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ABSTRACT

To provide information towards understanding Taiwan’s earthquake hazard and
risk, the multi-disciplinary Taiwan Earthquake Model (TEM) project, supported by
the Ministry of Sciences and Technology, had prepared and published a first version
of seismic hazard assessment maps of Taiwan in 2016, together with an on-land seis-
mogenic structure database of the island. In the years following the publication of this
first version, we have constructed an updated version of this database. Seven struc-
tures were identified and added to the database. Based on additional information,
we have also updated the structural parameters of four existing structures, as well as
systematically updated the parameters of all structures to include more complete pa-
rameter uncertainties. This update of the database represents the most up-to-date in-
formation of seismogenic structures in Taiwan, and would provide better constraints
for future seismic hazard assessment and mitigation studies.
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1. INTRODUCTION

As a young mountain belt located at an active plate
boundary, Taiwan is characterized by numerous active
faults and seismic activities. For example, the 1999 M,, 7.6
Chi-Chi earthquake that was produced by ruptures along the
Chelungpu fault in central western Taiwan (e.g., Central
Geological Survey 1999) was one of the most destructive
natural disasters in Taiwan’s written history. This disaster
undoubtedly showed the urgent need for a better understand-
ing of Taiwan’s future earthquake hazards (e.g., Shyu et al.
2005; Cheng et al. 2007, 2010). Consequently, the multi-
disciplinary Taiwan Earthquake Model (TEM) project was
carried out by a team of earthquake scientists in Taiwan to
obtain detailed information for seismic hazard assessment
and risk management for the island.

In 2016, as a result of such multi-disciplinary efforts,
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the first version of seismic hazard assessment maps of Tai-
wan was published (Wang et al. 2016), together with a new
on-land seismogenic structure source database with 38
structures in Taiwan (Shyu et al. 2016). Based on geologi-
cal and geomorphological information, this database sum-
marized and analyzed the locations, geometries, long-term
slip rates, and earthquake recurrence intervals of those 38
structures. However, as pointed out by Shyu et al. (2016),
this database is by no mean complete, and needs to be up-
dated regularly as more data become available.

Therefore, this study provides the first update for the
on-land seismogenic structure source database by the TEM
project since the publication of its first version (Fig. 1 and
Table 1). Results from several new and past publications
were integrated into the database, together with new results
from our own field investigations and calculations. The pri-
mary updates include three parts, and will be described in
detail in the following sections:
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(1) We have added seven new structures (#39 to #45) into the
updated on-land seismogenic structure database, based
on results from several new and past publications. Struc-
tural parameters of these newly added structures were
also evaluated and included in the updated database.

(2) On the basis of results from new publications and our
own field investigations, we have updated the structural
parameters of four seismogenic structures in the original
database, including the Maoli frontal structure (#10), the
Houchiali fault (#25), the Hengchun fault (#30), and the
Hengchun offshore structure (#31).

(3) In order to consider additional uncertainties for the
structural parameters, we have also used alternative cal-
culation methods proposed in the literature. The system-
atically updated structural parameters for all structures
are now included in the new database.

120I° E.

2.NEW SEISMOGENIC STRUCTURES OF THE
TEM DATABASE

In this updated seismogenic structure database, we
have identified and added seven new structures to the origi-
nal database (Shyu et al. 2016). These new structures are
numbered from 39 to 45 (red lines in Fig. 1). Among these
seven structures, five of them (#39, #40, #42, #43, #45)
were previously proposed as active structures in published
literatures. Therefore, we have mapped those structures and
collected their structural geometric parameters based on the
information in these literatures. The geometric parameters
of the other two structures were obtained from our own
mapping results.

As mentioned in Shyu et al. (2016), the constraints for
the seismogenic structures’ long-term slip rates are still very
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Fig. 1. Updated map of major on-land seismogenic structures of Taiwan. In total, 45 structures were identified in this new version of the database.
The red lines show the newly added structures of the new version (#39 to #45). The black lines are the 38 structures in the original version (Shyu

etal.2016).
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limited. For the seven new structures, only two of them (#39
and #45) have published long-term slip rates. Therefore, we
have utilized the geomorphic method described in Shyu et
al. (2016) to estimate reasonable long-term slip rates for the
other five structures. In this method, we first determined the
amount of structural deformation using the topographic fea-
tures of the structures, usually scarps that cut across young
fluvial surfaces. Ages of the deformed surfaces were then
estimated using the soil categorization described in detail in

Shyu et al. (2016). Finally, the long-term slip rates can be

calculated using the amount of total deformation and age of

the deformed surface. The following are the general infor-
mation and parameters of these new structures:

39. The Chushiang structure in central Taiwan is a primarily
reverse fault with minor right-lateral component. This
structure is likely originated as a secondary fault that
branched out from the Chelungpu fault (#17) during the
development of the central western Taiwan fold-and-
thrust belt (Lin et al. 2000). This structure connects the
Chelungpu fault (#17) and the Tamaopu-Shuangtung
fault (#18), thus it may be a transfer structure in the
fold-and-thrust belt (Simoes et al. 2007). Using previ-
ously published information and structural model of this
structure (e.g., Lin et al. 2000, 2019; Chen et al. 2004a),
we propose that the structure is 19.8 km in length, dips
at 55°, and extends to a depth of 3.0 km. Based on geo-
morphic and geochronologic analyses results of Simoes
et al. (2007), the long-tern slip rate of this structure is
29+ 1.6 mmyr'.

