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ABSTRACT 

A numerical hybrid method was developed to model elastic wave propa­

gation. This algorithm was implemented with both the pseudo-spectrum 

and the finite-element methods. The pseudo-spectrum is currently a popu­

lar numerical method in earthquake seismology studies due to its high effi­

ciency and accuracy. On the other hand, its most significant drawback is 

the difficulty of implementing a free surface or absorption boundary owing 

to the nature of its periodic boundary. In addition, since the grid space 

must be defined globally within a model to prevent grid dispersion depend­

ing on the region of strong velocity contrasts, computations may become 

very expensive. However, these drawbacks can be overcome with a hybrid 

of the pseudo-spectrum and the finite-element techniques. With the imple­

mentation based on the finite-element formulation, grid spacing can be de­

termined according to local velocity within a velocity model. In so doing, 

the coding of the boundary conditions becomes much easier as well. The 

advantages of this proposed hybrid method consist of both reducing the 

amount of computational time and memory needed and obtaining both ac­

curate and stable results during calculation. Some examples are shown to 

demonstrate the advantages of the hybrid method. This method can also be 

easily expanded to 3-D situations with minor modifications. 

(Key words: Hybrid method, Finite-element method, Pseudo-spectrum method, 

Wave propagation) 

1. INTRODUCTION 

Modeling wave propagation in the earth plays a very important role in the study of the 
solid earth. Numerical modeling especially for seismic data has long been recognized as a 
powerful technique to enable seismologists to better understand complicated wave propaga­
tion and interactions and to use as a tool for data interpretation. In modeling seismic wave 
propagation globally and computing synthetic seismograms analytically, the earth structure is 
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usually treated as a layered medium, for example with radial or vertical inhomogeneous struc­

tures. Rowever, compiex structures wn1Ch 'mC1uae varymg 1aterlli1y· umomogeneous s'lrucunes 

and elastic parameters are necessary for regional and local scale waveform modeling. Usually, 

numerical methods need to be employed. To solve the wave equation numerically, the models 

of a more realistic world should therefore be simulated. 

Many different numerical algorithms have been proposed to solve wave propagation in a 

complex medium. Limited by the approximation of the wave equation, different algorithms 

are only suitable for a limited class of models. In the past two decades, different numerical 

methods have been developed to model seismic wave propagation with the commonly used 

techniques consisting of the finite-element method (FEM) (Smith, 1975), the finite-difference 

method (FDM) (Boore, 1972), the boundary integral equation method (BIEM) (Dravinski, 

1983) and the pseudo-spectrum method (PSM) (Gazdag, 1981; Huang, 1992). Among these, 

the PSM requires the smallest required memory for computing wave propagation and has been 

well tested for scalar wave equations (Johnson, 1984). 

Restrictions on all numerical methods are of a practical nature. With limitations imposed 

by computer memory size and processor speed, the earth models usually have to be truncated, 

and the frequency contents of a propagation wave are band limited. In this case, numerical 

modeling generally faces problems of artificial boundary and signal resolution restrictions. In 

the case of elastic waves, the instability of the free-surface boundary condition was found 

while the PSM solution was being used (Kosloff et al., 1984; Reshef and Kosloff, 1985). This 

is because, unlike the case of acoustic waves, the boundary conditions involve derivatives of 

the solution itself (Reshef et al., 1988 a, b ). 

A hybrid technique uses one numerical algorithm in combination with another numerical 
or analytic method to compensate for the shortcomings of the individual numerical method. 

Zienkiewicz et al. ( 1977), Van den Berg ( 1988) and Emmerich ( 1989) have shown that hybrid 

methods are able to improve upon the flexible description with individual limitations. In this 

study, due to their robustness, the wave equation is solved with a hybrid approach using the 

FEM in the vertical direction and the PSM in the horizontal direction. This proposed hybrid 

method yields an algorithm which is non-periodic as well as which has variable grid spaces in 

the vertical direction. Furthermore, it reduces the unstable free boundary condition of the pure 

PSM. 

2. THE HYBRID METHOD 

2.1 Elastic Wave Equation Formulation 

The basic equations.governing elastic wave propagation in the 2-D medium are described 

by the following: 

d2 Ux dTxx dTxz f" p -- = --
+--+ jX 

dt2 ax dz 
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d2 Uz dTzx dTzz f 
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( 1) 

where (x,z) are the Cartesian coordinates, and d is the differential operator. (Ux, Uz) is the 

displacement vector, ( Txx, Tzz, Txz) is the stress tensor, t denotes time, p denotes the density, 

A, µ are Lame coefficients, and ft, f are body forces. 

