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ABSTRACT

Peak ground acceleration (PGA) can be used to estimate the seismic intensity. 
However, using P-wave features to estimate PGA is a challenging task. One of the 
reasons for that is that a seismic wave commonly undergoes modification due to vari-
ous site effects, consequently leading to uncertainty in the predicted PGA. In order to 
accommodate site effects using site parameters together with P-wave parameters, this 
paper takes advantage of machine learning to consider multiple parameters simulta-
neously. Several artificial neural network (ANN) models considering different site 
effect parameters are constructed. The performances of these ANN models were in-
vestigated and compared. In total, 53531 ground motion data obtained from the Tai-
wan Strong Motion Instrumentation Program were utilized to develop the proposed 
approach. It was found that the proposed ANN model with horizontal-to-vertical 
spectral ratio parameters effectively reduces the error of the estimated PGA when 
compared with either the ANN model without site parameters or the ANN model 
with other site parameters.
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1. INTRODUCTION

Earthquake early warning (EEW) techniques have 
been widely studied during the past two decades. Generally, 
EEW systems can be divided into two categories: regional 
warning techniques and on-site warning techniques. Basi-
cally, regional EEW systems require to collect P-wave data 
of several stations of a seismic network next to the epicen-
tral area. They often use the P-wave arrivals and waveform 
amplitudes of several stations to predict magnitude and epi-
center distance of the earthquake, then the ground motion 
intensity can be estimated with the ground motion predic-
tion equations (e.g., Allen and Kanamori 2003; Zollo et al. 
2006). However, Taiwan frequently suffers from destructive 
seismic hazards due to inland earthquakes. For regions that 
are close to the epicenter, where the seismic intensity is usu-
ally much higher than that of regions outside, the regional 
warning time before a destructive wave arrives can be zero. 
On the other hand, because the on-site EEW systems only 

require the seismic information of the target site, a longer 
warning time can be obtained in regions that are close to the 
epicentre (Satriano et al. 2011). Many on-site approaches 
have been developed, e.g., Nakamura (1988), Odaka et al. 
(2003), Wu and Kanamori (2005), Böse et al. (2012), Hsu et 
al. (2013, 2016, 2018). More insight discussion of the dif-
ference between regional and on-site EEW can be found in 
Satriano et al. (2011).

Conventionally, an EEW technique is produced by us-
ing empirical regression models established based on a sim-
ple linear relationship between the logarithm of only one or 
two kinds of P-wave parameters, e.g., predominant period 
and the peak displacement, and the measured earthquake in-
formation (Nakamura 1988; Kanamori 2005; Odaka et al. 
2005; Yamamoto et al. 2008). However, complex relation-
ship between output target and input parameters may exist 
which makes improving accuracy of EEW a challenging 
task. Fortunately, machine learning is a promising field to 
solve many challenging problems. An artificial neural net-
work (ANN) is a nonlinear statistical data modeling tool that 
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models the complex relationship between inputs and outputs. 
In this study, an ANN algorithm is employed to predict the 
PGA of ground motion records based on P-wave parameters.

Another factor that greatly influences the performance 
of an EEW system is the site effects. In engineering appli-
cations, the average shear wave velocity of the upper 30 m 
of sediments (Vs30) is a simplified parameter, which has 
been widely used to classify sites. The National Earthquake 
Hazard Reduction Program (NEHRP) recommended the 
use of Vs30 as a significant indicator for classifying sites 
in building codes (BSSC 2001). Böse et al. (2012) achieved 
a great reduction of the uncertainty in estimating the peak 
ground velocity (PGV) by taking Vs30 into account during 
the analysis. Furthermore, Nakamura (1989) proposed the 
single station horizontal-to-vertical spectral ratio (HVSR) 
method using microtremors to evaluate dynamic character-
istics of surface layers. The authors would like to further 
consider these site effect parameters when establishing an 
ANN regression model to estimate the PGA.

In this study, P-wave parameters calculated from the 
first 3 s interval of a P-wave signal and the physical quantities 
related to site effects were implemented in the establishment 
of ANN regression models to estimate the PGA of ground 
motion records. The PGA is selected as the target because 
the official earthquake intensity determined by the Central 
Weather Bureau (CWB) in Taiwan is calculated based on the 
PGA. The performances of ANN models with and without 
these site effect parameters were compared and discussed.