40. The Gukeng structure is a left-lateral fault in central
Taiwan. Using previously published information (e.g.,
Chen et al. 2004b; Liu et al. 2004; Cheng et al. 2007),
we propose that the length of this structure is 9.2 km,
and the structure dips at 85° and extends to a depth of
12.0 km. The structure appears to have offset the moun-
tain front structure and the mountain front itself of the
area (Liu et al. 2004), thus must be younger than the
deposition age of the bedrocks of the mountain area.
Based on the age data of Chi and Huang (1981) of the
bedrocks, we obtained a long-term slip rate of this struc-
ture at 0.56 - 2.52 mm yr'.

41. The Tainan frontal structure is a blind fault beneath the
coastal plain of the Tainan area in southwestern Taiwan.
It was the southern part of the Chiayi frontal structure
in the original database, but we separated this structure
from the Chiayi frontal structure in the new database
based on the differences in surface topography in the
hanging-wall areas of these two structures. Based on the
new mapping, the length of this structure is 32.9 km.
With a listric geometry, it dips at 30° from O to 3 km
deep, and at 15° from 3 to 12.0 km deep. We estimated
its slip rate at 0.45 - 3.5 mm yr'.

42.The Longchuan structure is located in the hilly area
in southwestern Taiwan. We have added this structure

based on previously published information (e.g., Cheng
et al. 2007; Lin 2013). It is a reverse fault with a length
of 23.1 km. The depth of the structure is 12.0 km, and
the structure dips at 60°. Its slip rate is estimated at 0.6
-7.83 mm yr'.

43.The Youchang structure is proposed in Cheng et al.
(2007), and is located in the coastal area of southwest-
ern Taiwan. It is a reverse dominated fault with minor
right-lateral motion, and has a length of 16.6 km. The
structure dips at 75° and extends to a depth of 12.0 km.
We calculated its slip rate at 0.92 - 5.46 mm yr'.

44. The Fengshan Hills frontal structure is located south of
the Youchang structure in southwestern Taiwan, and is
mapped as the structure that produced the uplift of the
Fengshan Hills. It is a reverse fault and has a length of
19.1 km. It dips at 30° to a depth of 15.0 km, and has an
estimated slip rate of 0.4 - 4.24 mm yr'.

45. The Fengshan structure is located east of, and sub-paral-
lel to the Fengshan Hills frontal structure. This structure
is proposed in Deffontaines et al. (1997), and is a left-
lateral dominated fault with minor reverse motion. Its
length is 16.8 km, dip is 85°, and it extends to a depth of
15.0 km. Based on the GPS data of Ching et al. (2007),
the slip rate of this structure is about 10 mm yr'.

Similar to the original database, we have also con-
structed three-dimensional subsurface models for the newly
added structures (Fig. 2). These models enable us to check
for geometrical conflicts, and to visualize the subsurface
geometry of the structures. Some of the strike-slip domi-
nant faults, such as the Gukeng structure (Fig. 2a) and Feng-
shan structure (Fig. 2¢) appear to be tear faults that may cut
through the surrounding reverse faults in the 3-D subsurface
models. The detailed datasets of the 3-D seismogenic struc-
tural model for all structures, including these newly added
ones, are included in a supplementary file of this paper.

3. UPDATED PARAMETERS OF INDIVIDUAL
STRUCTURES

Based on results from new studies and our own field
investigations, we have updated the structural parameters of
four structures in the original database, as described below:
10. The geomorphic and structural features of the Miaoli
frontal structure were analyzed in detail by Yuan (2018).
Based on his mapping and structural reconstructions, we
updated the length of this structure to be 30.9 km, with
a dip of 28° to a depth of 7.0 km. The long-term slip
rate of this structure was originally estimated using a
hypothetical age of the lateritic soil of the area (Shyu et
al. 2016). With a new optically stimulated luminescence
(OSL) age of a deformed terrace (Yuan 2018), we have
calculated and updated the slip rate of the Miaoli frontal
structure to be 1.82 - 4.42 mm yr'.

25.We have updated the structural parameters of the
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(c)

(a) (b)

Fig. 2. Figures showing three-dimensional structural geometries below the surface of the seven newly added structures (shown as red polygons).
The structural geometries are constrained mostly by information obtained from previously published literature. Numbers correspond to the structure
number in Fig. 1 and Table 1. The background is the topography of Taiwan in (a) central Taiwan area, (b) Tainan area, and (c) Kaohsiung and

Pingtung area.