In this study, time marching is implemented based on the central-difference approxima-

tion. From the central-difference definition (Wylie, 1975), the physical quantity a1u I at2 of 
Equation (1) can be expressed as: 

a2u 
-

2 
(t) = (U(t - lit) - 2U(t) + U(t +!it)) I !it2 

at 
(2) 

where !it denotes the increment in time in numerical computations. Hence, the wave field at 

time t +!it is estimated from the values at times t and t - !it as follows: 

a1u 
U(t +lit)= 2U(t)- U(t - lit)+ (-

2 
(t))!it2 

at 
(3) 

2.2 Spatial Discretization 

In order to numerically solve Equation (1), in this study, the spatial derivatives of the 
wavefield are calculated using the Fourier transform method in the horizontal direction and 
the finite-element approximation in the vertical direction. Following the Fourier method, the 
spatial derivative of the displacement field U(x) can be solved by a simple multiplication 
operation in the wave number domain as follows: 

au= J__l_ ( 1I'u(kJe2Jrikxx!N,) = _1_1I'2ni
k
x U(kJe2Jrikxx!N, (4) 

ax ax Nx 0 Nx 0 Nx 
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where 

N -l 

U(kJ = !u(x)e-21l"ik,xtNx 
(5) 

0 

is the Fourier transform of U(x). 

According to finite-element discretization, the generalized displacement of the 1-D ele­

ment can be expressed as: 

U' � (N,,N2{�J (6) 

where the terms N1=( 1-z/L) and N2=( z!L) are the shape functions of the displacement field. U1, 
U2 are the node displacements of element e. z is the Cartesian coordinate, and L is the length of 

the element. The derivative of ue with respect to z can be shown as: 

Jue = ( JN,, JN2 )(u, 
J Jz Jz Jz U2 

(7) 

Finally, the global derivative matrix of displacement fields is obtained by assembling the 

element vectors in Equation (7). For an equal grid space of mesh, this formulation is equiva­

lent to the FDM. 

2.3 Absorption Boundary Condition 

In order to suppress numerical reflections from the artificial boundaries in the vertical 

direction, the absorbing boundary method proposed by Smith ( 197 4) for the finite-element 

method was used. This involved the superposition of the independently calculated wave equa­

tion solutions with the Neumann or Dirichlet condition. In theory, the summed wavefield 

completely eliminates any artificial reflections. Using the absorbing boundary method (Smith, 

1974), the wave propagation allowed for the computation on a small vertical size by which the 

observations were distorted by numerical reflections without this boundary absorption. To 

avoid the wraparound at the horizontal artificial boundaries, an absorbing boundary condition 

based on the gradual reduction of wave amplitudes in the vicinity of the boundary (Cerjan et 

al., 1985; Sochacki et al., 1987) was used. The purpose of this reduction was to gradually taper 

the wavefield through the use of a weighting function W(x,z). For the case of absorption 

boundaries on the four edges of a model, the weighting function is in the form: 

exp[(-a(d - x))]2, 
W(x,z) = exp[(-a(d - z))]2, 

x < d or x > Lx - d ; 
z < d or z > Lz - d ; 

1 , elsewhere, 
(8) 

where a is the absorption coefficient, d is the width of the tapered zone (expressed in the 

number of grid points), and L,: Lz are the model sizes of the x and z components. 
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3. MODELING RESULTS 

In this section, four examples of elastic wave propagation are presented to show the flex­
ibility, efficiency and accuracy of the proposed hybrid method. With these cases, the calcula­
tion procedures are demonstrated, and the results are compared with other numerical solu­
tions. The advantages of the proposed hybrid method are shown as well. 

3.1 Example 1: Comparison With Other Methods 

In this example, the elastic wave propagation through a simple model of a homogeneous 
medium was computed. The velocities for P- and S-waves were chosen to be 2700 mis and 
1500 mis, respectively. Density was taken to be 2.0 g/cm3• A Ricker-like time history with a 
maximum frequency of 50 Hz and a peak frequency of 25 HZ was used as the source wave­
form. The source, acting as an explosive type mechanism, was located at the center of the 
numerical grid. Figure 1 shows three snapshots computed by the FEM (Figure l a), the PSM 
(Figure l b) and the hybrid method of this study (Figure le), respectively. It is seen that the 
three different numerical algorithms produced the same accurate results. In other words, the 
proposed hybrid method was able to generate the wavefields just as accurately as the other two 
well established numerical methods. 

