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ABStrACt

The M ≥ 6 earthquakes occurred in the South-North Seismic Belt, Mainland 
China (longitudes from 98 - 107°E and latitudes from 21 - 41°N) during 1900 - 
2016 are taken to measure the multifractal dimensionsspatial distribution and time 
sequence of events and the dominant periods. The multifractal dimensions, Dq, are 
measured from the log-log plots of Cq(r) versus r and Cq(t) versus t, where Cq(r) and 
Cq(t) are the generalized correlation integrals for the epicentral distribution and time 
sequence of events, respectively. r and t are the epicentral distance and inter-event 
time, respectively, at positive q. The log-log plot of Cq(r) versus r shows a linear por-
tion when log(rl) ≤ log(r) ≤ log(ru). The rl and ru values are, respectively, 120 and 560 
km for M ≥ 6 events, 100 and 560 km for M ≥ 6.5 events, and 63 and 560 km for M 
≥ 7 events. The rl value decreases with the lower-bound magnitude. Dq monotoni-
cally decreases with increasing q. The Dq values are between 1.618 and 1.426 for 
M ≥ 6 events, between 1.562 and 1.108 for M ≥ 6.5 events, and between 1.365 and 
0.841 for M ≥ 7 events. The log-log plot of Cq(t) versus t show a linear distribution 
when log(tl) ≤ log(t) ≤ log(tu), where tl and tu are, respectively, 5 and 50.1 years for 
M ≥ 6 events, 5 and 50.1 years for M ≥ 6.5 events, and 16 and 63.1 years for M ≥ 7 
event, thus suggesting that the time sequences of earthquake in the study region are 
multifractal. The Dq values are between 0.830 and 0.703 for M ≥ 6 events, between 
0.835 and 0.820 for M ≥ 6.5 events, and between 0.786 and 0.685 for M ≥ 7 events. 
The Morlet wavelet technique is applied to analyze the dominant periods of temporal 
variations in numbers of yearly earthquakes for the three magnitude ranges, i.e., M ≥ 
6, M ≥ 6.5, and M ≥ 7. The resultant dominant period is 2.94 years for M ≥ 6 events 
and cannot be evaluated for M ≥ 6.5 and M ≥ 7 events.
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1. INtroduCtIoN

In 1944, the frequency-magnitude relation found by 
Gutenberg and Richter (1944) is the first scaling law to rep-
resent self-similarity of earthquake phenomena (Chen and 
Koyama 1995; Main 1996; Wang 1988, 2008; Wang et al. 
2015). Current studies also lead to that self-similarity or 
scale-invariance is a common property of natural phenom-
ena. Mandelbrot (1983) proposed the fractal geometry with 
fractal dimension to describe the scale-invariant natural 
phenomena. This concept has been applied to seismology 
(Turcotte 1989; Korvin 1992), including the fault properties 
(Aviles et al. 1987; Okubo and Aki 1987; Lee and Schwarcz 

1995; Candela et al. 2012), the spatial distribution of earth-
quakes (Hirabayashi et al. 1992; Turcotte 1997; Wang and 
Shen 1999), the temporal variation in earthquakes (Smalley 
et al. 1987; Hirata 1989; Kagan and Jackson 1991; Ogata 
and Abe 1991; Papadopoulos and Dedousis 1992; Koyama 
et al. 1995; Wang and Lee 1995, 1997; Wang 1996a; Kagan 
2007; Michas et al. 2014), and earthquake ruptures (Wang 
1995, 1996b; Aochi and Ide 2004; Ide and Aochi 2005, 
2014; Manighetti et al. 2005; Lee et al. 2016).

A positive relation between the b-value of the fre-
quency-magnitude law proposed by Gutenberg and Richter 
(1944) and the D value, which is the fractal dimension as 
described below, were: D = 3b/c (c = 1.5) by Aki (1982); b = 
D/3 by Turcotte (1986a); and b = D/2 by Turcotte (1986b). 
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However, Hirata (1989) reported a negative correlation 
between the two parameters for earthquakes in Japan. He 
also argued the positive relation given by Aki as mentioned 
above. From simulation results based on the 1-D dynamic 
spring-slider model, Wang (1991) found weak dependence 
of the b-value upon the D value. This conclusion is differ-
ent from the theoretical postulation made by Aki (1982) 
and Turcotte (1986a, b) and from the observations (Hirata 
1989). A possible reason for the difference might be that 
the D value used by Wang (1991) concerns the distribution 
of the fault breaking strengths while the D value used by 
the others is related to the fault geometry. Wang and Lin 
(1993) and Wang and Lee (1997) observed that the D val-
ue is negatively correlated with the b-value as pointed out 
by Hirata (1989). Hence, in order to understand the fractal 
characteristics of spatial distribution and temporal variation 
in earthquakes it is significant to study the fractal properties 
of seismicity.

It is important to explore the dominant recurrence peri-
ods in an earthquake sequence not only for earthquake phys-
ics but also for seismic hazard assessment. Although Fou-
rier analysis is commonly applied to evaluate the dominant 
periods (or frequency) of a time series, it cannot provide the 
temporal variations in the dominant periods. The wavelet 
transform can be used to analyze time series that contain non-
stationary power at many different frequencies (Daubechies 
1990). In this study, the wavelet analysis (Combes et al. 
1989; Pyrak-Nolte and Nolte 1995), also known as the multi-
resolution analysis, is taken into account. For this technique 
a series of scaled and delayed oscillatory functions are used 
to decompose a time-varying signal into its non-stationary 
spectral components. Hence, the key advantage of wavelet 
analysis over traditional Fourier analysis is that the wavelet 
analysis provides information on how the spectral content 
varies with time delay. Wavelets are also advantageous over 
so-called windowed Fourier methods because with wave-
lets the relative accuracy of the delay and frequency remain 
constants cover all of the delay-frequency parameter space. 
The wavelet analysis application to geophysical problems 
can be seen in Torrence and Compo (1998). Here, a non-
orthonormal Morlet wavelet analysis (Morlet et al. 1982; 
Chen et al. 2015) is taken into account.