Houchiali fault based on recently published informa-
tion in Le Béon et al. (2019). Based on analyses of sub-
surface data and geodetic observations, Le Béon et al.
(2019) reconstructed the subsurface structural geometry
of the fault as a back thrust originated from the detach-
ment at 3.8 + 0.4 km deep. With a calculated Holocene
shortening rate across the fault, they have also con-
strained the long-term slip rate of the Houchiali fault as
11.8 1.2 mm yr' (Le Béon et al. 2019).

30. We have collected uplifted coral samples from the hang-
ing-wall block of the Hengchun fault in our field investi-
gations. One of the samples was collected from a marine
terrace 13 - 16 m above mean sea level, and has a U-Th
age of 6416 + 39 years BP. Based on this sample and the
records of Holocene sea-level changes (Chen 1993), we
have calculated and updated the long-term slip rate of
the Hengchun fault to be 2.85 - 6.14 mm yr'.

31. Similarly, we have collected uplifted coral samples from
the hanging-wall of the Hengchun offshore structure.
One of the samples was collected at an elevation of 7.5
- 8 m above mean sea level, and has a U-Th age of 6649
+ 31 years BP. With similar constraints as above, we
have calculated and updated the long-term slip rate of
this structure to be 1.74 - 7.95 mm yr'.

4. SYSTEMATIC UPDATES OF THE PARAMETERS
IN THE DATABASE

Several systematic changes and updates of the struc-
tural parameters in the TEM seismogenic structure database
were performed after the publication of its first version. For
example, with more detailed mapping using a higher resolu-
tion digital elevation model (DEM), we have updated the
structural lengths of most structures. A column of last earth-
quake event of each structure was added to the parameter
table based on available historical documentations or geo-
logical constraints. Due to the limited number of well con-

strained historical earthquake documents, many of the data
in this column have enormous uncertainties. Nonetheless,
such information would provide a basis for the calculation
of time-dependent seismic hazard assessments.

Most of the structural parameters in the original da-
tabase do not have uncertainties, which is not reasonable.
Therefore, we have attempted to include uncertainties for all
parameters in the updated database. For example, we have
considered and added potential uncertainties of structural
depth and dipping angle of each structure, and included
these in the updated parameter table.

The rupture depth that was used to constrain rupture
width of each seismogenic structure in the original database
was largely calculated using the geothermal gradient data
of Taiwan proposed by Liu et al. (2015). Alternatively, the
rupture depth of structures may also be constrained using
several other methods proposed in the literature. Wu et al.
(2017), for example, calculated the distribution patterns of
earthquake moment at different depths in Taiwan’s crust,
and used different distribution percentages to determine the
onset and cutoff depths of seismicity, such as 1% (D1), 5%
(D5), 10% (D10), 90% (D90), 95% (D95), and 99% (D99).
The thicknesses of D10-90, D5-95, and D1-99 can respec-
tively indicate the minimum, mean and maximum rupture
depths of crustal structures. Since this result provides anoth-
er constraint for structures that extend to the brittle-ductile
transition than the geothermal gradient data, we calculated
another set of parameters of those structures, and listed the
new set of parameters together with the original set. In the
updated parameter table, the new set of data was marked by
structure numbers with a “-1” (Table 1).

In the original database, the moment magnitudes (M,,)
of earthquakes likely produced by the seismogenic struc-
tures were calculated using the published regression result
from Wells and Coppersmith (1994). Whereas this result
has been widely applied in many studies, many alternative
models are available (e.g., Wesnousky 2008; Blaser et al.
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2010; Stirling et al. 2013). A local regression relationship
for crustal structures was also published by Yen and Ma
(2011). Therefore, we have calculated another set of mo-
ment magnitude of each structure using the Yen and Ma
(2011) model. Although there is no significant difference
between the results using the two different models, these
results enabled us to obtain and calculate the maximum,
minimum and mean value of M,,, seismic moment, and the
average slip per earthquake event.

With all the updated structural parameters that include
better considerations of uncertainties, we were able to cal-
culate and update the average recurrence interval of each
seismogenic structures (Table 1 and Fig. 3). A complete
structural parameter table and the ArcGIS shapefiles of all
structures that reflect all of the updates are included in the
supplementary files of this paper.

5.SUMMARY

As part of the ongoing efforts of the Taiwan Earth-
quake Model project, we have updated the original on-land
seismogenic structure database of Taiwan (Shyu et al. 2016)
based on the integration of results from new and past pub-

(a)

120‘°E 121I°E 122‘°E

lications and from our own field investigations. Seven new
structures were identified and added into the new version
of the database. Parameters of four existing structures, in-
cluding the Maoli frontal structure, the Houchiali fault, the
Hengchun fault, and the Hengchun offshore structure were
updated with new results. We have also systematically up-
dated the parameters of all structures with more detailed
mapping, alternative calculation methods, and better con-
sideration of parameter uncertainties. As we mentioned in
the first version of the database, we anticipate this database
will continue to improve and be updated as more new data
become available, and this new version would provide more
comprehensive information for future seismic hazard as-
sessment studies in Taiwan.
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