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ABSTRACT

Electromagnetic (EM) exploration techniques, as powerful and important geo-
physical tools, have been extensively used in researches ranging from tectonics and 
resource exploration to environmental and engineering studies. These tools have also 
proven their applicability to such emerging fields as ocean and airborne surveys. In 
this article, we quantitatively and qualitatively review advances and applications of 
EM-exploration studies in East Asia during the past 20 years. During these last two 
decades, the field of electromagnetic exploration has grown fast, as shown in the 
increase in the number of related published articles. These studies focus mostly on 
the development of system platforms (space, aerial, marine) and on data-processing 
technologies (inversion algorithms, noise reduction). However, most EM applica-
tions have been limited to professional geophysics activities. Along with advances in 
electronics and sensor technologies, EM-exploration instruments are likely to evolve 
into a modularized open-access system that will become available to more and more 
scientists at lower and lower costs.
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1. INTRODUCTION

Electromagnetic (EM) methods are techniques that 
have emerged in recent decades owing to the rapid develop-
ment of electronic and information technologies. This de-
velopment has made possible the modularization, miniatur-
ization, and integration of EM field sensors, logger devices, 
and other tools. Improvements in computational power and 
imaging algorithms have increased the interpretation ability 
for measured signal responses. EM methods are based on 
the measurement of field variation induced by subsurface 
electromagnetic properties with coil receivers or dipole an-
tennas placed on or above the earth’s surface. Active EM 
methods use man-made EM sources, whereas passive EM 
methods use natural EM fields as their energy sources. 
Most active EM instruments are comprised of two or more 
sets of loops, coils, or antennas serving as transmitters and 
receivers. The response-field signals transmitted from the 

transmitter are then picked up by the receivers and used for 
interpretations of subsurface structures.

The use of EM induction for locating utility lines and 
faults in pipes or cables can be traced back to as early as 
the 1910s. Based on the changing electric field in grounded 
electrodes, the prototype of the transient EM method was 
proposed as “Eltran” prospecting (Fok and Bursian 1926; 
Klipsch 1939), which enables sounding tools to find sub-
surface targets. The first application of EM methods to 
ore and hydrocarbon exploration was performed by Karl 
Sundberg in the 1920s (Sundberg and Hedstrom 1934). In 
addition to active EM sounding, Japanese scientists in the 
1930s first introduced a magnetotelluric (MT) technique 
that uses passive sources for exploration (Hatakeyama and 
Hirayama 1934; Hirayama 1934). In the 1960s, Paál (1965) 
observed that global navigation radio waves at a very low 
frequency (VLF) could be used to prospect for conductive 
mineral deposits, and the technology subsequently became 
the basis of the geophysical VLF method. The theory that 
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underlies the VLF-EM technique was later described ex-
tensively in the literature (Paterson and Ronka 1971; Phil-
lips and Richards 1975).

Although some EM methods were introduced first in 
East Asia in the 1930s (e.g., the MT method proposed in 
Japan), EM methods were not commercially available there 
until the 1960s (Reynolds 2011). Because EM methods 
have advanced rapidly in the last several years, attracting 
more and more attention from geoscientists and engineers, 
we would like to review the last twenty years of develop-
ments and applications of EM methods in East Asia. In ad-
dition, we will outline our impression of future trends in the 
development of EM methods.

2. BASIC THEORY

EM methods are based on Maxwell’s equations:
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where E and H are the electric and magnetic fields, t  is 
electric-charge density, v  is conductivity, n  is magnetic 
permeability, and f  is dielectric permittivity.

From Maxwell’s equations, one can derive the EM 
wave equations in the frequency domain:
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where E  and H  are the electric and magnetic field strength, 
respectively, after the Fourier Transformation, and where 

( )i2 2c ~nv ~ nf= - .
If we focus on the x-polarized electric field, a general 

one-dimension solution to Eq. (5) is
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tion can be obtained for the y-polarized magnetic field for 
Eq. (6):
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We can derive the phase velocity:
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In the diffusive/quasi-static regime ( %f~ v), the phase ve-
locity can be simplified to
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In the propagation regime ( &f~ v), the phase velocity can 
be simplified to

v 1
ph
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Thus, EM waves move much more slowly in conduc-
tive and highly permeable media than in a propagation re-
gime, and wave velocity is related to wave frequency in a 
diffusive regime. Most EM methods, such as the VLF meth-
od, the frequency-domain EM (FEM) method, the transient 
EM (TEM) method, and the MT method, operate in a dif-
fusive regime at frequencies between DC and several hun-
dred kHz. Because wave velocity is slow and because wave-
propagation phenomena are hard to observe in a quasi-static 
regime, the aforementioned methods measure the diffusion 
of EM-field strength to estimate the EM properties in a sub-
surface. Their exploration depth can be approximated in re-
lation to skin depth (d), which indicates the depth at which 
field strength is decayed to 1/e of the source strength:

2d ~nv=  (12)

The methods using EM waves at different frequen-
cies promote sounding ability at the subsurface because of 
the methods’ different skin depths. Detailed descriptions 
regarding the VLF, FEM, TEM, and MT methods can be 
found in such textbooks as Nabighian (1988).