Active orogeny due to the collision between the Indian 
and Eurasian plates (Molnar and Tapponnier 1975; Tap-
ponnier and Molnar 1977; Tapponnier et al. 1982, 2001; 
Avouac and Tapponnier 1993; Royden et al. 2008) causes 
complex geological features and high seismicity in Main-
land China. Complex geological conditions result in a non-
uniform temporal-spatial distribution of earthquakes (Xu 
and Shen 1981; Huan and Shi 1987; Tan et al. 1987; Wang 
and Zhong 1987; Chen et al. 1994). Ma et al. (1992) delin-
eated three highly seismic belts in Mainland China. The first 
is the South-North Seismic Belt (SNSB), with longitudes 
from 98 - 107°E and latitudes from 21 - 41°N, in the middle 

part of Mainland China. The earthquakes occurring in the 
SNSB should be inter-plate events. Historically, numerous 
large earthquakes occurred in the region. For example, two 
M ≥ 6 destructive earthquakes were located in the SNSB, 
i.e., the 3 February 1996 M 6.6 Lijiang earthquake, Yunnan 
(YSB 1998) and the 12 May 2008 M 7.9 Wenchung earth-
quake (Cheng et al. 2009; Zhang et al. 2009). The two events 
caused severe damage in the respective areas. Seismic haz-
ard assessment is obviously an important issue in the region. 
Fractal analyses of spatial distribution of earthquakes will 
lead to geometric structures of earthquakes associated with 
active faults. Fractal and Morlet-wavelet analysesof earth-
quake sequence will provide the temporal characteristics 
and predominant recurrence periods for earthquakes. Ac-
tive fault geometrical structures and earthquake recurrence 
times will influence the seismic hazard potential in a region. 
The present studies are helpful for understanding seismic 
hazards in the study region.

For the M ≥ 6 earthquakes that occurred from 1900 to 
1990 in the region, Wang and Lee (1997) measured mul-
tifractal dimensions of earthquake sequence and Wang 
and Shen (1999) measured the multifractal dimensions of 
epicentral distributions. For the M ≥ 6 earthquakes that 
occurred in the region during 1901 - 2008, Wang (2013) 
studied the memory effect in the earthquake magnitude se-
quences and inter-event time using the fluctuation analysis 
technique. The calculated results show that the exponents 
of scaling law offluctuation versus window length are less 
than 0.5 for the earthquake magnitude sequences and inter-
event time. Together with all kinds of given information, he 
concluded that the earthquakes are short-term correlated, in 
other words, the short-term memory effect is operative.

After 1990, numerous M ≥ 6 earthquakes occurred 
in the region. Hence, it is significant to re-investigate the 
multifractal properties of spatial distribution and earthquake 
sequence for M ≥ 6 earthquakes that occurred over a lon-
ger time period from 1900 to 2016. In addition, the Morlet 
wavelet analysis will also be taken to analyze the dominant 
earthquake sequence period.

2. dAtA

A complete catalogue is needed to study the properties 
of earthquake temporal variation, especially for that made 
from instrumentally-recorded data. The earliest documented 
earthquake and damage data in Mainland China were found 
in 780 B.C. (ASIG 1975). Li (1960) compiled the first 
catalogue of Chinese earthquakes. Several Chinese earth-
quake catalogues were compiled by Chinese and foreign 
seismologists. Some of them were completed before 1978 
and described by Lee et al. (1978). Ku (1983a, b) compiled 
a catalogue for earthquakes occurring from 1831 B.C. to 
1979 A.D. Hsieh et al. (1989) compiled a catalogue for M 
≥ 4.7 earthquakes. Ma et al. (1992) completed a complete 
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catalogue for M ≥ 6 earthquakes occurring in the SNSB and 
other two seismic belts as mentioned above during 1901 and 
1990. After 1990, two M ≥ 6 destructive earthquakes were 
located in the SNSB, i.e., the 3 February 1996 M 6.6 Lijiang 
earthquake, Yunnan (YSB 1998) and the 12 May 2008 M 
7.9 Wenchung earthquake (Cheng et al. 2009; Zhang et al. 
2009). The two events caused severe damage in the respec-
tive surrounding areas. In addition to these two destructive 
earthquakes, several M ≥ 6 earthquakes occurred in the re-
gion after 1990. The earthquake data from those events were 
taken directly from the Earthquake Determination Report 
by US Geological Survey (USGS). The magnitude of the 
Wenchung earthquake was given as 8.0 by the China Earth-
quake Administration (CEA). Nevertheless, the magnitude 
value (M = 7.9) determined by USGS is taken in this study. 
Since Ma et al. (1992) corrected the earthquake magnitudes 
in their catalogue as the surface-wave magnitudes used by 
USGS. The magnitude scale is uniform for all data used in 
this study.

One hundred eighteen earthquakes with magnitudes 
from 6.0 - 8.5 are used in this study. Among them, 25 events 
had magnitudes ≥ 7. The occurrence dates, epicenters, and 
magnitudes of those earthquakes are listed in Table A1 in 
the appendix. The focal depths were not given by Ma et al. 
(1992) and thus not shown in Table A1. The pre-1967 earth-
quakes had higher uncertainties of epicentral location than 
the post-1967 events. However, at present it is difficult to 
accurately estimate the difference between the uncertain-
ties of epicentral location in the two time periods. From 
Table A1, we can see five pairs of events, i.e., Events 3 and 
4, Events 76 and 77, Events 90 and 91, Events 92 and 93, 
Events 95 and 96, and Events 104 and 105. For each pair, 
the two events happened close to each other in a short time 
span. Meanwhile, there was only a small difference between 
their magnitudes. The two events of a pair form an earth-
quake “doublet”. An earthquake doublet is a pair of similar-
ly sized earthquakes located relatively close together within 
short time duration. In addition, four sequent earthquakes, 
i.e., events 27, 28, 29, and 30, occurred in 1930 and 1931. 
The four events form an earthquake “quadruplet.” An earth-
quake quadruplet includes four similarly sized earthquakes 
occurring relatively closely within short time duration. 
However, each doublet or quadruplet event is considered 
an individual one in this study. According to Bath’s law (cf. 
Richter 1958), the magnitude of largest aftershock is, on 
the average, about 1.2 smaller than that of the mainshock. 
Hence, an M ≥ 8 earthquake will be followed by several M 
≥ 7 aftershocks and an M ≥ 7 earthquake will be followed by 
several M ≥ 6 aftershocks. Hence, some events with magni-
tudes < 7 could be the aftershocks of relevant M ≥ 8 earth-
quakes. Figure 1 shows the plot of log(N) versus M and the 
straight line represents the least-squared equation: log(N) 
= (7.56 ± 0.19) - (0.90 ± 0.03)M, which is the frequency-
magnitude law proposed by Gutenberg and Richter (1944). 

Clearly, the data points are all around the straight line, thus 
suggesting data set completeness. Nevertheless, the data 
points for are slightly below the straight line. Hence, the 
fluctuation analysis will be conducted for three magnitude 
ranges with different lower-bound magnitudes, Mlow, i.e., 
Mlow = 6, 6.5, and 7.

The epicenters are displayed in Fig. 2. The epicentral 
distance between two events ranges from 0 - 2141.0 km 

Fig. 1. Figure shows the plot of log(N) versus M, where N is the cu-
mulative frequency, and the solid line is the least-squared equation: 
log(N) = (7.56 ± 0.19) - (0.90 ± 0.03)M.

