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ABSTRACT 

To understand the complex damage pattern produced by the interaction 
between a 3-D sedimentary basin and 3-D spherical wavefronts, scattering 

of seismic waves by 3-D models due to a local point source is investigated 
by using the Pseudo-Spectrum method. The 3-D wavefields at different time 
steps are evaluated n111nerically for a corner diffraction and a sediment-filled 
basin model. 3-D wavefronts of both models are investigated from snapshots 
over free surface and vertical cross-sections. Numerical results show that 

model corners generate strong out-of-plane scattering energy which causes 
strong seismic energy focusing and defocusing in some specific locations. For 
an incident wave from a point source below the basin, the sediment-filled 
basin traps wave energy which propagates inward and focuses near the basin 
center. This energ)r extends to the basin b·ottom with decreasing amplitude. 
Besides, part of the incident energy is blocked by this basin, resulting in low 
amplitudes at the surrounding rock sites. This blocking effect is not predicted 
by the plane wave incidence. Comparisons are made with the results from 2-
D models, and they show that the 3-D wavefronts from a point source or from 
in-plane scattering can be approximated by 2-D models; however, wavefronts 
from out-of-plane scattering cannot be reproduced. 
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1. INTRODUCTION 

The recent occurrence of the very damaging Northridge earthquake (M=6.6, January, 
17, 1994) in Calif omia, with hypocenter 14 km under the San Fernando Valley sedimentary 
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basin, underscore the importance of understanding the interaction of 3-D wavefronts with 
a 3-D basin. The complexity of the damage pattern in the San Fernando Valley may be, 
at least in part, a result of the interaction of wavefronts with the basin boundary, which 
undoubtedly produces localized wavefield focusing, resulting in excessively strong shacking 
amplification. Prior to the Northridge earthquake, it had been found that data from events 
nearby .the Taiwan SMART-1 array could not be explained by plane wave incidence onto the 
base of the Langyang sedimentary basin (Abrahamson et al., 1987). Wen et al. (1994) have 
also found that the strong ground motion response of the 3-D Taipei basin differs by different 
source approaches. . 

The phenomenon of scattering of seismic waves in heterogeneous medium has attracted 
the attention of seismologists and engineers for many years. Because of the complexity 
of the problem, exact analytic solutions are obtained that are restricted to basins of simple 
geometries (Trifunac, 1971; Wang and Trifunac, 1974). More general cases must be obtained 
by numerical methods. In the past two decades, different numerical methods for studying 
scattering effects have been developed. These include the 2-D Aki-Larner method (Aki and 
Lamer, 1970) and its 3-D extension (Ohori· et al., 1990), the finite difference method (FDM) 
(Boore, 1972), the finite element method (FEM) (Smith, 1975), the glorified optics method 
(Hong and Helmberger, 1978), the boundary integral equation method (Dravinski, 1983; Khair 
et al., 1989; Mossessian and Dravinski, 1990) and the Gaussian bean method (Cerveny et al., 
1982). Some hybrid methods which combine the merits of two numerical methods have also 
been developed (Van den Berg, 1988). Due to the limitations of computational capacity and 
storage memory of the computer, these methods are usually applied to 2-D cases. Generally, 
plane waves with different incident angles are employed (Aki and Lamer, 1970; Dravinski, 
1983; Van den Berg, 1988). Only a few cases employ a point source or a finite fault rupture 
(Johnson, 1984; Benz and Smith, 1988; Dong and �cMechan, 1991). The rarely developed 
3-D extensions of these methods are used to test the accuracy of their methods and only 
a few computed samples of typical 3-D models are found (Khair et al., 1989; Mossessian 
and Dravinski, 1990; Ohori et al., 1990). Recently, the finite difference method for 3-� 
models was applied to more realistic earth models (Frankel and Vidale, 1992; Frankel, 1993;· 
Yomogida and Etgen, 1993). These authors have concentrated on the frequency dependent 
site responses and time series features on the basin surface. Due to heavy computation, they 
have generally neglected to analyze the spatial, instantaneous seismic energy distribution 
inside the basin. 

