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ABSTRACT 

The Cantor set fractal distribution and probability model are com­

bined to analyze earthquake time series of two seismogenic zones of Tai­

wan from 1900 to 1999. One-dimensional box counting method is adopted 

to measure the occurrence probability of earthquakes equal to or larger 

than a certain magnitude threshold with different time scales. The results 

show that the fractal dimension has a negative correlation with the magni­
tude threshold, and the ideal critical time scale has an exponential correla­

tion with the magnitude threshold. The ideal critical time scale can be 
deemed as the "lower limit" of recurrence period of earthquake clustering 
that can be referenced in designing earthquake resistant construction. Due 
to frequent and continuous clustering of earthquakes occurred in the 

Chianan zone, we suggest that the fault activities in the Chianan zone are 

more active than that in the Center zone of Taiwan. 
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1. INTRODUCTION 

It is important to understand the temporal fractal behavior of earthquake occurrence when 

analyzing earthquake time series (Smalley et al. 1987; Ogata 1988; Turcotte 1 992; Papadopoulos 

and Dedousis 1992; Chen et al. 1998; Tsai 1999). Gutenberg and Richter (1944) first noticed 

that the relation between cumulative earthquake frequency (N) and magnitude (M) is logN = a 

- b X M. Studies show that the b value is usually between 0.8-1.2, whereas the a value is a 

region-dependent measurement (Evemden 1970; Wang 1991). After Mandelbrot ( 1967) intro­

duced the concept of fractal geometry, Aki (1981) summarized a relation between the b value 

and the fractal dimension (D) to be b = D 12, and this result indicated the self-similar fractal 
characteristic of earthquake time series. Kagan and Jackson (1 991) found that long-term earth­

quake clustering characterizes the occurrence of earthquakes and that the fractal dimension of 

the earthquake time series is in the order of 0. 8 - 0.9. Wang (1995, 1996) claimed the 
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multifractality of earthquake time series after analyzing data from mainland China and Tai­

wan using a generalized correlation time integral [ Cq (t)]. The Cantor-set type clustering is 

characteristic to many natural phenomena. Smalley et al. (1987) concluded that earthquake 
clustering in time is a scale-invariant process, and that the earthquake time distribution is 
certainly different from Poisson distribution. Mayer ( 1992) analyzed desert storm sequence 
and found that storm data is self-similar with different rainfall scales and that the fractality of 
storm clustering prevails in scale of decades. Olsson et al. (1992) and Lin (1998) confirmed 
that rainfall time series are scale-invariant in time, and Mazzarella (1998) obtained a similar 
result when analyzing sea flooding's catalog in Venice. Chen et al. (1998) and Tsai (1999) 
provided a sieve (or threshold) method for describing fractal-clustering variation of earthquakes. 
Lin (1998) and Tsai (1999) further developed probabilistic concept to construct the recurrence 
period of natural events. 

Recurrence period is a very important parameter, especially for natural catastrophes. In 
seismic hazard evaluation, it can be a critical reference value in designing the aseismatic strength 
of buildings or civil constructions during their designed life. This study applies threshold and 
probability methods to compute the fractal dimension and the recurrence periods of earth­
quake clustering in time domain for two seismogenic zones in Taiwan. Further more, a new 
effective method for measuring the recurrence period will also be given and discussed in details. 

2. THEORY AND METHODS 

2.1. Similarity Dimension and Box-Counting 

Self-similarity and scale-invariance are the basic concepts of fractal geometry. Suppose a 
D-dimensional cube in Euclidean space is divided into N equal small cubes. In such a way, 
every side of the original cube is divided into m divisions. As a ratio scale set to be r = 1 I m, 
then: 

if D = 1, N = m1 = (1/r)1; 
ifD = 2, N = m2 = (l/r)2; 
if D = 3, N = m3 = ( l!r)3. 

For a D-dimensional case, 

N = m0 = (1/r)0. 

We define the similarity dimension (D) as: 

D = ln(N) / ln(l/r). 

The similarity dimension D can be either an integer or a fraction. 