Fig. 2. Epicenters (shown by open circles) of M ≥ 6 earthquakes in 
the South-North Seismic Belt, Mainland China (longitudes from 98 - 
107°E and latitudes from 21 - 41°N) during 1900 - 2016.
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for M ≥ 6 events, from 0 - 1934.3 km for M ≥ 6.5 events, 
and from 22 - 1934.3 km for M ≥ 7 events. Figure 3 shows 
the earthquake sequences represented by magnitudes. The 
shortest inter-event time is smaller than 1 year for M ≥ 6, M 
≥ 6.5, and M ≥ 7 events, and the shortest and longest inter-
event times are, respectively, 0 and 12.27 years (with an 
average of 0.96 years) for M ≥ 6 events, 0 and 12.27 years 
(with an average of 1.93 years) for M ≥ 6.5 events, and 0 
and 19.52 years (with an average of 4.15 years) for M ≥ 7 
events. Since a few events occurred in a short time interval, 
the line segments representing them are close to one another 
and thus cannot be clearly separated.

3. MethodS
3.1 Multifractal dimensions of epicentral distributions

A fractal set is defined as one in which the Hausdorff-
Besicovitch dimension strictly exceeds the commonly-used 
topological dimension (Mandelbrot 1983). The fractal di-
mension is a characteristic fractal set index. However, it is 
not easy to apply the Hausdorff-Besicovitch’s definition 
to estimate the fractal dimension in the real world. Several 
alternatives have been suggested to estimate the fractal di-
mension (cf. Takayasu 1990; Korvin 1992; Chen and Koya-
ma 1995). Similarity dimension DS is defined for an exact 
self-similar set as DS = logL/logN, where L is the linear size 
and N is the number of similar daughters. Capacity dimen-
sion DCA is defined as DCA = logN(r)/log(1/r), where N(r) is 
the smallest number of coverings of a set with a size of r. 
Information dimension DI is defined as DI = Σpi(r)log[pi(r)]/
log(r), where r is the distance between two points, based on 
the probabilistic distribution. Correlation dimension DC is 
defined from the correlation integral C(r) in the following 

relation: C(r) ~ rDc-d, where d = 2 is the spatial topological 
dimension and

( )r
number of pairs whose is less than r N

C
lim distance 2

=
^ h6 @ (1)

In general, DS = DCA ≥ DI ≥ DC (Takayasu 1990), and DC is 
the smallest value of the four fractal dimensions. The equal-
ity DS = DCA = DI = DC holds only for a homogeneous fractal 
set. Most natural fractals are not completely self-similar and 
actually multifractal. For such fractals, we have DS = DCA 
> DI > DC. Hence, a single fractal dimension value is not 
enough to characterize the multifractal properties. There-
fore, the fractal dimension has been extended to the general-
ized fractal dimension or multifractal dimension, Dq (Grass-
berger 1983; Hentschel and Procaccia 1983).

Generalized fractal dimension Dq is defined by the fol-
lowing expression:

lim log logD p q 1q i i
q/ d= -^^ ^h h h6 @" ,  (2)

where pi is the probability that the events fall into a box 
with a length δ (Grassberger 1983; Hentschel and Procac-
cia 1983). The parameter q can take any real number in the 
range from -∞ to ∞. Dq of large, positive q shows the fractal 
property of dense regions, where pi is large, and Dq of large, 
negative q displays that of thin regions, where pi is small. 
Dq for negative q can take a value larger than the spatial 
topological dimension d, thus calling Dq a dimension make 
no geometric sense for Dq > d (Mandelbrot 1989). For q > 0, 
the largest Dq is D0, and Dq decreases with increasing q. In 

Fig. 3. Time sequences of M ≥ 6 earthquakes displayed in Fig. 1.
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the cases of q = 0, 1, and 2, Dq relates to the capacity dimen-
sion DCA, information dimension DI, and correlation dimen-
sion DC, respectively. The probability pi can be estimated by 
the box-counting method from the observed data. However, 
the box-counting method requires a large number of data. 
An alternative correlation integral method was suggested by 
Kurths and Herzel (1987). A local density function nj(r) is 
defined by the following expression:

( ) r x xn r N 1k j kj / H - -= -^ ^h h (3)

where the value of Θ(s) is 1 if δr = r - |xj - xk| ≥ 0 and 0 if δr 
< 0. Conventionally, both r and |xj - xk| were defined as the 
distance between two points (xj, xk).

A generalized correlation integral Cq(r) for the epicen-
tral distance, r, is defined by

( ) ( )C r n r 1 ( )q
q j j

q 11/= --6 @  (4)

Cq(r) scales with r in the following form:

( ) ~C r rq
Dq  (5)

The Dq will be evaluated from the linear portion between 
log(r1) and log(r2) of the log-log plot of Cq versus r. In this 
study the Dq value at positive q is measured to establish the 
Dq-q relation for investigating multifractal behavior of epi-
central distribution of earthquakes in use.

3.2 Multifractal dimensions of earthquake time  
Sequences

In order to study the multifractal behavior of earthquake 
sequences, Wang and Lee (1995) replaced the two quantities 
r and |ri - rk| by time interval t and inter-event time |ti - tk| be-
tween two events, respectively. Wang (1996a) measured the 
generalized fractal dimensions at positive q for M ≥ 7 earth-
quake sequence in Taiwan. Wang and Lee (1995) and Wang 
(1996a) defined the local density function nj(t) to be:

( ) t t tn t N 1k j kj / H - -= -^ ^h h (6)

where the Θ(s) value is 1 if δt = t t tj k- -  ≥ 0 and 0 if δt < 
0. Hence, the generalized correlation integral Cq(t) for the 
inter-event time, t, is

( ) ( )C t n t ( )
q j j

q q1 1 1/= - -6 @  (7)

Cq(t) scales with t in the following form:

( ) ~C t tq
Dq  (8)

The Dq will be evaluated from the linear portion be-
tween log(t1) and log(t2) of the log-log plot of Cq versus t. In 
this study the value of Dq at positive q is measured to estab-
lish the Dq-q relation for investigating multifractal behavior 
of earthquake sequences in use.

3.3 Morlet Wavelet Analysis for earthquake Sequences

Assume that there is a time series, xi, with an equal time 
spacing δt and n = 0 … N - 1 and ( )t}  is a wavelet function 
of time t. To be “admissible” as a wavelet, ( )t}  must have 
zero mean and be localized in both time and frequency space 
(Farge 1992). An example is the Morlet wavelet, named af-
ter Jean Morlet, was originally formulated by Goupillaud 
et al. (1984). The main function Ψ(t) is composed of a har-
monic wave, as a constant kc subtracted from a plane wave, 
modulated by a Gaussian envelope. A detailed description 
about the technique can be found in Torrence and Compo 
(1998).