In this paper, the out-of plane scattering of acoustic waves from a local point source in a 
heterogeneous medium is considered. The present authors have developed a program which 
bases on the pseudo-spectrum method (PSM) to study acoustic wave propagation in a 3-D 
medium. The PSM was first developed by computational physicists in the 1970s (Gazdag, 
1973; Orszag, 1972). The method is based on the Fourier method to calculate the spatial 
differentiation of a wave equation. The PSM was applied to explosion seismology in the 
early 1980's (Gazdag, 1981; Kosloff and Baysal, 1982, Kosloff et al., 1984; Reshef and 
Kosloff, 1985). It is found that a resolution of ten grid points per smallest period is required 
for the finite element method or the finite difference method in order to adequately model 
the wave phenomena, whereas only two grid points are required using the PSM (Fornberg, 
1987). The advantages of saving storage memory and getting high frequency resolution are 
the features of this method. The .method, however, is more efficient when used to calculate 
3-D problems than 2-D problems (Fomberg, 1987). Supercomputers (the CRAY Y-MP and 
CRAY 2) were used to execute the numerical code here, its accuracy having been confi11ned. 
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Comparisons with 2-D models are also provided. Numerical results presented here show ·the 
effects of the point source excited 3-D wavefield which are not reproduced by a plane wave 
input motion or 2-D models. Thus, to predict the ground motion inside a 3-D basin excited 
by an earthquake right below the basin, the consideration of a point source scattering field is 
necessary. 

2. METHOD 

2.1 For111ulation 

The basic equation governing acoustic wave propagation in 3-D medium is as follows: 

1 a2 P 
= K at2 

+ S(x, y, z, t), (1) 

where t denotes time, p( x, y, z) denotes the density, K ( x, y, z) is bulk modules, P( x, y, z, t) 
denotes the pressure and S(x, y, z, t) denotes the source term (Kosloff and Baysal, 1982). 
If the density p along the x and y axis is constant, the spatial derivative can be simplified 
and equation ( 1 )  can be expressed as: 

a2 P a2 P aP 1 aP . 1 a2 P 
+ +p 

- - = 02 at2 
+S'(x,y,z,t), 

• 

(2) 

where S' ( x, y, z, t) is the source term expressing the di-vergence of the pressure, and 
C(x, y, z) is the velocity of the medium. Equation (1)  is more general than equation 
(2) but involves more numerical calculation for wave propagation. To reduce the numerical 
computation, for some cases of constant densities along the x and y axes, equation (2) was 
employed here to compute wave propagation. 

2.2 Numerical Solution Technique 

In order to numerically solve equation ( 1 )  or (2), a discretization in space and time is 
performed. In this study, the time marching based on the central difference approximation is 

•• 

calculated. From the central difference definition (Wylie, 1975), the physical quantity P(t) 
is expressed as: 

•• 

P(t) (P(t - �t) - 2P(t) + P(t + �t))/ �t2,  (3) 
•• 

where double dots express a double differentiation with respect to time. The P( t) deduced 
from equation (2) can be shown to be: 

a2 P a2 P a2 P · aP 1 aP · 

{}t2 x y z p z 
(4) 

Hence, the wave field at time t+�t is given from the values at time t and t-�t as  follows: 
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After the spatial Fourier transformation is applied, the spatial derivation can be evaluated 
by multiplication in the wave number domain. Thus, 

8P 
= 

ox 

where 

N-1 
P(k) P(x)e-21rikx/N 

0 

(6) 

(7) 

is the Fourier transform of P( x ). N is the number of data points, and k is the wavenumber. 
Hence, the left hand side of equation (2) (spatial derivation) can be expressed as: 

-l N:c-1 N11-1 
LHS- + z e 

N N · N N x, y, x y 0 0 x y ' (8) 

.... 

+p --
oz p oz 

where P( xx, Yy, z) is the 2-D Fourier transform of the P( x, y, z) with respect to x and y. 