On the other hand, phase velocity is independent of the 
frequency in a propagation regime (normally for EM waves 
at frequencies higher than 10 MHz for crustal materials). 
Since it is easier to observe the propagation phenomena of 
EM waves, researchers have used pulse EM waves to calcu-
late travel time and its attenuation through reflected waves, 
such as the ground-penetrating radar (GPR) method (Baker 
et al. 2007; Annan 2009; Koppenjan 2009).
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3. THE DEVELOPMENT AND APPLICATION OF 
EM METHODS IN EAST ASIA

Over the past 20 years, the fields of EM exploration 
have grown quickly, as shown in the following analysis. Be-
tween the years 2000 and 2020, there were 1333 published 
research articles containing the keywords ‘electromagnetic’ 
+ ‘exploration’ + ‘geophysics’ from ScienceDirect (https://
www.sciencedirect.com). This output of published EM re-
search is impressive. When we narrow down our search to 
East Asian studies or authors, we find 359 published articles 
related to China, 141 articles related to Japan, 96 articles 
related to India, 37 articles related to South Korea, and 29 
papers related to Taiwan, as shown in Fig. 1. A closer ex-
amination of Fig. 1 shows us that the overall published pa-
pers on EM exploration increased from 34 articles in 2000 
to 142 articles in 2020. Figure 2, which compares variations 
in the growth of EM papers published throughout East Asia 
from 2000 to 2020, reveals that, although the trends var-
ied annually according to region, the percentage of overall 
EM publications coming from China increased from about 
9.3% during the 2000 - 2005 period to about 35.9% during 
the 2015 - 2020 period. By contrast, the percentage coming 
from Japan decreased significantly from 16.5% during the 
2000 - 2005 period to 7.4% during the 2015 - 2020 period. 
As for South Korea and Taiwan, they held fairly steady at 
about 2% of overall published articles.

Our literature analysis clearly shows that research on 
EM methods is increasing worldwide and that this increase 
varies regionally. In East Asia, the research on EM meth-
ods has taken place in such fields as geology, engineering, 
risk assessment, natural resources, and environmental stud-
ies. Among the various aforementioned EM methods, the 
MT method can measure natural sources of MT fields at 
frequencies less than 1 Hz. Tikhonov (1950) and Cagniard 
(1953) introduced the principles underlying the MT method, 
which, by inverting MT soundings, enables researchers to 
resolve resistivity structures up to several tens of kilometers 
below the earth’s surface. Thus the MT method is common-
ly used for probing deep geological structures to shed light 
on tectonic settings (e.g., Chen and Chen 1998; Ryang et al. 
1999; Fuji-ta et al. 2002; Han et al. 2009; Choi et al. 2013; 
Ikeda et al. 2013; Sun et al. 2019; Abdallah et al. 2020; Gao 
et al. 2020; Liang et al. 2020a, b; Ye et al. 2020; Zhang et al. 
2020). The audio-frequency MT (AMT) method, working 
on natural or artificial EM signals with frequencies higher 
than 1 Hz, provides good sounding resolution for resistivity 
structures at depths of a few kilometers. Researchers have 
used the AMT method, together with the TEM method, for 
ore, oil, and gas exploration owing to the methods’ good 
sounding abilities within the necessary depth ranges (e.g., 
Chen et al. 2019; He et al. 2020; Hu et al. 2020; Liu et al. 
2020a; Zeng et al. 2020).

Regarding the TEM method, it makes use of the pulse 

magnetic field to monitor the decay rate of the secondary 
field, in turn enabling researchers to interpret the subsurface 
structures (Nabighian and Macnae 1991). Some researchers 
who conduct subsurface exploration rely on the FEM meth-
od, which uses loop systems for transmitting and receiving 
continuous waves. The GPR uses EM pulses at a frequency 
range between 10 MHz and 10 GHz for non-destructive ex-
ploration and has a resolution up to a few centimeters. There-
fore, the TEM, FEM, and GPR methods are already frequent-
ly used in various East Asian environmental investigations, 
some of which concern sea-water intrusion (e.g., Chen 1999; 
Mitsuhata et al. 2006), possible contamination from under-
ground storage tanks (USTs) (e.g., Wang et al. 2015), and 
leachate leakage from landfills (e.g., Feng et al. 2020).