The wavelet is written as:

( ) ( )exp expt A t i t k2/
c c

1 4 2} r ~= - -- ^ h6 @ (9)

where Ac = [1 + exp(-ω2) - 2exp(-3ω2/4)]1/2 and kc = 
exp(-ω2/2) and ω is the angular frequency (in Hz or s-1). 
Pyrak-Nolte and Nolte (1995) reported ω = 2π/T0 where T0 
is the (characteristic) period of oscillations. In order to avoid 
some problems caused by small ω, ω > 5 is usually taken 
into account. Farge (1992) took ω to be 6 to satisfy the ad-
missibility condition. As ω = 6, T0 = ~1 s. As ω >> 1, Eq. (9) 
can be re-written as

( ) ( )exp expt A t i t2/
c

1 4 2} r ~= -- ^ h  (10)

The continuous wavelet transform of a discrete se-
quence xi is defined as the convolution of xi with a scaled 
and translated version of ( )t} :

( ) * ( , ..., )W s x i n st i N0 1n i i/ } d= - = -^ h6 @  (11)

where the (*) indicates the complex conjugate, δt is the 
time shift, and s is the wavelet scale. By varying the wavelet 
scale s and translating along the localized time index n, a 
picture can be constructed to show both the amplitude of 
any features versus the scale and how this amplitude varies 
with time. Although it is possible to calculate the wavelet 
transform using Eq. (11), it is considerably faster to do the 
calculations in Fourier space.

Because the wavelet function ( )t}  is usually complex, 
the wavelet transform Wn(s) is also complex. The transform 
can then be divided into the real part R[Wn(s)] and the imag-
inary part I[Wn(s)]. Hence, the amplitude and phase are,  
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respectively, |Wn(s)| and θ = tan-1{R[Wn(s)]/I[Wn(s)]}. Final-
ly, one can define the wavelet power spectrum as |Wn(s)|2.

Let the discrete Fourier transform (DFT) of xi be k| :

( , ..., )x e i N0 1/
k i i

kn N2/| = = -r-  (12)

In the continuous limit, the Fourier transform of a function 
( / )t s}  is given by ( )F s} ~6 @. By the convolution theorem, 

the wavelet transform is the inverse Fourier transform of 
the product:

( ) * ( ) ( )
( , ..., )

expW s F s i n t
k N0 1

n k k k k/ | } d~ ~=
= -

6 @
 (13)

To ensure that the wavelet transforms at each scale s 
are directly comparable to each other and to the transforms 
of other time series, the wavelet function at each scale s is 
normalized to have unit energy:

( ) ( )F s s t F s2 /
o k k

1 2} r d }~ ~= ^ h6 6@ @ (14)

where ( )F d 1o
2} ~ ~ =6 @# , that is, the function has been 

normalized to have unit energy.
Using the normalization in Eq. (14), and referring to 

Eq. (13), the expectation value for |Wn(s)|2 is equal to N 
times the expectation value for k

2| . For a white-noise time 
series, this expectation value is σ2/N, where σ2 is the vari-
ance. Thus, for a white-noise process, the expectation value 
for the wavelet transform is ( )W sn

2  = σ2 at all n and s.
It is necessary to explain the significance levels of the 

calculated values. The null hypothesis is defined as follows: 
It is assumed that the time series has a mean power spectrum; 
when a peak in the wavelet power spectrum is significantly 
above this background spectrum, then it can be considered 
to be a true feature with a certain percentage of confidence. 
The 95% confidence level implies a test against a certain 
background level, while the 95% confidence interval refers 
to the range of confidence about a given value. The nor-
malized Fourier power spectrum is given by 2N 2

k
2| v , 

where N is the number of data points, k|  is from Eq. (12), 
and σ2 is the variance of the time series.

If xn is a normally distributed random variable, both 
the real and imaginary parts of k|  are normally distributed 
(Chatfield 1989). Since the square of a normally distributed 
variable is chi-square distributed with one degree of freedom 
(DOF), then k

2|  is chi-square distributed with two DOFs, 
denoted by 2

2|  (Jenkins and Watts 1968). To determine the 
95% confidence level (significant at 5%), one multiplies the 
background spectrum by the 95th percentile value for 2

2|  
(Gilman et al. 1963). The 95% Fourier confidence spectrum 
will be displayed by a dashed curve below. Note that only 
at few periods, the power will be above the 95% line. The 

dominant period is significant when its peak value is higher 
than the related 95% confidence level. The period associ-
ated with such a peak is taken to be the dominant period.

In order to meet the equal time interval requirement, 
we consider the number of events occurring in a year to 
represent the degree of earthquake occurrences. Hence, the 
dominant periods (with a unit of year) of time sequence for 
the number of yearly events are evaluated in the following.

4. reSultS
4.1 Multifractal dimensions of epicentral distributions

The generalized correlation integral functions, Cq, ver-
sus the epicentral distance, r, in kilometers between two 
earthquakes at q = 2, ..., 15 are calculated for three data sets 
with M ≥ 6, M ≥ 6.5, and M ≥ 7 events in the study region. 
Since a few pairs of events have very similar epicenters, 
Cq(r) at q = 0 and 1 cannot be evaluated. For simplification, 
only the log-log plots of Cq(r) versus r at q = 2 (triangle), 6 
(square), 10 (circle), and 14 (star) are plotted in Fig. 4a for 
M ≥ 6 events, in Fig. 4b for M ≥ 6.5 events, and in Fig. 4c 
for M ≥ 7 events. It can be seen from Fig. 4 that when rl < 
r < ru, the data points are well distributed around a linear 
trend; while when r < rl or r > ru, the data point pattern bends 
and departs from the linear trend. Bending or departure of 
the pattern indicates that the logCq values for r < rl or r > ru 
are different from those estimated from the linear regression 
equation deduced from the data points with rl < r < ru. The r1 
and r2 values are, respectively, 120 km [log(rl) = 2.08] and 
560 km [log(ru) = 2.8] for M ≥ 6 events, 100 km [log(rl) = 
2.0] and 560 km [log(ru) = 2.8] for M ≥ 6.5 events, 65 km 
[log(rl) = 1.8] and 560 km [log(ru) = 2.8] for M ≥ 7 events. 
The Dq value is evaluated from the data points in the linear 
range. The least-squared method is applied to infer a linear 
regression equation for the Dq estimation from the linear 
portion. The Dq values are between 1.618 and 1.426, with 
standard deviations from 0.001 - 0.003, for M ≥ 6 events, 
between 1.562 and 1.108, with standard deviations from 
0.001 - 0.003, for M ≥ 6.5 events, and between 1.365 and 
0.841, with standard deviations from 0.001 - 0.003, for M 
≥ 7 events. The Dq-q relation is displayed in Fig. 5: solid 
circles for M ≥ 6 events, solid squares for M ≥ 6.5 events, 
and solid triangles for M ≥ 7 events. The Dq error for each q 
is less than 0.003 for M ≥ 6, M ≥ 6.5, and M ≥ 7 events.