2.3 Boundary Conditions 

To avoid the wrap-around at the artificial boundaries, some absorbing boundary con­
ditions based on the gradual reduction of wave amplitudes in the vicinity of the boundary 
(Cerjan et al., 1985; Sochacki et al., 1 987) have been proposed. Cerjan et al. (1985) 
suggested a Gaussian type damper for 2-D acoustic wave cases. Sochacki et al. (1 987) pro­
posed 5 different types of dampers (linear, exponent, cubic, exponential and Gaussian) with 
different dampers for different applications. These suggestions are based on 2-D numerical 
testing. For efficient absorption of the numerical reflection from the artificial boundaries of 

I 

the 3-D acoustic wave equation, the present authors have rigorously checked the 5 types 
of dampers with different absorption coefficients. No damper for 3-D problems have been 
discussed, before. In this study, a damper for 3-D cases have been rigorously tested for its 
numerical behavior. 

In this study, the free boundary is approximated by including a wide zone with zero 
velocity above the upper surface .of the model to simulate the traction-free condition and to 
avoid the wraparound propagation waves from the bottom of the model (Reshef et al., 1988 
a, b). 
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2.4 Source Time Function 

A time dependent pressure change at a single node is used as a point source. The source 
time function (Figure 1) is taken as a first directive of a Gaussian function as: 

>­
� 
-

() 

S(t) (t - to)e-a(t-to)2' 

0 0 r---..... -I w > 
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TIME (SEC) 

0.3 

Fig. 1. Source distribution time function (Equation 9). Herein, a=3500 and 
to=O.l sec are used. 

(9) 

where to is the central time of a wavelet, and a is a coefficient governing the time interval 
from the negative to positive peak of the function. The Fourier transfo11n spectrum of equation 
(9) is: 

F(w)-
. 

• 
2 -iw ( 7r )1/2 e -4� 

2a a 
(10) 

and is shown in Figure 2. This choice is made as a band-limited spectrum in the frequency 
domain; however, it i·s suitable for numerical computation . 
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Fig. 2. Normalized source spectrum of Fig. 1. 
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2.5 Coding and Testing 

The 3-D acoustic wave propagation program is developed under the UNIX based op­
erating system. Testing is made on a DEC-3100 workstation, an ETA-10, an IBM-3090 
and CRAY series supercomputers, and all have produced stable results. The perfo1·mance 
of the PSM is dependent on the speed of the fast Fourier transf or111 (FFf) which is very 
suitable for parallel and vectorization procedures (Temperton, 1983, 1985). However, the 
present generation of array and vector processors are quite adequate for computing the FFI'. 
Usually, general scientific computers support high perfo1·1nance 1-D and/or multiple FFI' sys­
tem libraries. With these library routines being used, the computation speed of the code in 
this study is greatly improved. Different FFI' codes from the scientific libraries in different 
mechanisms are compared. The multiple FFI, routine of the CRAY Y-MP has the best per­
formance in executing the code. To check the numerical accuracy of the PSM, the calculated 
results are compared with other methods (Huang and Yeh, 1991; Huang, 1992). One of them 
is shown in Figure 3. The comparison of the results of the PSM and the Cagniard-deHoop 
method (Daudt et al., 1989) illustrates that there are virtually no differences between the 
resulting waveforms. 