(la) 

(lb) 

In practical computation, box-counting method is usually used for obtaining D values 
(Rasband 1900; Peitgen et al. 1 992; Falconer 1993; Isham 1993; Stoyan and Stoyan 1994; Lee 
1995; Cheng et al. 1 999). Let A be a set of finite points within a D-dimensional Euclidean 
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Space, and let N( e) be the fewest D-dimensional cubes of size £ in every side, which can 

encompass all points of set A. The cube size (£)here would be similar to the ratio scale (r), 

and N( £)increases as e approaches to zero. As £ approaching zero, N( £) would gradually 

become close to the exact number of points for set A. So the relationship between small £ and 

N( £)is: 

or DB = lim 
ln(N(e))

. 
e�o ln(l/e) 

(2) 

DB is referred as the "Box-counting Dimension" or "Box-Dimension" and is also generated 
under the self-similarity concept. It is also easily to understand that by Eq. (lb) and Eq. (2), D 
and DB of an object with self-similarity would be the same while the ratio scale (r) and the cube 

size ( £) are infinitesimal. The box-counting method has been applied to compute fractal di­
mensions of natural features in two and three dimensions (Lee 1995; Cheng et al. 1999). In this 
study, the method is applied to one-dimensional analysis. 

2.2. Cantor Set 

The German mathematician G. Cantor introduced this set in 1 883. The Cantor set (also 
called as Cantor dust) is an infinite point set in the unit interval [0,1]. The set is constructed by 
initially dividing a line of length 1 into three segments. The middle third is then removed, 
leaving the two side segments. Divide each remaining segment into three and remove the 
middle third again. Repeat the process infinite times and the limit will form an irfinite number 
of points while the total length of the undeleted line segments approaching zero. This kind of 
Cantor set is referred as the deterministic Cantor set (Fig.la) due to its deterministic genera­
tion process. If in each step we randomly select one of the three segments to be removed, the 
resulting set is referred as the random Cantor set (Fig. I b). For both the deterministic and 
random Cantor sets, D = ln2 I ln3 :::::0.6309 by Eq . ( l b) and Eq. (2) while the measuring size 
approaches infinitesimal. In practice, the generation process of Cantor set would be finite 
between 0 and 1 because natural point events in a certain time period are always finite. The 
random Cantor set produces a distribution of clustering which is usually applied to describe 
many natural point events clustered irregularly in time, such as rainfall (Lin 1998) or earth­
quakes (Smalley et al. 1987; Tsai 1999). 

2.3. Fractal Distribution Probability of Point Events 

In this section, we relate fractal distribution to probability (Turcotte 1992). This can be 
done using the sequence of one-dimensional line segments of the Cantor set illustrated in Fig. 

1. The objective is to determine the probability [P(r)] that a step of ratio scale r will include a 

line segment. At step zero, the number of line segment is N = 1 and the probability that a set of 
ratio scale r = 1 will include a line segment is P(r) = 1; at stepl ,  we have N = 2, r = 1/3 and P 

(r) = 2/3, and at step2, N = 4, r = 1/9 and P(r) = 4/9 (Figs. l a, b). So the probability [P(r)] can be 

generalized to: 
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( a )Deterministic Cantor set r N ln(N)/ln(1/r) 
StepO 

Step1 1/3 2 0.6309 

- - - - Step2 1/9 4 0.6309 

II II II II Step3 1/27 8 0.6309 

1111 II II II II II II Step4 1/81 16 0.6309 

( b) Random Cantor set 
StepO 

Step1 1/3 2 0.6309 

- - Step2 1/9 4 0.6309 

11• • II Step3 1/27 8 0.6309 

111 I II I II Step4 1/81 16 0.6309 

Fit.:. I. Three segments Cantor set produced after four repeating processing of 
"Generator (Stepl)" from "Initiator (StepO)". (a) Deterministic Cantor 
set and (b) Random Cantor set. The length of the undeleted line seg­
ments is just for enhancing the point set. The fractal dimensions for both 
sets are the same ( ""'0.6309). 

P(r) = N X r. (3) 

In Eq. (la), N is related to r, so that we obtain: 

P(r) = r1-0• (4) 
By applying one-dimensional box-counting, we can derive a relationship similar to Eq. 

