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Taiwan Chelungpu-fault Drilling Project was conducted in drill site
Dakeng, Taichung City of central western Taiwan during 2004 - 2005 prin-
cipally to investigate the rupture mechanism in the northern segment of
the Chi-Chi earthquake of 21 September 1999, and also to examine regional
stratigraphy and tectonics. Core examination (500 - 1800 m) of Hole-A gave
profound results aiding in illustrating the lithologic column, deformation
structure, and architectural pattern of fault zones along the borehole.

Lithology column of Hole-A was identified downward as the Cholan
Formation (500 - 1027 m), Chinshui Shale (1027 - 1268 m), Kueichulin For-
mation (1268 - 1712 m), and back to the Cholan Formation (1712 - 2003 m)
again. A dramatic change is observed regarding sedimentation age and
deformation structure around 1712 m. Along the core, most bedding dips
30° toward N105°. Around 1785 m, bedding dip jumps up to 70° until the
bottom of borehole. Five structure groups of different orientations (dip
direction/dip) are observed throughout the core. Based on the orientation
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and sense of shear, they are categorized as thrust (105/30), left-lateral fault
(015/30 - 80), right-lateral fault (195/30 - 80), normal fault (105/5 - 10), and
backthrust (285/40 - 50). Ten fault zones have been recognized between 500
and 2003 m. We interpret the fault zone located at around 1111 m as being
the most likely candidate for rupture deformation during Chi-Chi
earthquake. The fault zone seated around 1712 m is recognized as the Sanyi
fault zone which is 600 m beneath the Chelungpu fault zone. Ten fault zones
including thrust faults, strike-slip faults and backthrust are classified as the
Chelungpu Fault System (<1250 m) and the Sanyi Fault System (>1500 m).
According to the deformation textures within fault zones, the fault zones
can be categorized as three types of deformation: distinct fracture defor-
mation, clayey-gouge deformation, and soft-rock deformation. Fracture de-
formation is dominant within the Chelungpu Fault System and abother
two architectures prevail in the Sanyi Fault System. The fracture deforma-
tion pattern is asymmetric, which depended the shear sense of fault zone.
From the core examination of TCDP Hole-A, the lithology plays an impor-
tant role in controlling the location and deformation of fault zones.

(Key words: Core description, Chi-Chi earthquake, Chelungpu fault,
Sanyi fault, Deformation structure)

1. INTRODUCTION

A destructive earthquake (Mw 7.6) took place to the east of Nantou city of central Taiwan
on 21 September 1999. The hypocenter was determined at 120.81°E, 23.86°N and a depth of
10 km (Kao et al. 2000), which was close to the town Chi-Chi. Besides bending in the northern
segment, the surface rupture during the Chi-Chi earthquake is generally along the north-south
trending Chelungpu fault zone at about 85 km in length with complicated surface deformation
(Ma et al. 1999; Lee et al. 2002; Angelier et al. 2003). Faulting during the Chi-Chi earthquake
was thrust movement with minor left-lateral shear on a N-S trending fault plane with a dip of
30° to the east (e.g., Heermance et al. 2003).

The seismic behavior and surface deformation of the Chi-Chi earthquake is dramatically
different between the north and south segments (e.g., Ma et al. 1999; Ma et al. 2000). In the
north, the seismic slip is characterized by large slip (maximum >10 m), fast slip velocity and
low frequency acceleration. In contrast, the ground motion is illustrated by small displacement
(3 - 4 m), low slip velocity, but high frequency acceleration in the south segment. The mecha-
nism to create the different characteristics of seismic motion between the north and south
segments is still unclear.

