in  
Eq. (12) represents the error part where the row vector K = 
(K1, K2, K3) is the coefficient vector and the column vector 
ae = (abias, ascale, adrift)T is the accelerometer error vector. The 
elements of K are expressed as

, , ( )K e r dt a r dt t t e r dtSRFt
t

SRF
raw

SRFt
t

SRFt
t

3 0 3
0 0 0

= -o o o8 B# # #  (13)

where e3 is a unit row vector with 3 elements, aSRF
raw  is the 

raw measurement directly from the accelerometer, and rSRFo  
is the satellite velocity in SRF.

In the first step we applied the correction values rec-
ommended by Bettadpur (2009) to the raw accelerometer 
data. We then inserted Eqs. (12) to (A1) and subtracted a 
reference gravitational potential (U, based on GGM03S to 
degree and order 180) from both sides of Eq. (A1). The ref-
erence geopotential should be the one that best represents 
the Earth static gravity field (such as GGM03S model). We 
further assumed that the left side of the equation (V - U) was 
close to zero. The parameters abias, ascale, and adrift and C0 can 
then be determined as follows

E E E U K a K a K a C( )kin rot diss raw
bias scale drift1 2 3 0+ - - = + + +  (14)

where the bold-faced symbols indicate the vectors contain-
ing the values (or coefficient) in the underlying period. In 

our case 3 accelerometer parameters were solved for every 
day, which led to a vector length of approximately 1 day / 
5 s = 17280.

The result of using the calibrated accelerometer data is 
shown in Fig. 2 (bottom). After the accelerometer data was 
calibrated the epoch wise time-varying geopotential differ-
ences were derived as V V UAB ABABD -= . Because the com-
puted VABD  included the effects of multiple mass change 
sources, the desired source can be extracted by removing the 
contributions of all other sources. For example, if the tar-
geted signal is a mass anomaly resulting from the variation 
in terrestrial hydrology, the contribution from, e.g., N-body, 
ocean tides, solid Earth tides, atmosphere and ocean baro-
tropic response, solid Earth pole tides and ocean pole tides 
must be removed from the final product. These contributions 
to geopotential differences ( VAB

cD ) could be generated using 
the models described in Table 1. After these contributions are 
removed the time-varying geopotential differences caused by 
the hydrology signal are V V VAB AB

c
AB
hydroD D D-= . However, 

VAB
hydroD  as the estimation from the above procedure may still 

contain systematic errors from the KBR measurements. Such 
systematic errors are modeled in this study as follows

( ) ( )cos sinV p d t p d t

p t p
AB
e

d d
d

N

N N

2 1 2
1

2 1 2 2

~ ~D = +

+ +
-

=

+ +

; E/
 (15)

where p is the empirical parameter to be estimated, ~  is the 
frequency associated with one cycle per revolution (CPR) 
of the satellite around the Earth (about 5400 s) and N is the 
maximum number of sinusoidal term pairs. We used N = 2, 
resulting in 6 terms in Eq. (15). Following the recommenda-
tions of Kim (2000) and Han et al. (2006), for very satellite 
revolution p1 and p2 were estimated once, while p3 - p6 were 
estimated twice. The targeted geopotential difference was 
obtained as V V VAB

hydro
AB
hydro

AB
eD D D= -M  (in this case, hydrol-

ogy-induced mass change).

2.3 Along-Track Deflection of the Vertical

Because of GRACE’s polar orbit the along-track geo-
potential difference from GRACE (at the satellite altitude) 
can be translated to the north-south component of the de-
flection of the vertical (DOV) direction as

s s
U VAB AB

2
2
.i

g
cD

= - -  (16)

where g  is the geoidal height, c  is the normal grav-
ity, UAB is the geopotential difference of satellites A and B 
due to a normal ellipsoid, all evaluated at satellite altitude 
(Torge 1989, pp. 37 - 39), and Δs is the inter-satellite dis-
tance (about 220 km). In general, any surface phenomenon 
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Fig. 1. Standard errors of geopotential differences estimated from GEOGRACE at a 5-s interval using 1 month of GRACE data in April 2007. The 
errors were estimated based on Eq. (11). (Color online only)

Fig. 2. Geopotentials (with the reference field removed) sensed by GRACE-A with and without the raw accelerometer data applied (top), and with 
the calibrated accelerometer data are not applied and applied.