2. METHODOLOGY
2.1 P-wave Parameters

Hsu et al. (2013) and Huang et al. (2014) considered 
six P-wave parameters of the first few seconds of vertical 
direction measurement, including the peak absolute value 
of acceleration, peak absolute value of velocity (Pv), peak 
absolute value of displacement, effective predominant pe-
riod, integral of absolute acceleration (IAA), and integral 
of the squared velocity, to estimate the PGA using different 
algorithms. Both studies showed that the estimated PGA us-
ing only Pv and IAA achieves an approximate prediction 
error compared with the accuracy obtained by using six P-
wave parameters, although the accuracy of the estimated 
PGA using all six P-wave parameters is the highest. When 
training the artificial neural network afterward, too many 
input parameters could require a lot of computational effort, 
therefore we tried to reduce the number of P-wave input pa-
rameters. As a result, we employed only these two P-wave 
parameters in our analysis. The two P-wave parameters 
were extracted from the first 3 s interval of a P-wave signal 
[tp = 3 (s)]. The equation for IAA is given as

( )IAA u t dtt

0

p= p#  (1)

where ( )u tp  denotes the vertical component of the accelera-
tion time history of ground motion after the arrival of the 
P-wave. In addition, all recorded acceleration signals were 
integrated once to obtain the velocity signals. A second-
order 0.075 Hz high-pass Butterworth filter was applied to 
remove the low-frequency drift after integration. A short-
term average/long-term average (STA/LTA) algorithm was 
applied to automatically determine the arrival time of the 
P-wave. The LTA value was set to 0.03 Gal based on the 
average noise at the stations. The STA value was calculated 
by averaging absolute acceleration values of 80 data points; 
it was triggered if the STA value successively exceeded two 
times of the LTA value.

2.2 Site Characteristic Parameters

Four parameters were considered to address the site 
characteristic information in this study. Firstly, Vs30, the 
average shear wave velocity within a depth of 0 and 30 m 
at each particular station, was determined by the National 
Center for Research on Earthquake Engineering (NCREE) 
and the CWB of Taiwan (Kuo et al. 2011, 2012, 2015). All 
stations with available Vs30 information were classified 
into five classes based on the criteria of the NEHRP (BSSC 
2001). Secondly, the HVSR was used to assess the charac-
teristics at a particular site. The HVSR was calculated based 
on the frequency spectrum of the horizontal vibration signal 
divided by the frequency spectrum of the vertical vibration 
signal. The Fourier spectrum was calculated using the fast 
Fourier transform (FFT) of the whole acceleration time his-
tory of 8192 points of the Hamming window with a sam-
pling rate of 200 Hz. The Fourier spectra were smoothed 
every three points. Note that the HVSR values in this study 
were obtained by using real earthquake events. Because our 
purpose is to estimate the earthquake intensity of an upcom-
ing earthquake, it is better to use earthquake data rather than 
ambient noise. Thirdly, the peak frequency (i.e., the fre-
quency value corresponding to the maximum HVSR values) 
was also considered in this paper. Finally, the NEHRP site 
class was also employed as site characteristics when estab-
lishing the regression model for PGA prediction.

2.3 Artificial Neural Network

In this study, we used an ANN to perform a supervised 
machine learning process to estimate the possible maximum 
earthquake intensity. The entire ground motion database 
was divided into two subsets, namely, the training and vali-
dation subsets. Because the ground motion database is in the 
order of seismic events and the data with large PGA is very 
limited, odd numbers of ground motion data were used for 
training, while the remaining even ground motion data were 
used for validation. By doing so, the training data and vali-
dation data will contain almost every seismic event and the 
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number of data with large PGA is nearly equal for the train-
ing data and validation data. During the process, we applied 
a four-layer forward fully-connected neural network (Fig. 1) 
to establish the regression model between concerned param-
eters and the PGA. The network consisted of one input lay-
er, two hidden layers with ten neurons in each hidden layer, 
and one output layer. The activation function of the hidden 
and output layers was hyperbolic tangent and linear, respec-
tively (Gurney 1997). Although different activation func-
tions may achieve similar performance, we simply choose 
the hyperbolic tangent as the activation function in the inner 
layer because some literature has already employed it for 
constructing regression models and acceptable results were 
obtained (Masri et al. 1996, 2000). Each type of input pa-
rameter is required to be normalized to a domain of [0,1] to 
adequately train the regression model. Each neuron in the 
hidden and output layers was connected with a neuron in 
the previous layer. The values of neurons in each layer were 
passed to the next layer through the combination of weight-
ing and a bias term. This combination was further fed into 
an activation function. The general formula of each neuron 
can be expressed as:

z w x bj ij i j
i

N

1

j

y= +
=
c m/  (2)

where zj was the output of the jth neuron; xi was the output of 
the ith neuron in the previous layer; wij represents the weight 
connecting the ith neuron in the previous layer to the jth neu-
ron in the current layer; bj is a the bias of the jth neuron; Nj 
is the number of neurons in the previous layer; ( )xy  is the 
activation function.

The network was trained by minimizing the cost func-
tion, which is the mean-square error of the logarithm differ-
ence between the predicted PGA and target measured PGA:

e N y y1
r j j

j

N
2

1
= -

=
^ hU/  (3)

where yj and y jU  was the output and target of the jth dataset 
of the ANN model, respectively; N is the number of total 
dataset. The cost functions of all regression models were 
identical.

The network was trained using the Levenberg-Mar-
quardt backpropagation algorithm, which is a combination 
of gradient descent algorithm and Newton’s method. The 
training of the ANN models were terminated to prevent 
undesired overfitting if the accuracy of the training subset 
increases but the accuracy of the validation subset remains 
constant or decreases. We trained 1000 identical models but 
with different randomly initialized weights and biases of the 
neurons. Then the comparatively best performing network 
was selected among the 1000 trained models to increase the 
chance to avoid local minimums.

2.4 Ground Motion Database

To establish a representative ANN regression model 
for PGA prediction and investigate the influence of the 
site characteristic parameters, a large number of ground 
motion records with reliable site information is necessary. 
The ground motion data employed in this study were ob-
tained from the TSMIP (see the Supplementary data sec-
tion). The TSMIP network is maintained by the CWB in 
Taiwan to collect high-quality instrumental recordings of 
strong ground motions caused by earthquakes around Tai-
wan. About 700 free-field stations have been installed and 
are presently operating throughout Taiwan. The TSMIP sta-
tion signals are digitized with 16-bit resolution or higher. 
Most accelerographs have a dynamic range of ±2 g. The 
EGDT (see the Supplementary data section) was built by 
the NCREE and the CWB in Taiwan and includes logging 

Fig. 1. Structure of the artificial neural network predicting the PGA.
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data from more than 400 stations and estimates of the cor-
responding Vs30 quantities (Kuo et al. 2011, 2012, 2015). 
Approximately 15 years of TSMIP data (29 July 1992 to 
31 December 2006) recorded by the CWB were utilized, 
including 54 earthquake events with ML ≥ 6.0 and the 1999 
Chi-Chi earthquake with ML = 7.3. Not only local but also 
distant events were included. Because the P-wave param-
eters extracted from the first 3 s interval after the trigger 
were required, the data with a total length < 3 s were ex-
cluded from this study. Moreover, stations without reliable 
site information (Vs30) and high quality acceleration data 
were not taken into consideration. Thus, a total of 53531 
TSMIP data corresponding to 386 stations were available. 
Table 1 summarizes the site information of the ground mo-
tion database used in this study.

3. RESULTS

The aim of this study was to use ANN to accommodate 
site effects for PGA predictions. Therefore, the following 
five combinations of input parameters of ANN regression 
models were studied. The logarithm residuals shown below 
are calculated using the all 53531 data, including training 
data and validation data. The number of input parameters of 
each ANN regression model is summarized in Table 2 and 
the detail of the input parameters is described in the follow-
ing paragraphs:
(1)  Pv + IAA; this model only considers two P-wave pa-

rameters without any site characteristic parameters.  
Figure 2a shows the predicted PGA using the Pv + IAA 
ANN regression model. Each star marker represents a 
ground motion data. The vertical axis in the figures rep-
resents the predicted PGA, while the horizontal axis de-
notes the measured PGA. To evaluate the performance 
of the ANN regression model, the standard deviation 
(STD) of the difference between the logarithm predicted 
PGA and measured logarithm PGA, that is, the STD of 
the logarithm residuals, lnErrv , was calculated. A lower 
lnErrv  value indicates a more accurate estimation of the 

PGA value in general. The lnErrv  without any site in-
formation is 0.5307, which is designated as a reference.