The continuous coring provides us a great opportunity to observe and analyze a complete
profile of fault zone structures in order to understand the earthquake mechanism. The coring
from two previous shallow drilling holes penetrating the slip zone of the Chi-Chi earthquake
has been conducted by JSTA (Japan Science and technology Agency) in April 2000. The total
length of retrieved core is 540.80 m (0 - 293 m and 207.50 - 455.30 m for the main well and
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side- track, respectively) in the northern well of the Fengyuan city and 211.20 m in the southern
well of the Nantou City. Two fault zones of the potential Chi-Chi earthquake slip are observed in
each drill site (Tanaka et al. 2002). However, in the shallow drilling holes, the exact fault zone
corresponding to the Chi-Chi earthquake slip is not confirmed yet, nor is the rupture mechanism
is fully understood. In addition, the relation between the Chelungpu fault zone, the underneath
Sanyi fault zone, and the extension of the Sanyi fault zone into central Taiwan are not yet fully
comprehended. In order to better understand seismogenic behavior of the Chi-Chi earthquake
and the characteristics of the Chelungpu and Sanyi fault zone, the Taiwan Chelungpu-fault
Drilling Project (TCDP) has been proposed by National Central University (NCU) and National
Taiwan University (NTU) and supported by International Continental Drilling Project (ICDP)
and Japan Agency for Marine-Earth Science and Technology (JAMSTEC). The plan for Hole-A
of the TCDP is to drill 2000 m with coring to take place continuously from 500 to 2000 m, to
deploy different downhole logging, and, after coring, to install long-term monitoring instruments.
The 2000 m drilling was finished successfully in December 2004. Furthermore, coring at
Hole-B, 39 m southeast of Hole-A, was completed from 950 to 1350 m in early of May 2005.

This paper reports the core description from Hole-A of the TCDP. We summarize the
variation of lithology, bedding dip, structure orientation, fracture density and vein distribution
for depths between 500 and 1800 m and the location of fault zones. Also, architectural charac-
teristics of observed fault zones are documented in detail. Furthermore, we discuss potential
fault rupture during the Chi-Chi earthquake, the location of the Sanyi fault zone and the role of
lithology in developing the fault zones.

2. TECTONIC SETTING AND GEOLOGICAL BACKGROUND OF THE CHI-CHI

EARTHQUAKE

The Taiwan mountain belt marks an oblique convergent boundary between the Eurasian
and Philippine Sea Plates (Fig. 1a; insert; e.g., Biq 1972; Chai 1972; Bowin et al. 1978; Barrier
and Angelier 1986; Ho 1986; Teng 1990; Lu and Hsu 1992; Liu et al. 1997; Wu et al. 1997).
The South China Sea of the Eurasian Plate is moving eastward and subducting beneath the
Philippine Sea Plate in the south, producing the Luzon Arc. At the same time, the Luzon Arc
seated on the Philippine Sea Plate is moving toward 306° at a speed of 81 mm yr -1 (Yu et al.
1997) and is colliding with the Eurasian continental margin, resulting in Taiwan island. Also,
the Philippine Sea Plate is subducting beneath the Eurasian continental margin in the northeast
of Taiwan, creating the Ryukyu Trench and the Okinawa Trough. This ongoing oblique colli-
sion and intersection between two subduction systems results in active faulting, numerous
earthquakes and crustal deformation within the Taiwan mountain belt.

From west to east, the Taiwan mountain belt can be subdivided physiographically into the
Coastal Plain, the Western Foothills, the Hsüehshan Range, the Central Range, the Longitudi-
nal Valley and the Coastal Range (Ho 1988). Among these physiographic domains, one of the
most active regions within Taiwan island is along the boundary between the Coastal Plain and
the Western Foothills. Several disastrous earthquakes have been observed along this boundary,
including the 1999 Chi-Chi earthquake (Wang et al. 2000). The related stratigraphic formation
around this active region are Pleistocene Toukashan Formation (1 - 2 km thick conglomerate
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Fig. 1. Geological map of western Taiwan and cross-section near the drill site.
(a) Geological map displays the formation distribution and the major
fault zones in the central portion of the western Taiwan (after Wang et al.
2002). The TCDP site is indicated by a red star. The focal mechanism of
the Chi-Chi main shock is located at the hypocenter of the Chi-Chi earth-
quake (Kao and Chen 2000). The insert is the tectonic setting of Taiwan.
(b) Cross section through the drill site illustrates the relation between
formations and major fault zones (after Hung et al. 2007).

