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ABSTRACT

On 24 June 2017, an enormous landslide struck the village of Xinmo in Mao 
County, Sichuan Province. Synthetic aperture radar (SAR) images from the Senti-
nel-1 satellite are chosen to monitor the landslide using the small baseline set (SBAS) 
technology, following which the deformation time series are obtained for the source 
area and are found to be consistent with the accelerated creep model. The displace-
ment time series before the landslide clearly show movement processes associated 
with transient creep, steady-state creep and tertiary creep. The main deformation area 
is ascertained by calculating the average displacement of 5 representative regions. 
Three-month time series before the landslide are selected to calculate the failure time 
of the landslide both separately and together using the inverse-velocity method. The 
results show that the time series of the main deformation area can fit a linear model of 
the inverse velocities better than those of the marginal area, and the forecasted time is 
closer to the actual failure time. The forecasted time calculated using the time series 
of three regions in main deformation area is June 25, which is only one day apart 
from the actual failure time.
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1. InTRoduCTIon

Landslides are common geological disasters in moun-
tainous areas subjected to the influences of tectonic activi-
ties (Huang 2007). There are many such mountainous areas 
throughout the western regions of China, which frequently 
experiences seismic activity and is consequently host to a 
wide distribution of landslides, which are more likely to 
occur during the rainy season (Guidicini and Iwasa 1997). 
Landslides pose an enormous threat to the lives and property 
of local residents. The bursting characteristics of landslides 
are one of the primary reasons that they cause such enor-
mous losses, and thus, landslide monitoring and forecasting 
are very important. Professional and accurate observation 
and monitoring methods are the foundation of landslide pre-
diction and forecasting endeavors. In addition to traditional 
sensors, highly precise large-scale earth observation systems 
such as global positioning system (GPS) services and inter-
ferometric synthetic aperture radar (InSAR), both of which 
provide data with greater reliability for landslide research, 

have been developed in recent years. With the temporal and 
spatial evolution of SAR image time series detection and the 
corresponding development of InSAR technology, the per-
manent scatter (PS) and small baseline set (SBAS) technol-
ogies have shown good potential for landslide monitoring 
(Ferretti et al. 1999; Berardino et al. 2002; Liao et al. 2012; 
Tizzani et al. 2013). Time series InSAR analysis exhibits 
a bright future as a new type of slow ground deformation 
monitoring technology.

The village of Xinmo is located on the eastern bank of 
the Minjiang River in northwestern Mao County, Sichuan 
Province. On the southern side of the area is the NE-trend-
ing Longmen Shan fault zone, and the NS-trending Huya 
fault zone is situated along the northern side. The Xinmo 
landslide zone is located at the intersection of the NS-trend-
ing Minjiang fault zone and the NW-trending Songpinggou 
fault zone. The geological structure in this area is unstable 
and prone to geological disasters. Frequent earthquakes 
strike the landslide area, including three major earthquakes: 
the Diexi earthquake in 1933 (M = 7.5), the Songpan-
Pingwu earthquake in 1976 (M = 7.2), and the Wenchuan 
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earthquake in 2008 (M = 8.0). The epicenter of the Diexi 
earthquake, following which several barriers formed in the 
Minjiang River, was only a few kilometers away from the 
landslide area (Fig. 1). The Wenchuan earthquake caused 
15000 incidences of geohazards in the form of rockfalls, 
debris flows, and other types of landslides that caused ap-
proximately 20000 fatalities, and more than 10000 addition-
al potential geohazard sites were induced by the earthquake 
(Yin et al. 2009; Shao et al. 2017).

The source area of the Xinmo village landslide is lo-
cated at 103°39’46”E, 32°4’47”N. The collapse area is ap-
proximately 200 m long and 300 m wide with an average 
thickness of approximately 70 m, and the volume of the col-
lapse area is approximately 450 × 104 m3 (Shao et al. 2017). 
The rock mass slid out along a rock layer, after which the 
landslide body fell rapidly and moved at a high speed along 
the slope, scraping an accumulation of debris from the slope 
face and increasing the volume of the body. After advancing 
to the location of the original fan-shaped, old landslide stack 
at the foot of the slope, the moving block spread out to either 
side and continued moving until it reached the bottom of the 
valley, at which point it was blocked by the mountain on 
the opposite side. Ultimately, the mass covered a distance 
of more than 2600 m over a relief of almost 1200 m, and 
it formed an accumulated body with a length of 500 m, a 
thickness of 10 m, and a width of approximately 1200 m 
along the river (Fan et al. 2017). The main research focus 
of this paper is the collapsed area in the upper part of the 
landslide region (Fig. 2).