In engineering applications, East Asian researchers have 
used the TEM method for the detection of karst caves (Bin 
et al. 2017), which can prevent collapses due to tunnel bor-
ing. The GPR method, because it has higher resolution than 
other EM methods and works in a wave-propagation regime, 
is frequently used in engineering fields concerned with, for 
example, advance probing in tunnels (Li et al. 2017).

4. RECENT ADVANCES IN GEOPHYSICAL EM 
STUDIES

In the past 20 years, researchers have devoted consid-
erable effort to developing hardware and software for EM 
methods. Recently, East Asian researchers conducting air-
borne-based and marine-based exploration have been pay-
ing attention to EM devices, which are particularly efficient 
in survey projects. Developers have created various types 
of airborne TEM systems, including the airborne ZTEM 
system (Sasaki et al. 2014), the GREATEM system (Mogi 
et al. 2005), and the helicopter-borne VTEM system (Pod-
gorski et al. 2013). These systems facilitate environmental 
research, such as mineral and volcano exploration. Owing 
to the recent rapid development of unmanned aerial vehicles 
(UAVs), TEM-based drone systems now exist and can op-
erate in rough terrain, which is of particular importance in 
various parts of East Asia. For instance, Jomori et al. (2020) 
have suggested that drones can serve as a platform for TEM 
exploration. Liu et al. (2016) have introduced the SATEM 
UAV system and conducted a survey in East Ujimqin Ban-
ner, in northeast China. However, UAV-borne TEM mea-
surements have given rise to several unresolved problems, 
including the small payloads and the short hovering times 
of the UAVs, UAV interference in EM devices, noise fil-
tering in urban areas, the 3D inversion of received signals, 
and shallow exploration depths. Although there are airborne 
systems for frequency-domain EM and VLF exploration and 
UAVs equipped with GPR (e.g., Amiri et al. 2012; Altdorff 
et al. 2014), in East Asia they have not attracted as much 
attention as the TEM method owing to the fact that the for-
mer devices have much shallower exploration depths than 
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airborne TEM systems. Because UAV-borne GPR and EM 
systems have shown their potential in landmine detection 
and other applications (e.g., Fernández et al. 2018; Šipoš 
and Gleich 2020), we expect to see booming development 
in these technologies throughout East Asia.

EM exploration technologies are installed not only on 
UAVs, but also in orbiting satellites and land rovers de-
signed for the terrestrial exploration of planets and other 
natural orbiting bodies (e.g., the Moon). In outer space, EM 
satellites detect variations in EM fields, explore oceanic sub-
surface and rough terrains, and analyze precursors of earth-
quakes. This technology goes back decades: for example, 

the ALSE (Apollo Lunar Sounder Experiment) by NASA 
was a ground-penetrating radar experiment that flew on the 
Apollo 17 mission in 1972. Currently, the China Seismo-
Electromagnetic Satellite (CSES) is a joint venture between 
China and Italy analyzing seismic related phenomena such 
as EM perturbations as the SWARM satellites launched by 
European Space Agency. Moreover, GPR is becoming stan-
dard equipment on land rovers, and an example of lunar-
penetrating radar is the Yutu-2 lunar rover, which was de-
veloped by China and has shown the subsurface structures 
in the Von Kármán crater on the Moon (Li et al. 2020a). 
In 2020, China, as well as the United States, individually 

Fig. 1. The overall published papers regarding EM exploration from 2000 to 2020 in East Asia.

Fig. 2. The percentage of EM papers published in each of the four main East Asian countries between 2000 and 2020.
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launched two Mars land rovers carrying GPRs on board for 
the subsurface exploration of Mars.

In addition to airborne and satellite EM systems, ma-
rine EM technology has expanded significantly in East Asia 
and is admired for its potential in the hydrocarbon explora-
tion of oceans. Detailed information regarding the develop-
ment of marine EM technology can be found in the review 
paper by Constable (2013). In Asia, seafloor MT methods 
have been used for exploration in the Philippine Sea (Seama 
et al. 2007; Baba et al. 2010) and off the southwest coast of 
Taiwan (Hsu et al. 2014). Researchers have developed vari-
ous self-surfacing seafloor MT systems for marine surveys 
(e.g., Kasaya and Goto 2009; Chen et al. 2015; Wang et al. 
2017). In addition to deep-ocean MT systems, researchers 
in East Asia have developed shallow-water magnetotelluric 
systems for surveying depths less than 250 m off the coasts 
of Hokkaido, Japan (Ueda et al. 2014) and the Yellow sea 
(Duan et al. 2020).