(a)
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and alternations of fluvial-shallow marine sandstone and siltstone), early Pleistocene-Pliocene
Cholan Formation (1.5 - 2.5 km thick monotonous alternating sandstone and siltstone), early
Pliocene Chinshui Shale (~300 m thick shale and siltstone), late Miocene-early Pliocene
Kueichulin Formation (0.8 - 2 km thick shallow marine sandstone and shale) and middle
Miocene Nanchuang Formation (800 - 900 m thick core-bearing sandstone, siltstone and shale)
(Fig. 1a; Ho 1988). However, the formation was crosscut and over stacked by three major
faults around this active seismic belt. From west to east, these faults are the Changhua,
Chelungpu, and Shuangtung faults (Fig. 1a). They are forming the west-verging imbrication
structure of a fold-and-thrust belt (Suppe 1981; Davis et al. 1983). Among these faults, the
Chelungpu fault zone plays the major role in the Chi-Chi earthquake.

The Chelungpu fault zone is one of the major faults in western Taiwan. This fault is a
west-verging thrust fault of over an 80 km in length and separates the low level plain and basin
regions from the high altitude areas of hills and mountains. Because of its distinct geomorphic
feature, this fault is considered an active fault (Bonilla 1977). The Chelungpu fault zone origi-
nally was described as the Chinshui Shale overthrusting the Toukashan Formation in the southern
Taichung Basin (Chang 1971). During the Chi-Chi earthquake, the surface rupture closely
followed the Chelungpu fault zone. In contrast, two other major fault zones next to the Chelungpu
fault zone (i.e., Changhua fault zone in the west and Shuangtung fault zone in the east) did not
slip significantly (Yu et al. 2001; Hung et al. 2002; Pahier et al. 2003). Because of no distinc-
tive slip in the deformation front (i.e., the Changhua fault zone) during the Chi-Chi earthquake,
it is reasonable to say that the Chi-Chi earthquake faulting is an out-of-sequence event. Result
of focal mechanism and focal depth determined by seismologic inversion and relocation also
indicates the characteristics of an out-of-sequence event (Kao and Chen 2000). Regionally,
the surface displacement during the Chi-Chi earthquake is approximately parallel to the direc-
tion of tectonic convergence (Yang et al. 2000). On the surface survey, the hanging wall of the
Chi-Chi earthquake rupture is composed of alternating beds of sandstone and siltstone of
Pliocene Cholan Formation and the early Pliocene Chinshui Shale. The footwall is composed
of Pleistocene Toukashan Formation and recent alluvial deposits. Thus, the relationship of
hanging wall and footwall between the Chi-Chi earthquake and the Chelungpu fault zone is
consistent. Also, the earthquake surface rupture dips 30° toward the east, similar to the dip of
the Chelungpu fault zone. Most slip of the Chi-Chi earthquake is found within and nearly
parallel to the bedding plane of Chinshui Shale (Lee et al. 2001). However, the spatial relation-
ship between the Chi-Chi earthquake faulting and the pre-existing Chelungpu fault zone at
depth is still unclear. Whether both converged into one slip plane or they ruptured in different
slip planes is not well understood.

The Sanyi fault zone is also a thrust fault verging to the west. Meng (1963) argued that the
Sanyi fault zone was the northern extension of the Chelungpu fault zone. However, it is only
clearly defined between the north margin of Taichung basin and the Sanyi area. Furthermore,
based on surface mapping, the Sanyi fault zone was observed as the lower member of middle
Miocene Nanchuang Formation or late Miocene-early Pliocene Kueichulin Formation
overthrusting Pleistocene Toukashan Formation (Chang 1971). As a consequence, the Sanyi
fault zone might be located in a different structural level from the Chelungpu fault zone (Fig. 1b).
The location of the Sanyi fault zone in the Taichung area and its relationship with the Chelungpu
fault zone can be evaluated by the 2000 m-depth coring of the TCDP.
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3. DRILLING OVERVIEW

The drill site of the TCDP is located on Dakeng, Taichung County, 2 km east of the
surface rupture of the Chi-Chi faulting (Fig. 1a). The elevation of the drill site (120.73916°E,
24.20083°N) is about 247 m. Subsurface structures around the drill site were constructed by
high-resolution shallow reflection seismic profiles (Wang et al. 2002, 2004). The mapping
suggested that: (1) the Chi-Chi rupture is at a depth of 1200 m beneath the drill site; and (2) the
Sanyi fault zone might be seated beneath the ~800 thick Kueichulin Formation and beneath
the Sanyi fault zone; it might be the Toukashan conglomerate formation. Additionally, the
constraint of spatial slip distribution from strong motion stations (Ma et al. 2001) and geodetic
data (Yang et al. 2000; Yu et al. 2001; Lee et al. 2003) shows a coseismic slip of 12 m around
the drill site.