The landslide developed along the top of a sharp ridge-
line that was easily broken under the influence of a strong 
earthquake due to seismic wave amplification effects (Xu et 
al. 2017). The landslide occurred within the Zagunao For-
mation (T2z), which is mainly composed of metamorphic 
sandstone and slate and is characterized by a relatively low 
mechanical strength and well-developed weak structural 
planes. The orientation and dip angle of the bedding planes 
are practically coincident with those of the hillslope, which 
greatly facilitates basal sliding. A system of crack formed 
during the 1933 Diexi earthquake constitute a preferential 
flow path for the infiltration of rainwater, which could ac-
celerate the physico-chemical weathering of the relatively 
weak rocks of the Zagunao Formation. Long-term gravity 
effects further induced the propagation of cracks, eventually 
causing the source rock material to enter a state of incipient 
instability. The consequence of rain falling over a long du-
ration eventually destroyed the state and triggered the land-
slide (Fan et al. 2017; Xu et al. 2017).

Sentinel-1 satellite data were selected for this paper be-
cause they are characterized by a short revisit period, a large 
coverage area and a convenient data acquisition scheme. 
We collected descending-track satellite images before the 
landslide from 9 November 2016 to 19 June 2017. The data 
were then processed using the SBAS method to obtain time 

series of the deformation before the event. Furthermore, 
the trend of the displacement in certain regions was further  
analyzed.

2. PRoCeSSIng of InSAR dATA

The magnitude of the displacement before a landslide 
is small and unstable, and a landslide event usually occurs 
suddenly with a high uncertainty (Zeng 2009). Therefore, 
it is necessary to select short-wavelength SAR images with 
short revisit periods. This experiment used SAR imagery 
acquired by the Sentinel-1 satellite in interferometric wide 
(IW) swath mode from 9 November 2016 to 19 June 2017, 
the relative orbit number is 62, and frame is 482 and 487, 
over a time span of 222 days for a total of 15 descending-
track images (Table 1). A digital elevation model (DEM) 
with a resolution of 30 m provided by the Shuttle Radar To-
pography Mission (SRTM) was used for differential InSAR 
(DInSAR).

To obtain the time series of the landslide displacement, 
the SBAS method was employed in this paper while con-
sidering the dense vegetation around the landslide area and 
the difficulty involved in obtaining PS points. This method 
divides all SAR images into different short baseline subsets 
according to spatial and temporal baselines Images in each 
subset are processed by differential interferometry respec-
tively to improve coherence and increase the number of dif-
ferential interferograms under the condition of single master 
image. Singular value decomposition (SVD) method is used 
to suppress the effect of DEM error and atmospheric phase 
delay on the deformation signal by connecting each differ-
ential interferogram based on the relationship between the 
coherent pixels and observation time. Then the minimum-
norm least-square solution of surface deformation rate is 
obtained (Berardino et al. 2002).

In addition, 10:2 multi-look processing was performed 
on all of the images to suppress noise and maintain a certain 
degree of coherence. The time baseline was set to 90 days 
and the spatial baseline was set to ±150 m to automatically 
select the interferograms for DInSAR processing, which 
included registration, interference, differential and phase 
unwrapping and geocoding. Since the monitoring area is 
located in a mountainous region, there are difficulties as-
sociated with time decoherence; moreover, the results of 
unwrapping contain a certain degree of error. Therefore, the 
phase-unwrapping results were checked and corrected by a 
phase-closure method (Biggs et al. 2007). According to the 
unwrapping results, we selected the interferograms with a 
high coherence for the follow-up calculations. The results of 
this selection are shown in Fig. 3 with a temporal baseline of 
up to 90 days and a spatial baseline of up to 142 m; a total of 
32 interferograms were chosen (Table 2). Then, the SBAS 
method was used to extract the time series of each point 
before the landslide.
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Id Satellite Path frame date Inc (°) Azi. (°) Maximum time 
baseline setting (d)

Maximum spatial 
baseline setting (m)