Also notable in East Asia are advances in researchers’ 
ability to interpret measurements. Frequency- and time-do-
main three-dimensional (3-D) inversions in relation to TEM 
and MT data have become popular in recent studies owing to 
their clarification of 3D structures (e.g., Ryang et al. 1999; 
Han et al. 2009; Choi et al. 2013; Noh et al. 2014; Sasaki et 
al. 2014, 2015; Sun et al. 2019; Zhang et al. 2020). Noise-
reduction technologies provide effective tools for filtering 
out environmental or artificial EM noises in various regions 
(e.g., Feng and Wang 2011; Key and Constable 2011; Wang 
and Liu 2017; Wang et al. 2017; Li et al. 2020b, c).

5. PROSPECTS FOR EM EXPLORATION 
TECHNIQUES

In the previous section, we reviewed recent studies re-
garding the development of EM exploration technologies in 
East Asia. In conclusion, we would like to note that these 
studies have focused on two central aspects: professionally 
developed system platforms (atmospheric, marine, spatial) 
and professionally developed data-processing technologies 
(inversion algorithms, noise-reduction).

Recently, rapid advances in electronics have given re-
searchers an opportunity to create greater sensitivity, higher 
resolution, and less noise in EM systems adaptable to spe-
cial environments. These advances include modifications to 
current sensing technologies and adaptations of new types 
of EM sensors for measurements. For example, Kai et al. 
(2017) have developed a new type of EM receiver by com-
bining four capacitive electrodes and a triaxial induction 
coil for conducting EM observations in tunnels. In addition, 
new types of EM sensors, such as optical-fiber EM sensors 
(e.g., Sato and Takayama 2007; Layeghi et al. 2014), micro-
electromechanical system (MEMS) magnetic sensors (e.g., 
Campbell and Atekwana 2018), fluxgate magnetic sensors 
(e.g., Bartington and Chapman 2004; Ramasamy and Mo-

hanty 2020), superconducting quantum interference devices 
(SQUIDs) (e.g., Du et al. 2018), and non-contact electric 
field instruments (e.g., Knudsen et al. 2017) also provide 
future alternative ways to measure electric and magnetic 
fields with lighter weights, smaller volumes, and better res-
olutions than are currently the norm.

However, many EM-exploration instruments around 
the world have been customized for special needs, and only 
trained professionals with customized codes can process 
relevant measurements. These obstacles make commercial 
EM instruments expensive and unyielding to users. Along 
with advances in electronic technologies, however, there are 
more electric and magnetic sensors, universal connectors, 
and multifunctional data loggers available than ever before 
in commercial markets. And open-access software pack-
ages for processing geophysical EM measurements, such 
as pyGIMLi (Rücker et al. 2017) and SimPEG (Cockett et 
al. 2015) in Python, are also available to the public. These 
software packages include modularized codes that can be 
integrated for data processing, with one-, two-, and three-
dimensional inversions or joint inversions available for geo-
physical data.

As a result, we would expect to have an open or modu-
larized instrumentation structure that non-professionals 
will soon be able to adapt to and integrate into various EM 
projects. These systems are easily constructed with various 
sensors, transmitter antennas, loggers, and microcontrollers 
such as Arduino boards. Moreover, relevant data can be 
processed with low-cost open-access codes for the special 
needs of signal processing and inversion.

6. AN INTRODUCTION TO THE EM STUDIES IN 
THE SPECIAL ISSUE

To address the fast growing studies on the electromag-
netic explorations, we initiated the special regarding the 
electromagnetic exploration Techniques and applications 
in the journal of Terrestrial, Atmosphere, and Oceanic Sci-
ences. The special issue includes the EM characteristics 
studies that used to predicted the complex-resistivity behav-
ior for the shales (Xu et al. 2020). In addision, Wang et al. 
(2020) and Yen et al. (2020) used of the resistivity imag-
ing techniques in monitoring the remediation approaches 
and illuminating the subsurface conduits of mud volcanoes, 
respectively. Liu et al. (2020b) also discuss the use of the 
full-domain characteristics of the apparent resistivity in the 
applications with the tunnel-ground TEM method. Further-
more, Chang et al. (2020) utilized the AMT imaging surveys 
to analyze the subsurface fault systems at the tip of Okinawa 
Trough in the Ilan plain of Northeastern Taiwan. In addi-
tion to the land application, the special issue also includes 
research paper regarding the marine EM studies, such as the 
towed CSEM methods (Chen et al. 2020) and the DC resis-
tivity/Spontaneous potential surveys with AUVs and ASV 
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(Kasaya et al. 2020). We hope to initiate a gateway for fur-
ther promoting the electromagnetic exploration researches 
through the special issue, and to shed a light on the future 
improvements in the related studies.
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