3.2 Example 2: Absorption Boundary Conditions 

To simulate an infinite earth structure in a finite model, it is necessary to apply boundary 
conditions that make the edge of the computational grid appear transparent. In this way, artifi­
cial reflections introduced by the edges of the computational region can be minimized. In this 
example, a model with the same elastic parameters as those in the previous example was 
employed; however, instead of using a full-space model, absorption boundaries were imple­
mented on the bottom and top sides. To better absorb boundary reflections, the absorption 
boundary condition of Smith (1974) was applied to both the FEM and the hybrid methods. An 
absorption coefficient of a = 0.02 and the absorbing layer width d = 25 grid points of Equation 
(8) were selected to reduce the wavefield wraparound for the PSM. The results of this example 
are shown in Figure 2. The hybrid method (Figure 2a) shows just as stable results as the FEM 
(Figure 2b). However, in Figure 2c, the boundary reflections were not absorbed completely 
when the PSM was employed. To reduce the artificial boundary reflections of Figure 2c, the 
grid points in the taper bands had to be increased. To maintain the most stable results, it was 
found that 40-grid points per wavelength was necessary to attenuate boundary reflections similar 
to those assessable levels for waveform modeling used by Huang et al. (1995). 

3.3 Example 3: Free-surface Boundary Conditions 

In this example, the implementation for the free-boundary condition of the proposed method 
was demonstrated. It is known that the most significant drawback of the pseudo-spectrum 
algorithm is its failure to implement a free surface or absorption boundary due to the nature of 
its periodic boundary. In this example, the robustness of the hybrid method in dealing with the 
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a 

X-COMPONENT 2.6 Z-COMPONENT 2.6 

b 

X-COMPONENT 2.3 Z-COMPONENT 2.3 

c 

X-COMPONENT 2.3 Z-COMPONENT 2.5 

Fig. 1. Seismic snapshots computed by different methods: (a) the hybrid method, 

(b) the finite element method, and ( c) the pseudo-spectrum method pro­

posed in this study. The number on the bottom-right corner of each panel 

shows the relative amplitude of the three snapshots. 
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X-COMPONENT 1.4 

X-COMPONENT 1.5 

X-COMPONENT 1.4 

Fig. 2. Comparison of the efficiency of the absorbing boundary using different 
methods: (a) the hybrid method, (b) the finite element method, and (c) 
the pseudo-spectrum method. 
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HYBRID METHOD 

Z-COMPONENT 1.5 

PSEUDO-SPECTRUM METHOD 

Z-COMPONENT 1.6 

Fig. 3. (a) Snapshot computed by the hybrid method with the free boundary 

condition on the top and absorption boundary on the bottom sides. (b) 

Snapshot computed by the pseudo-spectrum method. No special bound­

ary condition is considered in Fig. 3b. 

free-surface boundary condition was shown. Herein, the same model as that of Example 2 was 

selected, but a free-surface boundary condition on the top side and absorption boundary condi­

tion on the bottom side of model were implemented. The results for the test of the free-surface 

boundary are shown in Figure 3. After careful examination, it is found that the results from the 

hybrid method (Figure 3a) have the same accuracy as those computed by the FEM. Because of 
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the nature of its periodic boundary, no boundary conditions were considered in the computa­
tion of the snapshot of Figure 3b using the PSM. From Figure 3b, the same wavefront, which 
propagated away from the top surface, propagated into the model from the bottom surface 
again. To avoid the boundary transmission wave, usually, a thick zone of zero velocity was 
implemented by the PSM to simulate the free surface boundary (Reshef et al., 1988 a, b; 
Huang et al., 1995). Employing this method, however, requires extra computing costs and the 
simulation for free surface reflection is not exact. 