1 Sentinel-1B 62 483 11/9/16 33.9 -167.2

90 150

2 Sentinel-1B 62 483 12/3/16 33.9 -167.2

3 Sentinel-1B 62 483 12/27/16 33.9 -167.2

4 Sentinel-1B 62 483 1/20/17 33.9 -167.3

5 Sentinel-1B 62 483 2/13/17 33.9 -167.2

6 Sentinel-1A 62 483 2/19/17 33.9 -167.2

7 Sentinel-1A 62 483 3/3/17 33.9 -167.2

8 Sentinel-1A 62 487 3/15/17 33.9 -167.2

9 Sentinel-1A 62 487 3/27/17 33.9 -167.2

10 Sentinel-1A 62 487 4/8/17 33.9 -167.2

11 Sentinel-1A 62 487 5/2/17 33.9 -167.2

12 Sentinel-1A 62 487 5/14/17 33.9 -167.2

13 Sentinel-1A 62 487 5/26/17 33.9 -167.2

14 Sentinel-1A 62 487 6/7/17 33.9 -167.2

15 Sentinel-1A 62 487 6/19/17 33.9 -167.2

Table 1. Details of Sentinel-1 images used in this study.

Fig. 3. Interferometric combinations of images. The baseline time was set to 90 days and the spatial baseline was set to ±150 m. There are 32 inter-
ferograms by using 15 images. The reference image date is 1/20/17.
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3. LAndSLIde MonIToRIng ReSuLTS And 
foReCAST AnALySIS dISCuSSIon

3.1 Result of Landslide Monitoring

The results of the time series for the entire study area 
calculated using the selected interferograms are shown in 
Fig. 4. Figure 5 shows the displacement in down-slope di-
rection on the actual map. Then, the average LOS displace-
ments in five selected regions (Fig. 5) in 3 × 3 windows (the 
actual dimensions on the ground are 90 m × 90 m) in the 
Universal Transverse Mercator (UTM) coordinate system in 
the upper area of the landslide are displayed in Fig. 6.

With regard to the displacement from the near-ridge 

side to the distant ridge side, the LOS displacement at points 
A, B, and C are 4.4, 4, and 2.5 cm, from April to mid-June 
respectively, which is constantly decreasing from northwest 
to southeast. Meanwhile, the displacement along the east-
ern side of the ridge (point D) reached a total of 2.7 cm 
after April; this displacement was relatively smaller than 
that along the western part before the landslide occurred.  
Figure 5 demonstrates that the main deformation area be-
fore the landslide can be straightforwardly observed near 
the western side of the ridge (points A and E).

As shown in Fig. 6, the displacements of the selected 
five areas are generally consistent. The movement trend of 
each region is relatively flat from November 2016 to April 

Id date 1 date 2 Time baseline (day) Perpendicular baseline (m)

1 11/9/16 12/3/16 24 53.1178

2 11/9/16 12/27/16 48 69.425

3 12/3/16 12/27/16 24 16.3087

4 12/3/16 1/20/17 48 125.787

5 12/27/16 1/20/17 24 142.0957

6 12/27/16 2/13/17 48 25.6572

7 12/27/16 3/15/17 78 73.382

8 1/20/17 2/13/17 24 116.4385

9 1/20/17 2/19/17 30 0.1075

10 1/20/17 3/3/17 42 57.6997

11 1/20/17 3/15/17 54 68.7137

12 2/13/17 2/19/17 6 116.331

13 2/19/17 3/15/17 24 68.6062

14 2/19/17 3/27/17 36 97.0211

15 2/19/17 4/8/17 48 85.7321

16 2/19/17 4/8/17 48 85.7321

17 3/3/17 3/15/17 12 126.4134

18 3/3/17 4/8/17 36 143.5393

19 3/15/17 3/27/17 12 28.4149

20 3/15/17 5/2/17 48 6.9285

21 3/27/17 4/8/17 12 11.289

22 3/27/17 5/14/17 48 10.8383

23 4/8/17 5/2/17 24 24.0544

24 4/8/17 5/26/17 48 65.9036

25 5/2/17 5/14/17 12 24.5051

26 5/2/17 5/26/17 24 41.8492

27 5/2/17 6/7/17 36 50.4958

28 5/14/17 5/26/17 12 66.3543

29 5/14/17 6/19/17 36 31.6008

30 5/26/17 6/7/17 12 92.345

31 5/26/17 6/19/17 24 34.7535

32 6/7/17 6/19/17 12 57.5915

Table 2. List of interferograms.
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Fig. 4. Deformation maps on LOS direction before the landslide. The landslide source area is circled in the first image and it began to accelerate in 
April.