3. NUMERICAL RESULTS 

3.1 Corner Diffraction Case 

The proposed model (see Figure 4) includes two media with a low velocity and low 
density (1.5 km/sec and 2.2 g/cm3, respectively) cubic comer inside an otherwise homoge­
neous medium with a uniforrn velocity of 2.6 km/sec and a density of 2.4 g/cm3. The model 
size, which is represented by grid numbers, is set at 128 x 128 x 128 with space intervals 
(�x, 6y and �z) of 200 m. The low velocity comer has dimensions of 1.3 km both on the 
x and y axes and 1.1 km on the z axis. Over the free surface (z= 1.66 km), a fictitious layer 
has been placed with a velocity of 0.01 km/sec on top of the model which numerically sim­
ulates a free boundary. An explosive type point source is located at 0.1 km above the comer 
with coordinates of x=I.3 km, y=l.3 km and z=l.2 km. The source time function is shown 
as equation (9) with a=3;00 and t0=0.05 sec. The computed 3-D wavefield snapshots at 
time intervals of 0.40 and 0.44 seconds after the explosion are shown in Figure 4, where the 
snapshots of the 3-D wavefields as equal amplitude surface have been displayed as shown. 
In order to show the reflection inside the direct wavefront, the wavefields with a y coordinate 
of less than 0.8 km are made transparent in Figure 4. Some propagation phases are clearly 
seen in the snapshots. Two selected vertical wavefield cross-sections at time 0.44 sec are 
shown in Figure 5. In the cross-section of y=0.8 km (Figure 5 (a)), which includes the low 
velocity comer and does not include the source, the phases defined in Figure 4 are clearly 
seen. It is also evident that, due to the source location above the comer, the transmitted 
waves from the upper comer surface (phase Ez in Figure 4(b)) are stronger than those from 
the vertical comer surface (phase Ex in Figure 4(b)). Both Ez and Ex have crossed each 
other causing a transmitted curved wavefront (phase F in Figure 5 (a)) behind. In the vertical 
cross-section of y= 1.6 km (Figure 5 (b) ), which is in the homogeneous medium behind the 
low velocity comer, the diffraction from the upper surface of the low velocity comer and its 
free surface reflection (phases C and D) are smaller in amplitude than the direct and reflection 
waves (phases A and B). The strength of phase D decreases in amplitude farther away from 
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upper and lower layers are 2.5 km/sec and 4.0 km/sec, respectively. The 
source function is an 8.0 Hz peak frequency Ricker wavelet. The locations 
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of observation used in this simulation follow the model proposed by Daudt 
et al. ( 1989). 
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the diffraction comer. The horizontal wavefield cross-sections of z=0.8 km and z=l .6 km 
are shown in Figure 6. In the cross-section of Figure 6 (a), the major energy transmitted 
into the low velocity region is from phase Ez. The two phases (Ex and Ey in Figure 6 (a)) 
which enter this cross-section horizontally from both vertical comer surfaces are identified. 
The same as in the vertical cross-section, both Ex and Ey in Figure 6(a). have crossed each 
other causing a curved wavefront behind (phase F). The velocity ratio between the two media 
measured from the 2-D cross-section (assumed to be the source located in this cross-section) 
is nearly 0.4 which is different from that for the real velocity ratio of both media (0.576). The 
difference comes from the source location of the 3-D model far away from this cross-section 
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Fig. 4. 3-D wavefront snapshots for a comer diffraction model at different time 

steps. (a) t=0.40 sec, (b) t=0.44 sec. A: direct wave, B: free surface 
reflection, C: corner upper surface reflection, D: C-phase's free surface 
reflection, Ex: the transmission from the vertical comer surface of x= 1.3 
km and Ez: the transmission wave from the upper comer surface of 
z= 1.1 km. F: transmission wave (see text). The source is located at 0.1 
km above the tip of the high velocity comer. . 

of 0.4 km. The apparent velocity ratio on both media is less than the real velocity ratio 
in this vertical profile. The stratigraphic wavefronts of phases Ez, Ex and Ey are exam­
ined from the individual 2-D cross-sections of the 3-D wavefields. Ez has the shape of 
a quarter cone with its axis in the z direction, while both Ex and Ey have the shapes 
of a quarter cone with their axes in the x and y directions, respectively. The wavefront 
of phase F is found to be a quarter spherical shape. The reflection waves (phases C and 
D in Figure 4) are found on the cross-section above the low velocity comer (Figure 6(b)). 
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Fig. 5. Vertical cross-sections of Fig. 4(b) at (a) y=0.8 km and (b) y=l.6 km. 

The vertical axis is defined as the depth from free surface. The definitions 
of the symbols are the same as those in Fig. 4(b). The amplitude of the 
spatial wavefield of each panel is normalized individually and the same 
as the other cross-sections in this study. 