4.2 Multifractal dimensions of time Sequences

The generalized correlation integral functions, Cq, ver-
sus inter-event time, t, in years between two earthquakes at 
q = 2, ..., 15 are calculated for two data sets with M ≥ 6 and 
M ≥ 7 earthquakes in the study region. Since a few pairs 
of events have very similar occurrence times, the Cq(r) val-
ues at q = 0 and 1 cannot be evaluated. For simplification, 
only the log-log plots of Cq(t) versus t at q = 2 (triangle), 6 
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(square), 10 (circle), and 14 (star) are plotted in Fig. 6a for 
M ≥ 6 events, in Fig. 6b for M ≥ 6.5 events, and in Fig. 6c 
for M ≥ 7 events. It can be seen from Fig. 6a that when tl < 
t < tu, where tl = 5 years [log(tl) = 0.7] and tu = 50.1 years 
[log(tu) = 1.8], the data points are well distributed around a 
linear trend; while when t < tl or t > tu, the data point pattern 
bends and departs from the linear trend. The bending pattern 
indicates that the logCq value for t > tu is less than that esti-
mated from the linear regression equation deduced from the 
data points with tl < t < tu. From Fig. 6b for M ≥ 6.5 events, 
we can see that when tl < t < tu, where tl and tu are, respec-
tively, 5 years [log(tl) = 0.7] and 50.1 years [log(tu) = 1.8], 
the data points are well distributed around a linear trend; 
while when t < tl or t > tu, the pattern of data points bends 
and departs from the linear trend. From Fig. 6c for M ≥ 7 
events, we can see that when tl < t < tu , where tl and tu are, 
respectively, 16 years [log(tl) = 1.2] and 63 years [log(tu) 
= 1.8], the data points are well distributed around a linear 
trend. When t < tl or t > tu , the data point pattern bends and 
departs from the linear trend.

The least-squared method is applied to infer a linear 
regression equation for the Dq estimation from the linear 
portion. The Dq values are between 0.830 and 0.703, with 
a standard deviation of 0.001. For M ≥ 6 events between 
0.835 and 0.820, with standard deviation of 0.001, for M 
≥ 6.5 events, and between 0.786 and 0.685, with standard 
deviations from 0.002 - 0.004, for M ≥ 7 events. The Dq-q 
relation is displayed in Fig. 7: solid circles for M ≥ 6 events, 
solid squares for M ≥ 6.5 events, and solid triangles for M ≥ 
7 events. The Dq error for each q is less than 0.001 for M ≥ 6 
and M ≥ 6.5 events and less than 0.004 for M ≥ 7 events.

4.3 Morlet Wavelet Analysis for earthquake Sequences

The Morlet wavelet analysis results are displayed in 
Figs. 8 - 10: Fig. 8 for M ≥ 6 events, Fig. 9 for M ≥ 6.5 

events, and Fig. 10 for M ≥ 7 events. Each figure consists 
of three panels: (a) for the time sequence of the number of 
yearly events; (b) for the wavelet power spectrum; and (c) 
for the global wavelet spectrum. In panel (b) the logarith-
mic wavelet power spectrum values for different periods 
(in year) at a certain time span are displayed using distinct 
colors (from dark red to dark blue). The thick contour is the 
95% confidence level using a white-noise background spec-
trum. The black net region is the cone of influence, where 
zero padding has reduced the variance. The wavelet power 
spectrum values inside the net have high uncertainties and 
thus cannot be taken into account. In each panel (b), the 
local maximums and local minimums are colored, respec-
tively, by dark red and dark blue. The period related to the 
local maximum is the local dominant period in a time span. 
In order to examine the dominant local maximum and relat-
ed dominant period it is necessary to calculate the average 
wavelet power spectra from panel (b) over time at a certain 
period. This average is named the global wavelet spectrum. 
The results are demonstrated in panel (c), where the solid 
line represents the global wavelet spectrum and the dashed 
line denotes the 95% confidence level using a white-noise 
background spectrum.

Figure 8a shows the time sequence for the yearly num-
ber of events for M ≥ 6 earthquakes. Figure 8b shows the 
wavelet transform power spectrum for the yearly events. 
The local maximums at several periods in different time 
spans can be seen. Figure 8c shows that the global wave-
let spectrum value obviously increases at the large period 
around 32 years. Meanwhile, except at a period of 2.92 
years the solid line is to the left of the 95% confidence level 
dashed line.

Figure 9a shows the time sequence of the number of 
yearly events for M ≥ 6.5 earthquakes. Essentially, there 
was only one spike in 1975. The wavelet power spectra of 
the time sequence is quite abnormal, as shown in Fig. 9b. 

(a) (b) (c)

Fig. 4. The log-log plots of Cq(r) versus r at q = 2 (triangle), 6 (square), 10 (circle), and 14 (star) for the epicentral distributions in the study region: 
(a) for M ≥ 6 events; (b) for M ≥ 6.5; and (c) for M ≥ 7 events. The solid lines represent the regression lines inferred from the data points with log(r1) 
≤ log(r) ≤ log(r2), where r1 and r2 are explained in the text.
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Fig. 5. The plot of Dq versus q from Fig. 4: solid circles for M ≥ 6 events, solid squares for M ≥ 6.5 events, solid triangles for M ≥ 7 events, and open 
circles for the data from Wang and Shen (1999).

(a) (b) (c)

Fig. 6. The log-log plots of Cq(t) versus t at q = 2 (triangle), 6 (square), 10 (circle), and 14 (star) for the time sequences in the study region: (a) for M 
≥ 6 events; (b) for M ≥ 6.5; and (c) for M ≥ 7 events. The solid lines represent the regression lines inferred from the data points with log(t1) ≤ log(t) 
≤ log(t2), where t1 and t2 are explained in the text.

Fig. 7. The plot of Dq versus q from Fig. 6: solid circles for M ≥ 6 events, solid squares for M ≥ 6.5 events, solid triangles for M ≥ 7 events, and open 
circles for the data from Wang and Lee (1995).
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Although there are several peaks in Fig. 9c, their spectral 
values are lower than the 95% confidence level and the solid 
line is to the left of the dashed line. Hence, there is no domi-
nant period for the M ≥ 6.5 earthquake sequence.