Fig. 5. Displacement on down-slope direction of the landslide. White line is margin of landslide area. Five representative points are selected in 
figure. One point represents 90 m × 90 m in the actual dimensions on the ground.
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2017. However, the velocity in each region started to accel-
erate in April, after which the possibility of slope failure con-
stantly increased until late June. Precipitation is one of the 
most causes of landslides. Accordingly, based on historical 
statistics of the monthly average precipitation in Mao Coun-
ty (Fig. 6), the rainfall from April is annually abundant. The 
onset of displacement in each area before the landslide com-
pletely coincides with the monthly precipitation. Therefore, 
the precipitation is believed to be one of the main causes of 
this landslide. Between 1 May 2017 and the time of the land-
slide event, the cumulative rainfall exceeded 200 mm. This 
value is significantly greater than the average rainfall for the 
same period throughout the area. Although the amount of 
rainfall during the days preceding the event was relatively 
small, a long-duration rainfall event occurred between June 
8 and June 15 with a cumulative rainfall amount of 80 mm 
and a daily maximum of 25 mm (Xu et al. 2017).

3.2 forecast and Analysis

The inverse-velocity method developed by Fukuzono 
in 1985 is an empirical equation prediction method based on 
the characteristics of accelerated creep, and this approach 
is closely combined with monitoring curves of landslide 
displacements (Fukuzono 1985; Intrieri et al. 2018). The 
inverse-velocity method, which demonstrates good applica-
bility to landslides caused by precipitation (Rose and Hungr 
2007; Federico et al. 2012; Carlà et al. 2017) considers the 
deformation velocity prior to failure as a function variable. 
The displacement time series (Fig. 6) obtained from InSAR 
processing clearly illustrate the movement processes of tran-

sient creep, steady-state creep and tertiary creep. Therefore, 
the inverse-velocity method was used to forecast the failure 
time in this paper.

The landslide source area began to accelerate in April; 
therefore, the relationship between the inverse velocity and 
the time was calculated using the nearest possible time, the 
results of which are shown in Table 3. Figure 7 shows the 
inverse velocity and time distribution of the five regions 
selected in the landslide source area. The horizontal axis 
denotes the time midpoint between two images, and the 
vertical axis is the inverse velocity (v-1). Then, the linear 
regression is calculated by using the inverse velocity and the 
times of the last five data points before the landslide from 
April 8 to June 19. A linear model of α = 2 is applied to the 
region with a good linear fit to predict the failure time of the 
landslide. Among those results, the points within the main 
deformation area, that is, the area near the western ridge 
(points A, B, and E), demonstrate a much better fit with an 
R2 value greater than 0.95.

According to the results, the inverse-velocity method 
can be effectively applied to predict the failure time. The 
estimated failure times calculated through the linear regres-
sion of the inverse velocities of the five regions are June 
30, June 23, June 19, July 3, and June 23. However, the 
estimation result obtained through the linear regression of 
the points within the area with a good linear fit (i.e., points 
A, B, and E) is June 25 (Fig. 8), which is only one day apart 
from the actual failure time. The prediction error is less than 
the temporal resolution of SAR imagery, which spans from 
12 to 24 days. Therefore, the prediction and estimation re-
sults are both reliable and effective.

Fig. 6. Movement trend of each point. The green line represents the failure time (June 24). The grey histogram shows mean monthly precipitation 
recorded by the meteorological station in Mao County between 1981 and 2010 (source: http://data.cma.cn/) (Dong et al. 2018). Rainfall in Mao 
County is concentrated from May to October.

http://data.cma.cn/
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A B C d e

4/2/17 1.8493 1.8210 1.9841 2.2780 1.9481

4/20/17 3.1563 4.0534 7.7539 4.5130 4.0474

5/8/17 2.4449 3.1039 6.4489 4.5381 2.9783

5/20/17 1.6000 1.8555 2.9028 2.5256 1.7624

6/1/17 1.0554 1.0933 1.5442 1.6454 1.0760

6/13/17 0.9780 0.9538 1.4389 1.5649 0.9416

Table 3. Inverse velocity results (d mm-1).