Gravity effect Adopted model Reference

Static gravity field GGM03S to degree and order 180 Tapley et al. (2007)

Solid Earth tide IERS convention 2010 Petit and Luzum (2011)

N-Body perturbation Planetary ephemerides, DE421 Folkner et al. (2009)

Ocean tide EOT11a Mayer-Gürr et al. (2012)

Atmospheric and non-tidal oceanic mass variability AOD1B-RL05 to degree and order 100 Flechtner (2007)

Solid Earth pole tide IERS convention 2010 Petit and Luzum (2011)

Ocean pole tide IERS convention 2010 Petit and Luzum (2011)

Table 1. Models of gravity effects (background models) on GRACE-derived geopotential differences.
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originating from time-varying mass change can be associ-
ated with GRACE-derived DOVs using the potential theory  
(Heiskanen and Moritz 1967), making it possible to calibrate 
the parameters associated with the phenomenon. The GRACE-
derived DOV will be most sensitive to surface mass changes 
that have a large gradient in the north-south direction.

Equation (16) shows the evident weakness of the 
GRACE orbit configuration: the twin-satellites allow only 
for the north-south DOV component to be resolved because 
of its polar orbits. Therefore, the GRACE mission yields no 
information about the west-east DOV component. Using 
GRACE-derived DOVs for gravity solutions is like using 
high-inclination altimeter data for marine gravity determi-
nation using DOVs from sea surface heights (Hwang and 
Parsons 1996). Both cases (DOV from GRACE and from a 
high-inclination altimeter) will lead to stripe-like artifacts in 
the resulting gravity fields. This weakness in GRACE can 
be mitigated by adding data from GRACE-like missions that 
have lower inclination angles. The surface mass change will 
be determined in this study only from along-track geopoten-
tial differences (section 3.2), rather than DOVs. However, if 
two GRACE-like missions of varying inclination angles are 
available at about the same altitude, their along-track geopo-
tential differences can be used to determine gravity anoma-
lies at the satellite altitude, which can be conveniently linked 
to phenomena producing time-varying gravity changes.

3. nUMERICAl IMplEMEnTATIOn by 
GEOGRACE AnD DEMOnsTRATIOn  
sOlUTIOns

3.1 numerical procedure of GEOGRACE

Figure 3 shows the numerical procedure for direct de-
termination of geopotential differences using GEOGRACE, 
which was coded in FORTRAN. The computational steps in 
GEOGRAE (Fig. 3) are explained as follows:
(1)  GRACE L1B packages were retrieved from the data 

center (ftp://podaac-ftp.jpl.nasa.gov/allData/grace). The 
range rate (KBRR), orbit (GNV), accelerometer (ACC) 
and star camera (SCA) data (Case et al. 2010) were con-
verted from binary to ASCII format using a program 
“Bin2AsciiLevel1” provided from the data center.

(2)  The data were decimated and interpolated at a given inter-
val (e.g., 5 s) using a cubic-spline interpolation. This step 
also filled in missing data and was useful in later steps, 
especially when a time series analysis was needed.

(3)  GNV data provided in the Terrestrial Reference Frame 
(TRF) was converted into Celestial Reference Frame co-
ordinates (CRF, Seeber 2003). The long-term Earth ori-
entation data based on IAU1980 framework were used 
to form the rotational matrices.

(4)  ACC data were corrected for the systematic errors (e.g., 
bias, trend) using the values provided by Bettadpur 
(2009). SCA data provided in the form of quaternion 

elements were used to form the rotational matrices for 
transforming the satellite coordinates between CRF and 
SRF. The calibration method described in section 2 was 
then applied. KBR data were also corrected using the 
correction values provided in the KBR product.

(5)  The gravitational potentials originating from several 
sources were computed using the background models de-
scribed in Table 1. Some remarks are given as follows:

(a)  N-body: the positions of the celestial bodies were 
extracted from the planetary and lunar ephemeris 
DE421.

(b)  Solid Earth tide: the contributions were computed 
based on IERS 2010 (Petit and Luzum 2011) and 
the zero tide was used in this paper.

(c)  Ocean tide: EOT11a model used in this paper in-
cluded the long-period tides, the main astronomical 
tides, the non-linear constituent and the radiation 
tide (Mayer-Gürr et al. 2012).

(6)  The reference gravitational potential was generated 
based on the static gravity model (GGM03S) to degree 
and order 180.

(7)  All available data were used to form the design matrix A  
and Y , and the geopotential differences were computed 
based on Eq. (7).