(2)  Pv + IAA + NEHRP; we tried to employ one additional 
site effect parameter to the ANN model to observe if the 
performance of the ANN regression model could be im-
proved. This model considers two P-wave parameters and 
the NEHRP site class value. The NEHRP site class value 
is the corresponding site class (i.e., NEHRP = 2 if the site 
class = B; NEHRP = 3 if the site class = C; NEHRP = 4 if the 
site class = D; NEHRP = 5 if the site class = E). Figure 2b  
shows the predicted PGA of ground motion data using the 
Pv + IAA + NEHRP ANN regression model. The lnErrv  
considering NEHRP site class is 0.5333, which is even 
slightly larger than the one of the Pv + IAA model.

(3)  Pv + IAA + Vs30; this model considers two P-wave pa-

rameters and the Vs30 value. Figure 2c shows the pre-
dicted PGA of ground motion data using the Pv + IAA 
+ Vs30 ANN regression model. The lnErrv  considering 
Vs30 is 0.5322, which is still slightly larger than the one 
of the Pv + IAA model.

(4)  Pv + IAA + peak F; this model considers two P-wave 
parameters and peak F. The peak F value is the fre-
quency corresponding to the maximum HVSR17 values 
at each station. The HVSR17 values are the represen-
tative HVSR values at seventeen frequencies. Because 
the content of ground motion with a frequency largely 
differing from structural natural frequencies will cause 
little structural damage, we were only interested in the 
HVSR17 values within the frequency range of engineer-
ing applications. In this study, a frequency range be-
tween 0.5 and 20 Hz was considered and the HVSR17 
curves were investigated at 0.5, 0.8, 1, 2, 3, 4, 5, 6, 7, 8, 
9, 10, 12, 14, 16, 18, and 20 Hz. Each HVSR17 value 
represents the averaged HVSR values within the corre-
sponding frequency range. The HVSR17 values are the 
average of all earthquake events recorded at the same 
station, which means that they are identical for different 
earthquake data recorded at the same site. Therefore, the 
peak F input of two vibration events is the same as long 
as it was recorded at the same station. We determined the 
peak frequency by simply choosing the frequency of the 
maximum HVSR17 values of each station to obtain sys-
tematic and automatic estimates of the peak frequency. 
Figure 2d shows the predicted PGA from ground mo-
tion data using the Pv + IAA + peak F ANN regression 
model. The lnErrv  considering peak F is 0.5206, which 
is slightly smaller than the one of the Pv + IAA model.

(5)  Pv + IAA + HVSR17; this model considers two P-wave 
parameters and the HVSR17 values. Similarly, since 
the HVSR17 values are the average of all earthquake 
events recorded at the same station, these values of two 
vibration events are the same as long as they were re-
corded at the same station. Figure 2e shows the predict-
ed PGA of ground motion data using the Pv + IAA + 
HVSR17 ANN regression model. The lnErrv  considering 
HVSR17 is 0.4972, which is evidently the smallest one.  
Figures 3a - d show the HVSR17 curves of typical sta-
tions of four different site classes with a large number 
of ground motion records, i.e., CHY102, HWA028, 
HWA014, and CHY076, respectively. The thin line in 
each figure represents each HVSR17 curve plotted based 
on each ground motion record from the corresponding 
station, while the bold line in each figure represents the 
average of all HVSR17 curves at that station. It is evi-
dent that the HVSR17 curves can represent the distinct 
site characteristic of each station. It is probably the rea-
son of obtaining smaller PGA prediction error because 
such fruitful information of the site characteristic at each 
station is considered in the prediction model.
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Site Class EQ Data Total Number Station Number

B 1367 24

C 34812 198

D 15563 148

E 1789 16

Table 1. Site class information of the ground motion database.

ANN Prediction Model Number of input parameters

Pv + IAA 2

Pv + IAA + NEHRP 3

Pv + IAA + Vs30 3

Pv + IAA + peak F 3

Pv + IAA + HVSR17 19

Table 2. Number of input parameters of each ANN regres-
sion model.