Fig. 7. Linear fitting results of the inverse velocities in each region. The estimated failure times calculated through the linear regression of the inverse 
velocities of the five regions from A to E are June 30, June 23, June 19, July 3, and June 23.

Fig. 8. Linear fitting results of the inverse velocities in three regions (A, B, and E). R2 = 0.9125, the estimation failure time is June 25.
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To calculate the landslide failure time, this paper also 
attempted to apply the theory of the gray Verhulst model 
(Yin and Yan 1996), which is a statistical model based on 
the Verhulst model and gray theory that estimates the fail-
ure time by calculating the maximum value in the fitting 
function of the velocity and displacement. The data ranging 
from April 20 to the time of failure were employed for the 
calculation using this method. The results for the five above 
mentioned regions are June 9, June 11, June 10, June 9, and 
June 11. This method requires that all of the data have the 
same observation interval, and the fitting function is appli-
cable only to the acceleration stage. Therefore, the selected 
data are limited; moreover, the fitting model does not coin-
cide with the actual situation, leading to large differences 
between the predicted times and the actual time. Compared 
with the inverse-velocity method, this method contains 
many restrictions and does not work very effectively.

4. dISSCuSSIon
4.1 discussion on Inverse-Velocity Method Based on 

InSAR observations

The results acquired using InSAR encompass observa-
tions of the whole surface, and thus, the influence of noise 
on a single point cannot be ignored. Compared with the re-
sults provided by Emanuele Intrieri, this paper selected im-
ages from only seven months before the landslide; however, 
this does not affect the use of the inverse-velocity method 
to calculate the failure time because the deformation mainly 
occurred in the months leading up to the landslide. Based on 
the selected time series, the average displacements of the re-
gions were calculated in windows of 90 m × 90 m instead of 
at particular points in the source area to better represent the 
movement trend of the whole region. In addition, the dis-
placement time series of the five regions were used to fore-
cast the failure time using the inverse-velocity method, and 
the regression model fitting results for the various regions 
were compared with each other. It is difficult to employ a 
strict standard to separate the main deformation areas from 
other areas based on the results of the displacement time 
series. Therefore, three representative regions were chosen 
for the forecasting, following which the predicted results are 
more reliable those obtained from using a single point.

The Xinmo landslide area started to accelerate in April 
with only less than three months until the failure; therefore, 
3 or 4 values were needed to identify the linear trend in the 
inverse-velocity regression. Taking the Sentinel-1 satellite as 
an example, the revisit cycle is commonly 12 days, and thus, 
identifying a linear trend requires at least 3 images. Accord-
ingly, using only Sentinel-1 satellite SAR images to identify 
the acceleration trend of a landslide requires data spanning at 
least a month. Consequently, six images were collected after 
March but before the landslide failure in this paper, and thus, 
there are six inverse-velocity values (Table 3). The linear 

trend in the inverse velocity can be confirmed one month be-
fore failure, and the acceleration of the deformation can also 
clearly be observed in the time series. The deformation of a 
landslide under creeping conditions is steady and slow; as a 
result, SAR images from a satellite with a short revisit period 
can be used to observe this deformation process accurately. 
Time series InSAR technology can utilize a few images in a 
short period to determine the displacement, and the inverse-
velocity method can be effectively applied to provide an 
early warning or even forecast the failure time accurately.

In fact, a decrease in the inverse of the velocity indi-
cates that the velocity of the displacement in the region is 
increasing. From a model perspective, the inverse veloc-
ity will near 0, at which point the landslide occurs, when 
the velocity goes to infinity. Thus, the failure time can be 
estimated or even forecasted. However, when the inverse 
velocity decreases as the velocity increases, the probability 
of a landslide will increase. Correspondingly, the potential 
for landslides to form accidentally and suddenly during the 
rainy season is very strong. Therefore, monitoring using In-
SAR data has defects only with regard to the temporal reso-
lution, for which many other monitoring methods such as 
GPS and ground-based SAR can be used to supplement the 
data. Therefore, when the inverse velocity of the landslide 
area is detected below a certain threshold, the instability of 
an area may be recognized as representative of a high de-
gree of danger even if a landslide event has not yet occurred, 
and thus, monitoring efforts should be supplemented with 
other observation methods if conditions permit to reduce or 
avoid losses.