(4). Let Jj U = 1,2,3, . .. ,M) be the magnitude threshold, and the series of earthquake occurrence 
events be Xt (t = 1, 2, 3, . . .  ,Q), where Q is the total observed data number or the total time 
length. The earthquake events with magnitude equal to or larger than the threshold (Xt > Jj) 
would form a point-process Ti(Jil (i = 1,2,3, .. .,Q(Jj)). For example, if the magnitude threshold Jj 

= 6, then Ti(JiJ would form a "Large-quake point-process" (Fig. 2). 
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In the range of total time length (Q), we apply several different smaller time length as time 
scales EK (K;::: 1,2,3, ... ,L). For one-dimensional box-counting, the time scale (EK) can be seen 
as the "line length", which is similar to the concept of the cube size (£)and the ratio scale (r) 
in section 2.1. By each EK' the range of the total time length would be divided into small time 

units (Q/EK). Regardless to the actual events [T/1il] occurred in a certain time unit, the time 
unit would only be counted once if there is an event occurred in it. Thus, we can compute the 
cumulative frequency N(Jjl ( EK) of time unit that contains at least one event. Finally, we estab­
lish the occurrence probability of point events in the form as follows: 

By Eq. (4), we obtain: 

8: 
Q) ::I 

J1 : Lower Threshold 
J2 : Higher Threshold 

(Sa) 

(Sb) 

�l-----------lfft---!tt.'t-'.=---------c;::-1 J2 
c 
0 J1 
� 
Cl,) Ill .Q 
0 

N 
T2lJ

_,2l'--------------...--------­

T 1 (J .. 1>-•----�-• ------• ........ • •----• ........ ...,, • .----. • .----.... __,,•,__..•----....-• 

Fig. 2. Generation of point-process [T;r1n] having magnitudes equal to or larger 
than some threshold (Jj). + expresses events with a given magnitude 
threshold. T1(Ji) can be seemed as a smaller-quake point-process and T}hl 
as a larger-quake point-process. 
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[Threshold J1] 

Slope=1-D 

Scale-invariate interval 

t* Log ( c; K ) 

Fig. 3. Log-log plot of probability [P(JD(eK)] verse time scale ( £K) of earthquake time 

series under some magnitude threshold (]j). The slope of regression-line seg­
ment is (1-D), where Dis the fractal dimension. The computed critical scale E* 
is replaced by E** in this paper corresponding to an ideal time series with uni­
form fractal structure. 

Combining Eq. (Sa) and Eq. (Sb), we get: 

(6a) 
or 

(6b) 

Figure 3 is a log-log plot of a series of [NCJil( EK) I (QI e K)] and [EK]. In the plot, we 
constructed a regression straight-line segment in the scale-invariant interval, where slope is 
equal to (1-D). As the time scale increases and becomes equal to or larger than the critical 
scale £*,the probability of the critical scale E* will reach 1. It means earthquakes with mag­
nitude equal to or larger than the threshold must occur as the time scale is equal to or larger 
than E*. In some practical cases, the straight line becomes curved when approaching probabil­
ity 1 and is often interpreted as a combination of scale-invariant clustering and random events 
(Smalley et al. 1987). In order to define E* more precisely, we extrapolate the regression-line 
with probability equal to 1 to replace E* and define it as the critical scale, E**. Therefore, the 
E** is an ideal critical time scale when fractal structure remained unchanged through the time 
axis. In this study, E** is a very important physical concept and can be applied as a reference 
for aseismatic evaluation. 
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Fig. 4. Map showing the two seismogenic zones of Taiwan. The two gray areas, 
(a) Sanyi-Puli seismic belt and (b) Chianan seismic belt, are the belts 
concentrated in seismic activities. 