(8)  The final time-varying geopotential differences were 
obtained by removing the contributions from the dissi-
pative energy, non-desired gravitational potential differ-
ences and the empirical errors.

Figure 4 shows the geopotential differences in 3 dif-
ferent stages using the GRACE data between 5 and 8 Janu-
ary 2007. The geopotential differences estimated by Eq. (9) 
clearly show the 1-CPR signature throughout the time series. 
With the reference geopotential differences (step 6) removed, 
the remaining geopotential differences contain a 2-CPR 
component, suggesting that the 2-CPR terms should also be 
included in the empirical error model. The time series also 
showed that the oscillation increases with the length of satel-
lite arc. This was most likely caused by the unmodeled errors 
in the accelerometer measurements, whose cumulative effect 
increased with time. Finally, the time varying geopotential 
differences caused by hydrological variations were obtained 
when the calibrated dissipative energy, non-desired (non-
hydrological related) gravitational potential differences and 
the empirical errors were removed. The geopotential differ-
ence variation range was between ±0.02 m2 s-2. For simplic-
ity we used the term time-varying geopotential differences to 
indicate the time-varying geopotential differences caused by 
hydrology variations below.

Figure 5 shows the time-varying geopotential differ-
ences in four selected months in 2007, computed at a 5-s in-
terval, with about 51000 observations per month. Although 
the observations were very dense, Fig. 5 suggested that the 
data were not equally distributed, with gaps at around 40°S 
latitude in every month. This uneven data distribution (in 

ftp://podaac-ftp.jpl.nasa.gov/allData/grace
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space) caused an aliasing effect, which could be reduced 
only when the orbital configuration was re-designed (Wi-
ese et al. 2012). The time-varying geopotential differences 
showed clear signatures due to hydrology changes. For ex-

ample, evident hydrological signatures were seen over the 
South African and South American regions, especially in 
April and October. A clear seasonal variation is seen in 
these 2 months as the 2 neighboring basins had different 

Fig. 3. Flow chart showing the computational steps forth targeted time-varying geopotential difference in the computer program GEOGRACE. 
(Color online only)

Fig. 4. Time-varying geopotential differences in 3 stages: geopotential difference from Eq. (9) (top), time-varying geopotential difference with the 
reference field removed (center), and time-varying geopotential difference with background models and the non-desired gravitational potential 
removed.
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hydrological signatures in the spring and fall in the southern 
hemisphere. Furthermore, the variations in geopotential dif-
ferences in different months over Tibet in Fig. 5 were likely 
caused by snow-induced mass changes. The evident geo-
potential signatures over Greenland and the West Antarc-
tic may be partially caused by relatively large errors in the 
background models at the land-ocean boundaries. Because 
the post glacial rebound (PGR) effect was very small at the 
monthly or shorter time scales, it was not accounted for in 
Fig. 5. PGR correction implementation is considered in the 
further GEOGRACE version.

We also investigated the possibility of using the time-
varying geopotential differences to improve the GRACE 
temporal resolution. We experimented with solutions at 
time scales 3 - 4 times shorter than one month. After in-
tensive offline experiments we found that it is possible to 
resolve the surface mass anomalies every 5 days or 1 week 
when there are not too many missing data records. Although 
the data gaps were filled at the early step (see Fig. 3) certain 
gravity signatures could not be properly resolved because of 
interpolation errors. Therefore, we decided to compute 10-
day solutions and the interpolated data were used only in the 
empirical parameter estimation stage (step 3). The MAS-

CON solution (Rowlands et al. 2005) provided an indepen-
dent result to validate the geopotential differences estimated 
in this paper.

Figure 6 shows the GEOGRACE output, 10-day geo-
potential differences over India in the four months in 2007. 
The size of the selected land region in Fig. 6 was about  
3 - 4 times smaller than the size of the hydrologically active 
region like South Africa and South America. The GRACE 
observations in the region shown in Fig. 6 were normally 
contaminated by high level of noise, leading to difficulty in 
identifying small-scaled mass change features. Therefore, 
the experiment over India was a good example to verify 
the quality of our mass anomaly solution. The rightmost 
column in Fig. 6 shows the time-varying geopotential dif-
ferences in one complete month. The spatial data coverage 
for the 10-day solutions shown in Fig. 6 are different be-
cause of bad data removal. In Fig. 6 significant variations 
in geopotential differences occurred at around 20 - 30°N in 
all 4 months, while the variation in October was extended 
to 15°N. Note that different 10-day solutions exhibited dif-
ferent variations. This suggested that the one-month gravity 
solution was not able to reveal terrestrial water variations at 
time scales smaller than one month (e.g., weekly).