3.2 Sediment-filled Basin Case 

259 

The 3-D basin model used for the numerical experiments is shown in Figure 7. The 
model parameters and source time function are the same as the comer diffraction case. The 
model includes a quarter ellipsoid sharp sediment-filled basin with a velocity of 2.0 km/sec 



260 TAO, Vol.6, No.2, June 1995 

-

0 N 

co . 

�-
� 
-

WN u . 
z .,... 
<t 
t-
� m 
0 ci 

""' 
' 0 

0 
• 0 

0.0 0.4 
DISTANCE (KM) 
0.8 1. 2 1. 6 2 .0 

Z = 0.BKM 

2.4 

(a) 

""' 
• N 

0 
• N 

- co 
� .,.; � 

-

w ('f 
O ·  
z .,... 
� 
�m o ·  0 

""' 
• 0 

0 
• 0 

DISTANCE (KM> 
o.o o.4 o.e 1.2 1.6 2.0 2.4 

Z = 1.6KM ( b) 
Fig. 6. Horizontal cross-sections of Fig.s 4(b) at (a) z=0.8 km and (b) z=l.6 km. 

Ey is the transmission wave from the vertical corner surface of y=l .3 km. 
The definitions of other symbols are the same as those in Fig. 4(b). 
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Fig. 7. A 3-D sediment-filled basin model used to calculate acoustic wave prop­
agation effects. The shadow zone expresses the basin with a velocity of 
2.0 km/sec and a density of 2.3 g/cm3 with a good contrast to the bedrock 
of velocity (2.6 km/sec) and density (2.4 g/cm3). The source is located 
at x=l.3 km, y=l.3 km and below the basin with z==0.88 km. 
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reflection phase. 
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and a density of 2.3 g/cm3 with a good contrast to the bedrock of velocity (2.6 km/sec) and 
density (2.4 g/cm3). The ellipsoid has a 3:2: 1 ratio of long (x), inte11nediate (y) and short (z) 
axes. The source used in this study is a point source just below the basin (as shown in Figure 
7) to simulate a near-basin earthquake. The strong artificial boundary reftection is found in 
the propagating wavefield as  shown in Figure 8. It was found that the Gaussian damper best 
reduced the artificial reflections. The Gaussian damper is expressed in the fo1m of exp(-ad2), 
where a is  the absorption coefficient, and d is the distance (expressed in grid points) from 
the inner boundary of the absorbing layer. In this study, many absoiption parameters for 
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study, many absorption parameters for the 3-D acoustic wave equation have been tested, and 
it has been found that an absorption coefficient of a=0.025 coupled with an absorbing distance 
of 17 grid points had reduced wraparounds to an acceptable level as shown in Figure 8(a). 
Comparative results without absorption boundaries are shown in Figure S(b). No optimum 
values of absorption parameters are obtained in the testing procedure here. Larger values of 
d coupling with smaller values of a of the absorption parameters produce better absorption 
of artificial reflection. For computation efficiency, a special test is required for the particular 
problem of interest. 

The 3-D wavefront snapshots of the experimental model at later time steps than in 
Figure 8 are shown in Figure 9. The wavefront of the direct wave (phase A), the basin 
bottom reflection (phase B) and the transmitted wave and its reflected phase from the free 
surface (phase C) are observed. The special wavefront (phase D) of the acoustic wave trapped 
on the basin is clearly seen in Figure 9(b). The plane snapshots of the free surface wavefield 
at different time steps are plotted in Figure 10. Two interesting features are observed in 
these snapshots. First, from the blocking of this low velocity basin, the incident wavefront 
is disconnected on both sides of the basin boundary, and the incident wave decreases its 
amplitude as it approaches the basin boundary. Tracing the wavefront in time, there are two 
regions of the basin boundary that give lower peak amplitude than the incident wave (Figure 
I 0). Second, the basin traps energy that propagates inward and focuses energy near the 
center of the basin of this model. Two vertical cross-sections of 3-D snapshots are shown in 
Figure 11. The trapped wavefield is clearly seen in the cross-sections and on different time 
steps. Phase (D), as trapped energy in the basin, extends to the basin bottom with decreasing 
amplitude from top to bottom. As phase (D) hits the basin boundary, a strong reflection is 
generated that keeps most of the wave energy within the basin, much the same as a wave 
excited in an ellipsoidal swimming pool. Reflections from all parts of the basin boundary 
approach each other f or1ning regions of wave focusing in a manner dependent on the nature of 
the basin boundary. Two subsurface horizontal snapshots with different elevations are shown 
in Figure 12. The wavefield inside the basin includes the horizontal propagation trapped 
waves (Figure 12(a)), while outside (Figure 12(b)) the basin, no trapped waves are found. 