3. APPLICATION TO TWO SEISMOGENIC ZONES IN TAIWAN 

3.1. Seismic Background 

91 

Taiwan is situated in the boundary between the Euroasia plate and the Philippine Sea 
plate. It is an area with a high level of seismicity where global and local seismic networks and 
several previous instrumental observations (Hsu 1961) have provided a continuous record of 
events since 1900. Due to the difference between magnitudes recorded by TTSN (Taiwan 
Telemetered Seismographic Network; duration time magnitude, M0 from 1973 to 1990) and 
CWBSN (Central Weather Bureau Seismic Network; local magnitude, ML since 199 1), the 
earthquake catalog has been calibrated by applying the local magnitude (ML). According to 
the magnitude resolution of seismic networks, the earthquake catalog can be mainly divided 
into two periods: from 1900 to 1972 and from 1973 till today (Wang and Shin 1998). Catalog 
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from 1 900 to 1972 only contains large earthquakes with ML � 4 and the locations are assigned 
at 1 0 X 1 0  km grid positions due to the limited hypocenter determination ability. Catalog from 
1973 till today contains earthquakes with ML � 2 and the locations determined by the CWBSN 
can be constrained to an accuracy within 2-km inland and 5-km offshore by using widespread 
stations and modern instruments. This study is utilized earthquake data of ML � 4 from 1900 
to 1999. 

We consider two seismogenic zones defined by Cheng (1997) based on regional tectonic 
framework, distribution of active faults, seismicity and earthquake characteristics. They con­
tain intra-plate earthquakes shallower than 35-km in depth and are renamed as the Center zone 
and the Chianan zone in this study (Fig. 4). The Center zone contains a Sanyi-Puli seismic 

( a ) Probability vs. Time Scale for the Center Zone 

1.E .. OD 1.E+03 1.E+DS 1.E+09 
1.E+02 t------_.-----""S��-t-t,t--1 

� � 1.E+OO 
:E 
� 
e 
!:. 
g' 1.E-02 
...J 

1.E+OD 

Log (Time Scale,Minutes) 

( b ) Probabll!ty vs. Time Scale for the Chlanan Zone 

1.E+03 1.E+DS 1.E+09 
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Fig. 5. Threshold fractal analysis of the Center and Chianan zones. Labels I, II, 
III and IV correspond to magnitude thresholds Jj = 4, 5, 6 and 7 
respectively. 



Chen et al. 

Table 1. Summarized results of threshold-fractal analysis of the Center and Chianan 

zones. Dis fractal dimension; £'"is the critical time scale considered 
here as the "lower limit" of recurrence period and Pen is the value of 
intercept probability. 

Center Zone Chianan Zone 

Total time interval : from 1900 to 1999 

Total time length = Total time length= 
50314773 minutes 51247176 minutes 

Total events = 158 Total events = 396 

� D E ** 

Pen D E •• 

Pen J (minutes l (minutes l 

4 0.013 
364392 

0.000314 0.056 
223153 

0.000773 
�253 days � 155 days 

5 0.009 
1300420 

0.000085 0.041 
1116241 

0.000144 
�2.5 years �2.1 years 

6 0.005 
8919423 

0.000012 0.020 
4812649 

0.000027 
�17.0 years �9.2 years 

7 0.001 
51261783 

0.000002 0.003 
26647847 

0.000004 
�97.5 years �50.7 years 

93 

active zone. It's Gutenberg-Richter relationship is logN = 2.553 � 1.087 X M, and the magni-
. tude ranges from ML= 4 to ML= 7. In this zone, the Chi-Chi earthquake of ML= 7.3 occurred 
in 21 September 1999 with the surface ruptures extended more than 105-km, the fault cliffs 
elevated several meters high, and the maximum PGA (Peak Ground Acceleration) greater than 
1G(COS 1999). The Chianan zone contains a Chianan seismic active zone. It's Gutenberg­
Richter relationship is logN = 3. 107 - 1.117 X M and the selected earthquake ranges from ML 
= 4 to ML = 7. These two zones are located at mountain front with high ground deformation 
according to OPS surveyed near Chiayi and Tainan (Yu 1997). 

Based on time resolution of the earthquake catalog, the event number and the total time 
length of the data set, we chose 1 minute as the smallest time scale. The time scale is increased 
by a factor of 3 up to 317(129140163 minutes or 245.53 years) during the computing process. 