Figure 10a shows the time sequence of the number 
of yearly events for M ≥ 7 earthquakes. Essentially, there 
was only one spike in 1975. The wavelet power spectra of 
the time sequence is quite abnormal, as shown in Fig. 10b. 
Although there are several peaks in Fig. 10c, their spectral 
values are lower than the 95% confidence level and the solid 
line is to the left of the dashed line. Hence, there is no domi-
nant period for the M ≥ 7 earthquake sequence.

5. dISCuSSIoN

From Fig. 2 we can see that the epicentral spatial distri-
bution is not uniform for both M ≥ 6 and M ≥ 7 events in the 
whole area. It seems that the number of events per unit area 
is higher in the southern area than in the northern. Figure 3 
shows that the temporal variation in events is not uniform in 
the whole time period. The frequency of events is relatively 
low before 1920 and after 1986.

Figure 4 reveals that the log-log plots of Cq versus r 

show a linear portion when rl < r < ru. The pattern bends 
when log(r) < log(rl) and bends as well as becomes flat when 
log(r) > log(ru). The value of r1 = 120 km for M ≥ 6 events is 
longer than r1 = 100 km for M ≥ 6.5 events and rl = 64 km for 
M ≥ 7 events. The value of r2 = 560 km is almost the same for 
M ≥ 6, M ≥ 6.5, and M ≥ 7 events. This means that the range 
of epicentral distances exhibiting multifractal properties is 
narrower for M ≥ 6 events than for M ≥ 6.5 and M ≥ 7 events. 
Clearly, the number of data points with r < r1 is larger than 
that with r > r1 for M ≥ 6 events. This might be because some 
M ≥ 6 events, especially for M < 6.5 events, are aftershocks 
of M ≥ 7 earthquakes. Meanwhile, the data points with log(r) 
< log(rl) for M ≥ 6 events are more dispersive than those for 
M ≥ 6.5 and M ≥ 7 events. The Dq values from q = 2 to q = 
15 are between 1.618 and 1.426 for M ≥ 6 events, between 
1.562 and 1.108 for M ≥ 6.5 events, and between 1.365 and 
0.841 for M ≥ 7 events. Clearly, the Dq values are smaller for 
M ≥ 7 events than for M ≥ 6 events. This means the epicen-
tral distribution is sparser for M ≥ 7 events than for M ≥ 6.5 
and M ≥ 6 events. This is reasonable, because the density of 
events is higher for M ≥ 6 and M ≥ 6.5 events than for M ≥ 7 
events as displayed in Fig. 2.

Figure 5 shows that the Dq-q relations of epicenter for 

(a)

(b)
(c)

Fig. 10. The figure shows (a) the time sequence for the number of yearly events with M ≥ 7; (b) the wavelet power spectrum; and (c) the average 
or the global wavelet spectrum of (b) over all longitudes. In (b) the thick contour is the 95% confidence level, using a white-noise background 
spectrum. The black net is described in the text. The dashed line is the 95% confidence level for the global wavelet spectrum, using a white-noise 
background spectrum.
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the three magnitude ranges. Obviously, Dq decreases with 
increasing q. The difference in the Dq values for the three 
magnitude ranges increase slightly with q. From the epicen-
tral distributions and numbers of events, the spatial distribu-
tion of M ≥ 6 events is denser than those of M ≥ 6.5 and M 
≥ 7 events. Hence, based on fractal geometry Dq at positive 
q should be larger for M ≥ 6 events than those of M ≥ 6.5 
and M ≥ 7 events. The Dq values for the three magnitude 
ranges are smaller than the topological dimension d = 2 of 
two-dimensional space. This indicates that the spatial dis-
tributions of those earthquakes are sparse. For the purpose 
of comparison, the Dq-q relation for M ≥ 6 events occurred 
from 1900 to 1990 in the study region obtained by Wang 
and Shen (1999) is also plotted in Fig. 5 using stars. Their 
data are the same as those from 1900 - 1990 used in this 
study. Their Dq-q relation is close to that in this study; while 
their Dq values are slightly smaller than those in this study. 
The addition of events after 1990 only slightly increases the 
Dq values, in other words, only slight increases the density 
of spatial distribution of earthquakes.

Figures 6 displays that the log-log plot of Cq(t) versus 
t show a linear distribution when log(tl) ≤ log(t) ≤ log(tu), 
where tl and tu are, respectively, 5 and 50.1 years for M ≥ 6 
events, 5 and 50.1 years for M ≥ 6.5 events, and 16 years and 
63.1 years for M ≥ 7 event, thus suggesting that the earth-
quake sequences in the study region are multifractal. For M 
≥ 6 events, the pattern bends and becomes flat when log(t) > 
log(tu); while for M ≥ 6.5 and M ≥ 7 event, the pattern bends 
when log(t) < log(tl) and bends as well as becomes flat when 
log(t) > log(tu). The Dq values from q = 2 to q = 15 are be-
tween 0.830 and 0.703 for M ≥ 6 events, between 0.850 and 
0.820 for M ≥ 6.5 events, and between 0.786 and 0.685 for 
M ≥ 7 events. This means that the range of inter-event times 
for the existence of multifractal properties is wider for M ≥ 
6.5 events than for both M ≥ 6 and M ≥ 7 events. Although 
the Dq value for M ≥ 6, M ≥ 6.5, and M ≥ 7 events are small-
er than the topological dimension d = 1 of one-dimensional 
time series, they do not depart from d = 1 too much. This 
indicates that within the time period in consideration, the 
earthquake sequences are only slightly sparse.

Figure 7 shows that the Dq-q relations of inter-event 
times for the three magnitude ranges. Obviously, Dq decreas-
es with increasing q. Unlike the epicentral distributions, the 
Dq values are larger for M ≥ 6.5 events than both M ≥ 6 and 
M ≥ 7 events. Comparing Figs. 7a with b exhibits that the 
log(t) ranges for the Dq estimates are almost the same for 
both M ≥ 6 and M ≥ 6.5 events and the log[C(t)] values at 
small t are higher for the former than for the latter. This leads 
to larger Dq for M ≥ 6 events than for M ≥ 6.5 events. On the 
other hand, Dq is evaluated from a narrower range of log(t) 
for M ≥ 7 events. The difference in the Dq values between M 
≥ 6.5 events and M ≥ 6 events as well as between M ≥ 6.5 
events and M ≥ 7 events increases with q. The difference 
in the Dq values between M ≥ 6 events and M ≥ 7 events 

slightly decreases with increasing q. Although the temporal 
variations and numbers of events for M ≥ 6 and M ≥ 7 are 
different and the temporal variation of M ≥ 6 events is denser 
than that of M ≥ 7 events, the difference in Dq between the 
two magnitude ranges is small. For comparison, the Dq-q re-
lation for M ≥ 6 events occurred from 1900 - 1990 in the 
study region obtained by Wang and Lee (1995) are also plot-
ted in Fig. 7 using the solid square. Their data are the same 
as those from 1900 to 1990 used in this study. Their Dq-q 
relation is nearly parallel to that of this study; while their Dq 
values are smaller than those in this study. The addition of 
events after 1990 only slightly increases the Dq values.