TCDP carried out continuous coring from 500 - 2003 m down for Hole-A. We use a PQ-S
sized core barrel (3 m long and 83 mm in diameter) with the wire-line method. This coring
merges an oil-rig drilling system and a wireline coring system, leading to a different operation
from the traditional PQ and HQ wireline coring methods. We used a coring bit of a diameter of
6.22” for 500 - 1300 m and 6” for 1300 - 2003 m. For Hole-A of the TCDP, above 661 m, the
drilling-coring operation progressed slowly due to difficult geological conditions and me-
chanical problems (Fig. 2). For example, we encountered conglomerate at around a drilling
depth of 43 - 48 m and underground water at a depth of around 140 - 150 and 390 m. Especially,
at the interval 140 - 150 m, drillers had to refill the borehole with cement and re-drill several
times. However, after the first casing and cementing at 661 m, coring was smooth, except for
a long stop at 1301 m due to the standby time of logging, secondary casing, cementing, and
changing the engine. Well logs were carried out for 500 - 1870 m with 3 sections in order to
evaluate the physical properties of fault rock and wall rock.

The orientation, including deviation and azimuth, of Hole-A and core recovery are sum-
marized herein (Fig. 3). The main portion of Hole-A, expectedly, was drilled vertically. The
borehole trajectory shows that the deviation of the borehole was mainly retained within 3°
above 1600 m, but became larger after 1600 m and reached to ~14° at 1860 m (Fig. 3a). It
turned out that the borehole became highly unstable between 1800 and 1900 m. In fact, no
logging tool could be deployed deeper than 1870 m. The azimuth of a borehole is typically
opposite the dip direction of bedding. The azimuth of the borehole was around N275 - 290°
above 1110 m (Fig. 3b), which was consistent with the prediction, provided the dip direction
N105° of regional bedding. However, after passing the interval of the first two fault zones
(1106 - 1157 m), the azimuth changed into 250 - 260° and maintained this range until 1500 m.
Furthermore, after a fault zone at around 1525 m down, the azimuth jumped to 190° and varied
between 150° and 200° until 1860 m.

The influence of borehole trajectory on the coring can be evaluated according to core
recovery (Fig. 3c). Because the core usually is not broken at the bottom of the drill bit, the
curated length of retrieved core is different from the drilling length most of the time. Moreover,
the retrieved core might include previous coring(s), i.e., core recovery could be over 100% in
some runs. As we can see in Fig. 3c, the pattern of difference between curated length and
drilling length for each retrieval shows that the difference: (1) increased at 500 - 661 m; (2)
kept less than 1 m at 661 - 1200 m; (3) slightly increased at 1200 - 1523 m; (4) significantly
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changed at 1523 - 1600 m; (5) dramatically increased at 1600 - 1900 m; and (6) finally main-
tained less than 1 m at 1900 - 2003 m. These observations suggest that variation in core recov-
ery might be due to the change in borehole azimuth (transition zones of T1 and T2), fluctua-
tion in borehole azimuth (fluctuation zones of F1 and F2), and the variation of the borehole
deviation (F2). Thick fault zones with soft material might be the main reason for the variation
of borehole orientation, further influencing the variation of core recovery. However, overall
recovery is still pretty good (~97%) and most of the core is continuous. Also, no distinct
disturbance induced by borehole deviation on the core at the fault zones is observed.

4. CORE DESCRIPTION

The depth of the core and the orientation of structure in the core are essential elements.
Therefore, we first define the basic referencing for core depth and structure orientation before
reporting the results of the visual core description. For presenting our results, we will first
demonstrate lithology and bedding dips with respect to depth. Then, general deformation struc-
tures between 500 - 1800 m down will be presented. Based on structure data, fracture density
with depth will be shown and correlated to the location of fault zones. Also, distribution of
mineralization is reported. Finally, we will describe the characteristics of ten fault zones iden-
tified from the retrieved core of Hole-A and summarize the general features of fault zones.