Fig. 5. Time-varying geopotential differences influenced by hydrology changes in January, April, July, and October 2007. (Color online only)
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3.2 Regional surface Mass Variation from Geopotential 
Difference

We demonstrated the mass variation computation 
based on the GEOGRACE result. The direct Newtonian 
representation could be used as a connecting function be-

tween the time-varying geopotential differences and the 
surface mass anomalies. It is well-known that without ap-
plying the weight matrices or filtering to the potential-mass 
system equations the resulting mass anomalies would be 
greatly contaminated by the north-south (N-S) stripe er-
rors, which were demonstrated in Fig. 7. The N-S stripe 

Fig. 6. Sample 10-day time-varying geopotential differences: day 1 - 10 in column 1, day 11 - 20 in column 2 and day 21 - 30 (or 31) in column 3. 
The one-month solutions are shown in column 4. (Color online only)
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errors were caused by misalignments between the GRACE 
measurements and background models in both the spatial 
and temporal domains, so that the surface mass anomalies 
were obscured by the N-S stripe errors and could not be 
resolved without regularization or filtering. Similar to the 
method described in Tangdamrongsub et al. (2012), the 
space-time covariance function representing the surface 
mass anomalies distribution over India was constructed 
based on the 3-hours Global Land Data Assimilation Sys-
tem (GLDAS, Rodell et al. 2004). In this paper the de-
rived covariance function followed the Gaussian form 

( , ) (2 150 10 )expC t tkm days} }D D= - - , where }  is 
the spherical (angular) distance between the geographical 
grids and Δt is the time difference between the solutions. 
The regularization parameters used to stabilize the solutions 
were estimated based on the L-curve criterion method (Han-
sen and O’Leary 1993). It was difficult to estimate the stan-
dard time-varying geopotential differences errors caused 
by the hydrology signal due to the difficulty in modeling 
the background model errors. It is emphasized here that the 
standard geopotential differences errors given in Fig. 1 were 
derived from KBRR only and should not be used directly 
until the error terms from the background models are ap-
plied. We decided to use the L-curve criterion as discussed 
in Tangdamrongsub et al. (2012) to adjust an initial error 
covariance that was always an identical matrix, relative to 
the signal covariance matrix. This adjustment ensures the 
optimal surface anomaly determination from KBRR.

Figure 8 shows the 10-day surface mass anomalies for 
the 4 months in Fig. 6. Due to the downward continuation 
process in the surface mass anomalies computation from the 
geopotential differences, we found large edge effects near 
the boundary. Therefore, the resulting surface mass anoma-
lies close to the boundary were masked and not discussed 
here. In order to compare our results with the MASCON so-
lutions the surface mass anomalies outside the Indian conti-
nent were excluded in the comparison. Figure 8 shows that 
large surface mass anomalies occurred at around 20 - 30°N 

in January, April, and July and at around 20°N in October 
2007. These surface mass anomalies concurred with the large 
geopotential difference variations seen in Fig. 6. It turned out 
that the surface mass anomaly magnitude depended on the 
regularization parameter choice. However, since the surface 
mass anomaly was beyond the scope of this paper, we would 
not perform spectral analysis and further comparisons for this 
quantity. Rather, we determined the correlation coefficients 
and Root Mean Square (RMS) differences between the sur-
face mass anomalies from this paper and from the MASCON 
solutions, as shown in Table 2. Despite the different 10-day 
batch windows used in this paper and in MASCON, the two 
solutions had correlation coefficients reaching 0.88 with the 
RMS difference of approximately 5 cm. The comparison with 
MASCON verified the reliability of geopotential differences 
derived by GEOGRACE.

4. DIsCUssIOns

A direct use of geopotential differences at the GRACE 
altitude can avoid the error due to downward continuation 
commonly seen in surface mass anomalies estimated from 
GRACE. With the undesired background temporal signals 
properly modeled, the along-track geopotential difference 
can be used to detect episodic events such as earthquakes. 
For example, for a sufficiently large earthquake, the along-
track geopotential differences (also geoidal difference) at 
satellite altitudes around the epicenter before and after the 
earthquake will be different and one can use such a difference 
(at the GRACE altitude) to constrain the fault parameters 
associated with this earthquake. Future GRACE-like mis-
sions will greatly enhance the sensor performance to detect 
small-scaled signatures caused by mass changes. Our method 
greatly increases the sensitivity of gravity signal detection, 
especially for signals that occur along satellite tracks.