3.2. Computation and Discussion 

Within this catalog, there are 158 events selected in the Center zone and 396 events in the 
Chianan zone. Results of the threshold-fractal analysis of the earthquake catalog of the Center 
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Fig. 6. Plots of (a) Fractal dimension (D) vs. magnitude threshold (Jj) and (b) 
critical scale (£**)vs. magnitude threshold (Jj). Fine lines are the best 
regression of the data. In (a), D = -0.0179 X (Jj) + 0.1288 for line A and 
D = -0.004 X (Jj) + 0.0293 for line B. In (b), £** = 398.02 X e1.sso91i for 
line I and £** = 379.7 X el.6765 Jj for line IL 

and Chianan zones are given in Figs. 5a, b respectively with data summarized in Table!. 
The fractal dimension D decreases as the magnitude threshold (JJ) increases (Fig. 6a). It 

implies that earthquake series is multifractal with respect to magnitude and the relationship is 
a negative linear in terms of the magnitude threshold. This result is different from the expo­
nential decreasing ofrainfall sequences (Lin 1998) and discloses some basic differences in the 

generation of these natural events. On the contrary, the critical scale £**,increases with JJ in 
an exponential manner (Fig. 6b ). 

Let the number of clusters (Cn) be the frequency computed by time scale of 1 minute. It is 
usually the same as the total number of events while time resolution is 1 minute. Then we can 
compute the probability (Pen) by (Cn IQ), where Q is the total time length of 1-minute resolution. 
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Fig. 7. Plots of (a) fractal dimension (D) vs. intercept probability (Pen), and (b) 
critical scale (£**)vs. intercept probability (PcJ In (a), fine lines are the 
best regression lines with D::::: 0.0102XLn(Pcn) + 0.1297 for line A and 
D::::: 0.0023 X Ln(Pc0) + 0.0316 for line B. In (b), all data fall on one 
regression line. 
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As shown in Fig. 3, Pen equals to the intercept probability where Log(l)::::: 0. Fig. 7a plots 
fractal dimension verse Pen and the trends show different logarithmic increases with different 
time intervals and spatial zones. Smalley et al. (1987) indicated that the more isolated are the 
clusters, the smaller is the value of D. In other words, if Cn is relatively smaller (or Pen is 
smaller) and more isolated in a certain time interval, it would form sparser clusters, and the 
recurrence periods of clusters would become longer with relative smaller fractal dimension. 
As Jj becomes large, events will then occur sparsely, forming isolated clusters with large £" 
along the time axis with a smaller fractal dimension. 
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3.3. Conclusion 

In this study, we found that when Jj = 4, the D value of the Chianan zone is much larger 
than that of the Center zone. D values of the two zones become almost equal when ]j = 7 (Fig. 
6a). Thus, we may predict that there is no earthquake clustering in these two zones when 
magnitude ]j is equal to or larger than 7 (e.g. the Chi-Chi earthquake). In Fig. 6b, all of the E** 
values in the Chianan zone are smaller than those in the Center zone and two regression lines 
are almost parallel. These results indicate that earthquake clustered more frequently and con­
tinuously in the Chianan zone than in the Center zone, especially for earthquakes with smaller 
magnitude. For larger earthquakes, the temporal behaviors of these two zones are similar. We 
may conclude that fault activities are more active in the Chianan zone than in the Center zone. 
The accumulated tectonic stress may be released through seismic activities more rapidly in the 
Chianan zone than in the Center zone. 

Figure 7b is the log-log plot of E*' versus Pen' and the entire data set is regressed by a 
power function: 

E** = 252 73 x p ·0·9288 
' Cn • 

Substituted by Eq. (6), Eq. (7) becomes 

E** = 252.73 x [(EK )1-D] 0.9288. 

(7) 

(8) 

Since EK= 1, the value of E" does not change with D. This is the most significant result of 
this study in that the E ** can be found if we only know how many events with magnitude equal 
to or larger than a critical Jj had occurred, and the duration of total time length we want to 
include. Using these equations, we can easily extend the application into higher or lower 

magnitudes, such as ML :::;-; 1 or ML ;:::: 8, when historical earthquake records were not complete. 
Finally, E .. can be interpreted as the "lower limit" of seismic recurrence period when 

designing the aseismatic strength for buildings or civil constructions in their designed life. For 
an example, in the Chianan zone, earthquakes with ML ;:::: 7 will occur when the time scale is 
equal to or larger than 50.7 years (Table 1). If we are to design a construction for more than 50 
years in the Chianan zone, the aseismatic strength should be "at least" able to withstand vibra­
tions caused by earthquakes with ML = 7. 
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