For the New Hebrides seismicity between mid-1978 
and mid-1984, Smalley et al. (1987) found that the fractal 
dimension varies from 0.126 - 0.255 and the earthquake 
occurrences deviate significantly from random or Poisson 
behavior. Kagan and Jackson (1991) stated that for 1-D pro-
cesses, if the correlation dimension equals 1 over all time 
periods from zero to infinity, the process is Poissonian. For 
global seismicity, they found that long-term, weak cluster-
ing characterizes all mainshocks and is governed by a pow-
er-law temporal distribution. They also mentioned that the 
fractal dimension of the set of earthquakes on the time axis 
is of the order of 0.8 - 0.9, thus, mainshock occurrence is 
closer to a stationary Poisson process. Gardner and Knop-
off (1974) stated that the M ≥ 2.8 mainshock time series in 
Southern California, USA, during 1932 - 1971 is Poisso-
nian. The fractal dimension used by these authors is the cor-
relation dimension and equivalent to D2 in this study. Their 
results suggest that the time sequence for earthquakes with a 
higher D2 has a stronger Poissonian process component. The 
D2 value is 0.830 for M ≥ 6 events, 0.835 for M ≥ 6.5 events, 
and 0.785 for M ≥ 7 events. Hence, in comparison with the 
global seismicity, the Poissonian process component in the 
earthquake sequences of the seismic belt in this study is 
strong. For M ≥ 6 earthquakes occurring in the 1900 - 1990 
period in the study region, Wang and Kuo (1995) found that 
both the exponential function and gamma function can de-
scribe the distributions and the former is more appropriate 
than the latter. This indicates that the earthquake sequence 
in the study region has a significant Poissonian process 
component. Wang (2013) also found that the earthquake se-
quence in the study region shows a weak memory effect and 
thus has a strong Poissonian process component. Moreover, 
the M ≥ 7 earthquake sequence is more Poissonian than the 
M ≥ 6 and M ≥ 6.5 ones. This is also consistent with the 
conclusion made by Wang (2013).

Figure 8a shows the time sequence for the number of 
yearly events for M ≥ 6 earthquakes. There were several 
large spikes in the time period before 1990. This means that 
seismicity was higher before 1990 than after 1990. Figure 8c 
shows that for the M ≥ 6 earthquake sequence, peaks exist 
at several periods in the solid line. However, only the global 
wavelet spectral value at 2.92 years is slightly to the right 
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of the dashed line representing the 95% confidence level. 
Hence, there is only one dominant period of 2.92 years for 
the M ≥ 6 earthquake sequence. This dominant period is 
about three times longer than the average inter-event time 
of 0.96 years.

Figure 9a shows the time sequence for the number of 
yearly events for M ≥ 6.5 earthquakes. There was only one 
spike in 1975. Figure 9c shows that for M ≥ 6.5 earthquakes 
there are peaks in the solid line at several periods. However, 
their global wavelet spectral values are all to the left of the 
dashed line representing the 95% confidence level. Hence, 
there is no dominant period for the M ≥ 6.5 earthquake se-
quence. As mentioned previously, the number of M ≥ 6.5 
earthquakes is relatively small and thus their wavelet power 
spectrum (Fig. 9b) and the global wavelet spectrum (Fig. 9c) 
are not normal. Hence, M ≥ 6.5 earthquakes in the study re-
gion are not dominant.

Figure 10a shows the time sequence for the number of 
yearly events for M ≥ 7 earthquakes. There was only one 
spike in 1975. Figure 10c shows that for M ≥ 7 earthquakes 
there are peaks in the solid line at several periods. How-
ever, their global wavelet spectral values are all to the left 
of the dashed line representing the 95% confidence level. 
Hence, there is no dominant period for the M ≥ 7 earth-
quake sequence. As mentioned previously, the number of 
M ≥ 7 earthquakes is relatively small and thus their wavelet 
power spectrum (Fig. 10b) and the global wavelet spectrum  
(Fig. 10c) are not normal. Hence, M ≥ 7 earthquakes in the 
study region are not dominant.

6. CoNCluSIoNS

The generalized fractal dimensions are measured for 
M ≥ 6 earthquakes in the South-North Seismic Belt, Main-
land China (longitudes from 98 - 107°E and latitudes from 
21 - 41°N) during 1900 - 2015 based on the spatial distri-
bution (using the epicentral distances between two events, 
r) and the earthquake sequence (using the inter-event time 
between two events, t). The epicentral distance between two 
events ranges from 0 - 2141.0 km for M ≥ 6 events, from 
0 - 2141.0 km for M ≥ 6.5 events, and from 0 - 1934.0 km 
for M ≥ 7 events. Multifractal measures are made from the 
log-log plot of Cq(r) versus r and that of Cq(t) versus t. The 
plots show a linear distribution of data points when log(rl) 
≤ log(r) ≤ log(ru) and roll-over when log(r) > log(ru). The rl 
and ru values are, respectively, 120 and 560 km for M ≥ 6 
events, 100 and 560 km for M ≥ 6.5 events, and 65 and 560 
km for M ≥ 7 events. The Dq value, which is the slope of the 
linear portion, is between1.618 and 1.426 for M ≥ 6 events, 
between 1.562 and 1.108 for M ≥ 6.5 events, and between 
1.365 and 0.841 for M ≥ 7 events. For the three magnitude 
ranges, Dq monotonically decreases with increasing q, thus 
indicating that the epicentral distributions show multifractal 
behavior. The Dq values are smaller than the topological di-

mension d = 2 for the two-dimensional surface.
The log-log plot of Cq(t) versus t show a linear distribu-

tion when log(tl) ≤ log(t) ≤ log(tu), where tl and tu are, respec-
tively, 5 and 50.1 years for M ≥ 6 events, 5 and 50.1 years 
for M ≥ 6 events, 16 and 63.1 years for M ≥ 7 event, thus 
suggesting that the earthquake time sequences in the study 
region are multifractal. The Dq values are between 0.830 and 
0.703 for M ≥ 6 events, between 0.835 and 0.820 for M ≥ 6.5 
events, and between 0.786 and 0.685 for M ≥ 7 events. For 
the three magnitude ranges, Dq monotonically decreases with 
increasing q, thus indicating that the earthquake sequences 
show multifractal behavior. The Dq values are all smaller 
than the topological dimension d = 1 of the one-dimensional 
time series. The M ≥ 7 earthquake sequence is more Pois-
sonian than the M ≥ 6 and M ≥ 6.5 ones.