3.4 Example 4: Non-uniform Grid Spacing 

Grid dispersion limits the usefulness of the discretization schemes for the wave equation. 
In forward modeling problems, spatial grid spacing must be determined according to the me­
dium velocity so that the accuracy criterion can be satisfied. In general, the grid spacing for the 
PSM is defined globally to prevent grid dispersion. If there exist strong velocity contrasts in a 
model, then the grid spacing should be greatly reduced. In such a case, computation becomes 
very expensive. Nevertheless, the above drawbacks can be overcome with a hybrid of the 
pseudo-spectrum and the finite-element techniques. Because the grid spacing of the model is 
allowed to change. When the finite element method is employed, the local grid spacing is 
estimated on the basis of the media velocities within the velocity model. The variable-size 
griding would help to reduce the computer time and memory needed. In this example, a two­
layer model was used to illustrate the usefulness of non-uniform grid spacing in the calcula­
tion. The velocity model is defined as a two-layer model in which the velocities of the P- and 
S-waves for the upper layer are 1500 mis and 1100 mis, respectively. The velocities of the P­
and S-waves for the bottom layer are 3500 mis and 2000 mis, respectively. Here, the densities 
on both layers are assumed to be 2.0 g/cm3• The source is located in the lower layer. Figure 4a 
shows the results of the hybrid method by using non-uniform grid spacing. In this model, the 
grid spacing is determined according to the velocities of the two respective layers. The wave 
propagation in both half spaces is stable and accurate. In comparison to the one in Figure 4a, 
the snapshot of Figure 4b was computed by the pseudo-spectrum method using uniform grid 
spacing which was determined according to the velocity of the lower layer. It is found that 
unstable wavefields are present near the velocity boundary (solid line). To keep the computa­
tions as accurate as those in Figure 4a, the uniform fine grids are necessary when the pseudo­
spectrum method is employed. However, because the grid spacing can be adjusted by the 
hybrid method, computer time and memory can be reduced. 

4. DISCUSSION 

As for the limitations of the Fast Fourier Transform (FFT), the input grid sizes of the PSM 
(both in the horizontal and vertical directions) are limited to a length that can be FFT'ed, i.e., 
2". Although this can be partially improved by using the prime factor FFT algorithm (Temperton, 
1985), in which the size of the FFT is the product of different prime numbers, the selection of 
the model size is strongly restricted by this requirement. The above examples have illustrated 
the robustness of the proposed hybrid numerical method and the release of the model size 
limitation in the vertical direction. The hybrid technique preserves the advantages of the PSM 

9 



10 TAO, Vol. 8, No. 1, March 1997 

X-COMPONENT 1.4 Z-COMPONENT 2.1 

X-COMPONENT 1.3 Z-COMPONENT 1.7 

Fig. 4. (a) Snapshot computed by the hybrid method with non-uniform grid spac­

ing. (b) Snapshot computed by the pseudo-spectrum method using uni­

form grids of the same size as those in the lower part of Fig. 4 (a). 

and FEM, eliminates artificial reflections and reducing computational costs. Compared to the 

conventional stand with the PSM and the FEM alone, the hybrid scheme greatly reduces the 

memory requirements and somewhat saves computer time. This is particularly true for earth 

models with strong velocity contrasts between layers, where the grid spacing in the vertical 

direction may be largely reduced. However, the hybrid method described in this paper is an 

initial study which can be used in lots of applications. For instance, the hybrid method may be 

used to model seismic wave propagation in the study of near surface structures, where a more 
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complex model is needed to describe the real earth and where strong velocity contrasts exist 
between the weathering layer and structures beneath it. Additionally, low velocity guide wave 
modeling (Huang et al., 1995) may also be computed by this method. Additionally, the hybrid 
method proposed herein can be easily expanded to the 3-D case by using a hybrid of either the 
1-D FEM and 2-D PSM or the 1-D PSM and 2-D FEM. 

The proposed hybrid method could be refined with further work. The computational algo­
rithm can be implemented with a parallel computing technique (Shih, et al, 1993; and Shih and 
Hsiuan 1993) to improve its computational efficiency. Also, the incorporation of a different 
hybrid computational method into the scheme would enhance its power, a valuable feature for 
processing wide-angle seismic reflection data sets which generally have sparse receiver points. 
For instance, the Kirchhoff integral can compute the passage of seismic energy through the 
low velocity surface layers, while the PSM or FEM method can be used to compute the propa­
gation in the structure beneath the low velocity medium. 

5. CONCLUSIONS 

A robust numerical modeling method for wave propagation has been proposed. This method 
hybrids the FEM and PSM to compute the spatial derivatives in the vertical and horizontal 
directions, respectively. The advantages of the proposed hybrid method consist of reducing 
the computational cost, reducing the memory needed and obtaining both accurate and stable 
results during calculation. 
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