3.3 Cross-section Related to 2-D Cases 

The 2-D models, with an infinite extension of the third dimension of the 3-D experi­
mental models, are selected to compute the wavefield for comparison with the 3-D model. 
Two cross-sections related to Figure 5 are chosen, and the computed wavefield of the comer 
diffraction model (not shown) is very similar to its related 3-D cross-section (Figure 5(a)); 
however, the diffraction phases C and D of Figure 5 (b) are missing in the 2-D half-space 
model (not shown). The computed wavefield of the 2-D model related to Figure 6 (a) is 

��--- · =:_· _:�:u=-�·::-.: .-::: .. .-sliOWO -ift; -Figure 1,3 ���--,·t•·�tliis -ease,-· dre� source, is. .. l0c1red. eiictty�·m-=:.tfiE :·Wtner·-;-paim:�;o rtie== · =-· ... =···-.:·=· �.:.· 

wavefield of Figure 13 (a) is very different from that of the related 3-D cross-section (Figure 
6 (a)). The amplitude of the wavefield in the low velocity comer is stronger than that in 
the other region; besides, phases Ez, Ex and Ey are not found. Phases Ex and E11 can be 
reproduced by shifting the source slightly away from the comer as shown in Figure 13 (b ). 
Phase Ez cannot be reproduced because it propagates into this cross-section· vertically, and 
the out of plane wavefield cannot be simulated by a 2-D model. The same reason explains 

, why phases B, C and D of Figure 6 (b) cannot be simulated by a full-space 2-D model. 
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Fig. 9. 3-D wavefront snapshots for the experimental basin model (Fig. 7) at 

different time steps. (a) t=0.56 sec, and (b) t=0.72 sec. A: wavefront 
of the direction wave. B: basin bottom reflection. C: transmitted then 
reflected from free surface. D: wavefront of seismic wave trapped on the 
basin. The solid lines show the outline of the basin. The wavefield of 
Fig. 9(a) with a coordinate y less than 0.8 km is transparent. 

263 

Figures 14(a) and (b) represent snapshots of the 2-D model which is the vertical cross­
section of the 3-D basin model (Figure 7) at y=l.2 km, and they are used to compare Figures 
l l(a) and (b). Their corresponding wavefronts are very similar. The slight difference between 
them is due to the difference in source location. The source for Figure 1 l(a) or (b) is out 
of the 3-D cross-section plane by 0. 1 km (y=l.3 km). Figures 14(c) and (d) give snapshots 
of the 2-D model as a vertical cross-section of the 3-D basin model at x=l.3 km ,  a plane 
which includes the point source. Figures 14(c) and (d) can be selected for comparison with 
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Fig. 10. Horizontal snapshots of the free surface (z=l .78 km) for the experimental 

basin model (Fig. 7) at different time steps. The solid lines show the 
boundary of the basin and bedrock. Phase indexes refer to Fig. 9. 