(a) (b)

(c) (d)

(e) (f)

Fig. 2. PGA prediction of ground motion data using the ANN regression model with input parameters (a) Pv + IAA, (b) Pv + IAA + NEHRP, (c) Pv 
+ IAA + Vs30, (d) Pv + IAA + peak F, (e) Pv + IAA + HVSR17, and (f) Pv + IAA + ALL.
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(6)  Pv + IAA + ALL (Pv + IAA + NEHRP + Vs30 + peak 
F + HVSR20); we also tried to combine all the proxies 
in the ANN prediction models to see if better prediction 
can be obtained. Figure 2f shows the predicted PGA of 
ground motion data using the Pv + IAA + ALL ANN 
regression model. It indicates that the lnErrv  value of the 
ANN model with all the proxies is the second best one. 
This makes sense because too many proxies could con-
fuse the ANN to predict PGA if some proxies are not 
strongly correlated to the site characteristics.

4. DISCUSSION AND CONCLUSION

Based on the results, including the average shear wave 
velocity of soil, i.e., Vs30, does not improve the PGA pre-
diction accuracy. A similar phenomenon is observed when 
the NEHRP site class value is included. This is reasonable 
because the NEHRP site class value is also determined 
based on the shear wave velocity of soil. When including the 
peak frequency, the results are only slightly improved. On 
the other hand, the ANN model with Pv + IAA + HVSR17 
input showed the best PGA prediction performance because 
it yielded the lowest STD values compared with the results 
of all the other ANN models. Therefore, it can be concluded 
that the proposed HVSR17 parameters contribute to the ac-
curacy of PGA prediction of on-site EEW systems.

Many regional EEW techniques predict PGA using at-
tenuation law after the magnitude and hypocentral distance 
are estimated. Based on the general attenuation relationships 
between horizontal PGA and hypocentral distance of hard 

rock sites in Taiwan, the STD of the logarithm residuals, 
i.e., lnErrv , is approximately 0.78 (Jean et al. 2006). If the 
site amplification modification based on empirical regres-
sion of earthquake data at each station is employed, then the 
STD of the logarithm residuals is reduced to approximately 
0.537 (Chang 2002). In this study, we predict the PGA us-
ing ANN based on P-wave and HVSR17 parameters at the 
same site. The STD of the logarithm residuals is approxi-
mately 0.497. Besides, the reduction of STD of the loga-
rithm residuals after considering site effects using HVSR17 
is not as impressive as the one of attenuation relationship. 
This is probably because that the P-wave parameters used to 
predict PGA are measured at each site, which implies these 
parameters are already the product of the site effects. As a 
results, the on-site EEW implemented in this study some-
what already considers site effects. However, evidently, in-
cluding the HVSR17 can achieve better prediction of PGA. 
Nevertheless, comparing to the regional approach, the on-
site approach we proposed actually reaches comparable 
PGA prediction accuracy.

Although the Pv + IAA + HVSR17 model achieves 
the best results, the uncertainty of the PGA prediction in  
Fig. 2e still looks quite large, especially for the ground mo-
tion data with large measured PGA. Therefore, we tried to 
observe the performance of the data of different earthquake 
events with large PGA. We found that the predicted PGA of 
the Chi-Chi ground motion data recorded on 21 September 
1999 in Taiwan, as can be observed in Fig. 4a, generally is 
remarkably underestimated comparing to the real PGA. As 
for all the other earthquake events shown in Fig. 4b, it is 

(a) (b)

(c) (d)

Fig. 3. HVSR17 curve of stations (a) CHY102 (site class B), (b) HWA028 (site class C), (c) HWA014 (site class D), and (d) CHY076 (site class E).
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evident that the predicted PGA are fairly distributed both 
in the underestimated and overestimated sides. The STD of 
the logarithm residuals is further reduced to 0.4823 if the 
Chi-Chi ground motion data are excluded. This explained 
the large uncertainty of the predicted PGA is mainly due to 
the Chi-Chi earthquake whose rupture of the major asperity 
was 13-seconds after the minor asperity rupture (Ma et al. 
2001). Therefore, based on the first few seconds of P-wave 
of Chi-Chi earthquake become not possible.
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