4.2 Comparison with Vajont Landslide (Italy)

Apart from cases triggered by large earthquakes, slope 
failure is normally preceded by weeks to decades or more 
of accelerating creep. Failure often appears to occur without 
warning because of its unnoticed earlier movements. One 
classic example is the Vajont Landslide occurred on 9 Oc-
tober 1963, which collapsed after nearly 3 years of intermit-
tent, slow deformation, more than 2000 people were killed.

The Vaiont dam constructed between 1957 and 1960, 
and is located in the narrow and with steep side slopes val-
ley of the Vaiont River. The reservoir level besides the land-
slide started raising to 700 m in December 1962, while the 
displacement rates exceeded 1.5 cm day-1. When the level 
was lowered to 650 m (March 1963), the movements on the 
slope stopped. The lake level started to be raised again dur-
ing April 1963. The movements started again after the reser-
voir level reached 700 m. The velocity of the mass remained 
low until early September, at a level elevation of 710 m, an 
immediate increase in the rate of slope movement from 0.5 
to 1.0 cm day-1 was observed and continued to increase. The 
reservoir elevation dropped but the velocity of the slide is 
out of control and finally crashed (Genevois and Ghirotti 
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2005). It is found that the movement rate is related to the 
water level of the reservoir. Although there is rainfall before 
the landslide, researchers found that had the reservoir been 
filled to its design level, the slide might have moved during 
a period without any significant preceding rainfall (Hendron 
and Patton 1987).

Traditional controversy focuses on the existence of 
prehistoric landslide in Vajont to explain the sudden ac-
celeration without enough attention (Kiersch 1964; Caloi 
1966). The earlier movements of Vajont Landslide and 
Xinmo Landslide are both long and slow, but ignored or 
undetected, which caused heavy loss. Compared to Xinmo 
Landslide, human factors account for major cause of the 
failure in Vajont. Raised water pore pressure is crucial to 
the onset of slope instability (Hendron and Patton 1987). 
The buoyancy and water thrust due to the raising water lev-
el may accelerate the creep process, which may make that 
the onset of acceleration in Vajont landslide does not show 
three-stage creep like Xinmo Landslide.

The Vajont landslide was considered to be related to 
the rising water level in the reservoir while Xinmo landslide 
was accepted to be triggered by rainfall. However, the trig-
ger cannot account for all the accelerating creep before col-
lapse. Because catastrophic collapses are deep-seated, they 
normally require the failure of coherent bedrock, and for 
typical crustal conditions, such failure is invariably brittle. 
Rock cracking is a mechanism to explain the acceleration of 
the giant and catastrophic slope failure in Vajont landslide 
(Kilburn and Petley 2003). Rock cracking is also observed 
in the source area of Xinmo landslide (Fig. 9), which may 
be caused by the historical earthquake (Fig. 1). The cracks 
may support the opinion that the occurrence of the landslide 
in Mao country is the result of the long-term superposition 
of active fault and historical earthquakes (Fan et al. 2017; 
Xu et al. 2017).

5. ConCLuSIon

Based on Sentinel-1 InSAR image data from Novem-
ber 2016 to June 2017, the SBAS method was used to ob-
tain time series of the pre-slip deformation of the landslide 
source area in the village of Xinmo, Mao County, Sichuan 
Province. Then, the landslide failure time was calculated by 
the inverse-velocity method, the conclusions of which are 
as follows:
(1)  The deformation time series of the source area is coinci-

dent with the accelerated creep model. The displacement 
time series before the landslide clearly show movement 
processes associated with transient creep, steady-state 
creep and tertiary creep.

(2)  The beginning of accelerated movement in the source 
area coincides with the regional rainy season, and there-
fore, precipitation is believed to be the major triggering 
factor of the landslide.

(3)  The time series of the main deformation area can fit a 
linear model of the inverse velocities better than those 
of the marginal area, and the forecasted time is closer to 
the actual failure time. Furthermore, the forecasted time 
calculated using the time series of three regions is June 
25, which is only one day apart from the actual failure 
time.

(4)  Time series InSAR technology can use a few images 
acquired over a short period to obtain the displacement 
time series, and the inverse-velocity method can be ap-
plied effectively to provide early warning or even fore-
cast the failure time accurately.
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