Figures 1 1  ( c) and ( d). In Figures 1 1  ( c) and ( d), the 3-D snapshot cross-sections are located 
at x= 1.6 km, and the source is far away from the plane (Figure 7). Due to the lateral 
heterogeneity in the x direction, even though the shapes of the basin for both cross-sections 
are similar, the spatial distribution of these wavefronts are very different. This shows the 
limitation of using 2-D models for a 3-D interpretation. Besides, no corresponding 2-D 
models can be used to approximate the wavefield snapshots for the free surface or for any 
horizontal cross-sections produced by the 3-D model (Figure 12). 
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Fig. 11. Vertical snapshots at different cross-sections and time steps of the ex­

perimental basin model (Fig. 7). (a) t=0.56 ·sec, and (b) t::0.72 sec for 
the cross-sections at y=l.2 km, and (c) t::0.56 sec and (d) t=0.72 sec for 
the cross-section at x= l .6 km. The solid lines show the boundary of the 
basin and bedrock. The vertical axis is defined as the depth from the free 
surf ace. Phase indexes ref er to Fig. 9. 

4. DISCUSSION 

In this study, through 3-D numerical computations, it may be understood that excessively 
strong ground motions can be generated by the localized wavefield focusing effect as a result 
of the interaction of a 3-D basin with incoming 3-D spherical wavefronts. Until  recently, there 
were only a few cases for 3-D basin response computations which mainly involved plane 
wave incidence. Finite fault and point source effects are less often discussed. Generally, 
discussion on site effects is separated from that on source effects, and it usually neglects the 
wave scattering effects induced by distance variations from source to basir.. However, when 
the source is close to the basin, it has been found that, even in such simple models as those 
used in this study, the wavefields are strongly disturbed by the configurations of the 3-D 
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Fig. 14. 2-D wavefield snapshots for cross-sections of the 3-D sediment-filled basin 

model (Fig. 7) on (a) t=0.56 sec and (b) t=0.72 sec at y=l.2 km, and on 
(c) t=0.56 sec and (d) t=0.72 sec at x=l .3 km. The vertical axis is defined 
as the depth from free surface. The solid lines show the boundary of the 
basin and bedrock. Phase indexes refer to Fig. 9. 

basin models and non-planar wavefronts generated by a point source. The focusing of the 
trapped wave energy and blocked-off wavefronts are clearly seen, and the resulting wavefield 
has a complex amplification pattern on the free surface. It has been found in this study that 
the low amplitude on rock sites at the basin edge, resulting from blocking off the incident 
wavefront by the basin cannot be reproduced by the plane wave incidence. In this case, the 
change of source location affects the path of incident wavefront through the interaction of 
wavefronts and the resulting amplitude. 

· 

In this study, a few cases have been tested, and only one typical case is chosen to 
demonstrate the 3-D basin effects. For a thorough exploration on 3-D wave propagation 
properties, rigorous computations on cases with diff ereilt basin shapes and source locations 
are required. Ultimately, as in the acoustic case, one may derive elastic wave equations for the 
displacement field by following the above derivative procedure. However, the computation 
time and required storage memory are greatly increased in the elastic cases, limiting the 
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direct application of this method at this time. With the increased availability and speed of 
supercomputers, solutions to this computational problem will be overcome in the near future . 

• 

S. CONCLUSIONS 

The numerical findings discussed above lead to the following conclusions: 
(1) Consideration of the out-of-plane scattering of spherical wavefronts and calibration for 

apparent velocities is necessary when 2-D results are being applied to infer 3-D cases. 
(2) The wavefront-blocking effect produced by the sediment-filled basin gives rise to low 

shacking amplitudes which cannot be reproduced by a model with a plane wave inci­
dence. 

(3) A basin trapped wave energy is found to propagate inwardly and focus near the center or 
the elliptical foci of the basin. This trapped wavefield is examined in different vertical 
cross-sections and time steps. The basin trends to trap the wave energy inside which 
results in much lengthened strong shacking motions. This trapped wave extends to the 
basin bottom with decreasing amplitude. 

(4) Site effects are strongly affected by the point-source-generated spherical wavefronts 
which interact with the basin boundary, causing very complex strong shacking patterns 
through wave focusing. This focusing and soft basin trapped wave energy essentially 
produce the large-amplitude and the long-duration strong ground shacking that usu­
ally inflicts severe damage to structures, such as in the case of the recent Northridge 
earthquake. 
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