The Morlet wavelet technique is applied to analyze the 
dominant temporal variation periods in numbers of yearly 
events for the three magnitude ranges, i.e., M ≥ 6, M ≥ 6.5, 
and M ≥ 7. In the time domain the average inter-event time 
is 0.96 years for M ≥ 6 events, 1.93 years for M ≥ 6.5 events, 
and 4.15 for M ≥ 7 events. The resultant dominant period is 
2.92 years, which is about three times of 0.96 years, for M 
≥ 6 events and cannot be evaluated for M ≥ 6.5 and M ≥ 7 
events.
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AppeNdIx: eArthquAke dAtA IN uSe

No date lat. (°N) long. (°e) M
01 19010215 26.0 100.1 6.5
02 19040830 31.0 101.1 7.0
03 19090511 24.4 103.0 6.0
04 19090511 24.4 103.0 6.5
05 191308-- 28.7 102.2 6.0
06 19131221 24.2 102.5 7.0
07 19170731 28.0 104.0 6.75
08 19190529 31.0 101.1 6.25
09 19190826 32.0 100.0 6.25
10 19201216 36.7 104.9 8.5
11 19210412 35.8 106.2 6.5
12 192105-- 29.0 98.5 6.5
13 19230324 31.5 101.0 7.3
14 19230701 22.0 100.5 6.5
15 19231020 30.0 99.0 6.5
16 19250316 25.7 100.4 7.0
17 19251015 26.9 100.1 6.0
18 19270315 26.0 103.0 6.0
19 19270316 38.2 98.2 6.0
20 19270523 37.7 102.2 8.0
21 19290322 24.0 103.0 6.0
22 19291017 25.8 98.7 6.5
23 19300428 32.0 100.0 6.0

No date lat. (°N) long. (°e) M
24 19300429 25.8 98.6 6.25
25 19300515 26.8 103.0 6.0
26 19300714 38.1 98.2 6.5
27 19300922 25.8 98.4 6.5
28 19300926 25.3 98.9 6.0
29 19301202 25.8 98.3 6.0
30 19310725 25.5 98.5 6.0
31 19320307 30.1 101.8 6.0
32 19330601 27.5 99.9 6.25
33 19330811 25.9 98.4 6.5
34 19330825 31.9 103.4 7.5
35 19340112 23.7 102.7 6.0
36 19340119 25.9 98.3 6.0
37 19350726 33.3 101.1 6.0
38 19351218 28.7 103.6 6.0
39 19351219 29.1 103.3 6.0
40 19360207 35.4 103.4 6.75
41 19360427 28.9 103.6 6.75
42 19360516 28.5 103.6 6.75
43 19360801 34.2 105.7 6.0
44 19380314 32.3 103.6 6.0
45 19380514 21.7 99.5 6.0
46 19380823 37.4 98.5 6.0

No date lat. (°N) long. (°e) M
47 19400406 23.9 102.3 6.0
48 19410516 23.6 99.4 7.0
49 19410612 30.4 102.2 6.0
50 19411008 31.7 102.3 6.0
51 19411031 25.4 98.4 6.25
52 19411216 22.7 99.9 7.0
53 19420201 23.1 100.3 6.75
54 19470317 33.3 99.5 7.7
55 19480525 29.5 100.5 7.3
56 19480627 26.4 99.7 6.25
57 19490615 33.3 100.0 6.0
58 19500203 21.7 100.1 7.0
59 19500203 22.1 99.9 6.75
60 19511221 26.7 100.0 6.25
61 19520619 22.7 99.8 6.5
62 19520930 28.3 102.2 6.75
63 19521101 33.3 101.0 6.0
64 19540211 39.0 101.3 7.3
65 19540731 38.8 104.2 7.0
66 19550322 25.9 98.4 6.0
67 19550414 30.0 101.8 7.5
68 19550607 26.5 101.1 6.0
69 19550923 26.6 101.8 6.75

Table A1. The M ≥ 6 earthquakes in the South-North Seismic.
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No date lat. (°N) long. (°e) M
70 19580208 31.5 104.0 6.2
71 19601109 32.7 103.7 6.75
72 19610627 21.7 99.8 6.0
73 19610624 25.2 101.2 6.2
74 19630423 25.8 99.5 6.0
75 19650703 22.4 101.6 6.1
76 19660205 26.1 103.1 6.5
77 19660213 26.1 103.1 6.2
78 19660928 27.5 100.1 6.4
79 19670830 31.6 100.3 6.8
80 19700105 24.2 102.7 7.7
81 19700207 23.08 101.03 6.2
82 19700224 30.6 103.3 6.2
83 19710324 35.5 98.1 6.3
84 19710428 23.0 101.1 6.7
85 19730206 31.3 100.7 7.6
86 19730811 32.9 104.1 6.5

No date lat. (°N) long. (°e) M
87 19730816 23.1 101.2 6.3
88 19740511 28.2 104.1 7.1
89 19750115 29.4 101.9 6.2
90 19760529 24.5 99.0 7.3
91 19760529 24.6 98.7 7.4
92 19760816 32.6 104.1 7.2
93 19760823 32.5 104.3 7.2
94 19760923 39.9 106.4 6.2
95 19761107 27.6 101.1 6.7
96 19761213 27.4 101.0 6.4
97 19790315 23.2 101.1 6.8
98 19810124 31.0 101.2 6.9
99 19840424 22.1 99.2 6.0
100 19850418 25.9 102.9 6.3
101 19860826 37.7 101.5 6.4
102 19881106 22.8 99.7 7.5

No date lat. (°N) long. (°e) M
103 19881106 23.4 99.6 7.1
104 19890416 30.0 99.4 6.7
105 19890425 29.7 99.4 6.7
106 19890503 30.0 99.4 6.4
107 19890922 31.5 102.6 6.6
108 19900426 36.1 100.3 6.9
109 19901020 37.1 103.5 6.2
110 19960203 27.3 100.3 6.6
111 20080512 31.0 103.3 7.9
112 20080512 31.2 103.6 6.1
113 20080525 32.6 105.4 6.1
114 20080805 32.8 105.5 6.0
115 20080830 26.2 101.9 6.0
116 20130420 30.3 102.9 6.6
117 20140803 27.2 103.4 6.2
118 20141007 23.4 100.5 6.1

Table A1. (Continued)