Although the standard KBRR errors shown in Fig. 1 are 
given only for the demonstration, the final standard errors 
can be computed when the background model contributions, 

Fig. 7. Ten-day surface mass anomalies over India in January 2007, computed directly from geopotential differences without regularizations. (Color 
online only)
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Fig. 8. Ten-day surface mass anomalies over India in 4 different months of 2007, computed from geopotential differences with regularizations. 
(Color online only)

Day 1 - Day 10 Day 11 - Day 20 Day 21 - Day 30 (31)

January 0.67/5.97 0.63/4.76 0.88/5.62

April 0.61/6.00 0.67/6.40 0.56/5.99

July 0.41/6.30 0.47/6.80 0.63/5.16

October 0.80/7.45 0.64/7.80 0.83/6.17

Table 2. Correlation coefficients and RMS difference (correlation/RMS 
in cm) between the estimated solution and MASCON solution in Janu-
ary, April, July, and October 2007.



Natthachet Tangdamrongsub & Cheinway Hwang40

VAB
C
l  are accounted for. By introducing VAB

C , the partial de-
rivatives described in Eqs. (B3) - (B6) will be altered and 
the geopotential differences in Eq. (9) will need to be re-
estimated. Using a full error covariance matrix will lead to 
the optimal signal-to-noise ratio in the GRACE solution, and 
it is a subject for future research.

Several improvements in geopotential estimation by 
GEOGRACE can be made over the current result, e.g., up-
dating the GRACE satellite orbits and the background mod-
els (either globally or regionally), and improving the poten-
tial rotational term (Guo et al. 2015). The benefits of such 
improvements in resolving temporal mass change are seen 
in publications such as Han et al. (2011). In addition, the 
systematic errors in the KBR measurements can be reduced 
by pre-processing (Ramillien et al. 2011), and the estima-
tion of empirical errors in the last step (section 3) will be no 
longer required.

The line-of-sight KBR is sensitive only to the Earth’s 
time-varying gravity field horizontal component and is in-
sensitive to the radial gravity variation. This weakness in 
KBR measurements in sensing gravity changes can be re-
moved by using measurements in multiple dimensions and 
from multiple sensors. For example, the GPS-derived or-
bital perturbations of COSMIC (Lin et al. 2012) are shown 
be able to estimate low-degree gravity changes that agree 
well with the satellite ranging-only and GRACE-only re-
sults. Combining GRACE KBR measurements with GPS 
measurements from low-earth orbiting satellites such as 
CHAMP and COSMIC may also enhance the mass varia-
tion temporal and spatial resolutions from GRACE.

5. COnClUsIOns

We showed a clear numerical procedure and a com-
puter program, GEOGRACE, to compute along-track geo-
potential differences and their formal errors at the GRACE 
altitude. In the numerical examples given in this paper we 
used the state-of-art background models and a best static 
geopotential model. The results show strong hydrological 
signals over some hydrologically active regions like South 
Africa and South America and signals related to ice mass 
variations over Central Asia. Using 5-s geopotential differ-
ences enables a user to obtain temporal gravity changes at 
short spatial and temporal scales. The high correlation coef-
ficients between the MASCON solutions and our solutions 
for mass anomaly suggest that our approach for the along-
track geopotential difference determination is adequate and 
can resolve surface mass anomalies at time scales less than 
1 month.
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AppEnDIx A: EnERGy InTEGRAl EqUATIOns 
fOR sInGlE AnD TwIn sATEllITEs

The energy integral equation of one satellite can be ex-
pressed as
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where || is a norm operation, e~  is the angular velocity of 
the Earth’s rotation, t0/t are start/stop time of integration and 
a is the non-Earth gravitational acceleration vector. For twin 
satellites the expression becomes
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The terms in Eqs. (A1) and (A2) are defined in section 2.

AppEnDIx b: DEsIGn MATRICEs Of ObsER-
VATIOn EqUATIOns AnD ThE COnsTRAInT 
EqUATIOn

The elements in the design matrix A in Eq. (4) are the 
partial derivatives of KBRR with respect to the 7 param-
eters, i.e.,
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Because the VAB term is not explicit in Eq. (1), the corre-

sponding partial derivative is zero in Eq. (B1). The elements 
in the matrix B (a row vector) for the constraint equation in 
Eq. (8) are:
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