Fig. 2. Progress of Hole-A TCDP. Several long delays in the depths of 43 - 48,
140 - 150, 390, 661, and 1310 m were encountered by difficult geologic
conditions, mechanical problems and standby time of logging.
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4.1 Basic Referencing for the Depth and Orientation

Depth referencing for coring was setup at a rotary table, 3 m above the ground’s surface.
All recorded depths of retrieved core are uncorrected drilling depths below the rotary table,
not the wireline-log depth. Taking into account the uncorrected error in drilling depth of the
retrieved core by accumulating the individual length-differences between core- and drilling-
length for the data shown in the Fig. 3c, the loss of core length will be less than 8 m for the
interval 500 - 661 m (5%), 12 m for 661 - 1301 m (2%), 12 m for 1301 - 1649 m (3%), and 50 m
for 1649 - 2003 m (14%). The most significant error accumulation takes place after 1649 m.
The accumulated error in driller’s depth should be smaller than 3 m due to the coring barrel
being 3 m. Because of few clear marks on the core for resetting the core- and drilling-length at
the same run, we are not able to make the core depth more accurate at this stage. As a result,
although we cannot correct the core depth, our presented data (500 - 1800 m) should be still
acceptable (error <3 m).

Fig. 3. Correlation between borehole trajectory and core recovery. (a) Plot of
deviation with depth. Deviation keeps less than 3° till 1600 m but reaches
~14° at 1860 m. (b) Plot of azimuth with depth. Azimuth keeps constant
above 1100 m but decreases after the transition zones (T1 and T2) and
flacuates within the flacuatation zones (F1 and F2). (c) Plot of core length
correction with depth. Core recovery is strongly affected by borehole
trajectory. Recovery is stable within the transition zones but is pretty bad
within the flacuation zones.
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The structure orientation presented here is geographic coordination. For the coordination
system in the core, we use a regional bedding dip direction of N105° determined by field
measurement as the reference direction, assuming that the bedding orientation in the drill hole
is consistent with that of the regional bedding and its orientation does not change significantly
from top to bottom in general. The assumption is reasonable, based on the overall bedding dip
direction of N105° determined from the continuous high-resolution, high-coverage digital
borehole electrical resistivity images in Hole-A (Hung et al. 2007). We marked the reference
lines on the core right after the core was cleaned with a wet sponge. In detail, a blue line was
drawn to align with the down-dip direction of the bedding dip. A red line was drawn parallel to
the blue line and was referenced to identify the top-bottom direction of core by its relative
position to the blue line. Dip of bedding and deformation structure was measured with respect
to the core axis and, then, was corrected to the conventional dip representation. Dip direction
of the features was measured relative to the blue reference line. However, we did not correct
the effect of the borehole trajectory since we do not have detailed core-log correlation. Also, as
described earlier, severe distortion of the borehole happened only after a depth of 1600 m.
Although the measurement error (±5°) on the core and the error (±10°) from the borehole trajec-
tory for the structure orientation we presented here are not highly accurate, they are acceptable.

4.2 Litholgy Column and Bedding Dip

Core description was recorded with traditional description items of sedimentary rock and
deformation structures by visual examination. Here, the lithologic column is exhibited (Fig. 4a).
Lithology was classified into five categories based on grain size and intensity of bioturbation.
For lithology classification, “1” notes pure siltstone/shale, “2” is a combination of major por-
tion siltstone with minor portion sandstone, “3” indicates major-portion sandstone and minor-
portion siltstone, “4” shows intensive bioturbated rock, and “5” is pure sandstone. By using
this lithologic classification, we define four lithologic units in Hole-A (Fig. 4a), which is
consistent with geological formations. Unit A, B, C, and D are correlated to the Cholan
Formation, Chinshui Shale, Kueichulin Formation and Cholan Formation, respectively. In
detail, Unit A (500 - 1027 m) is made up of alternating layers of sandstone and siltstone. Unit
B (1027 - 1268 m) consists of mainly siltstone with some thick sandy layers (10 - 20 m width).
Unit C (1268 - 1712 m) is composed of sandstone interbeded with siltstone. Unit D (1712 -
2003 m) is a monotonous alternation of sandstone and siltstone, which is very similar to Unit
A. Based on the lithostratigraphic characteristics of the top of Chinshui Shale (Ho 1986; the
first appearance of thick black shale right below the thick sandstone with intensive bioturbation),
the boundary between the Cholan Formation (Unit A) and Chinshui Shale (Unit B) is deter-
mined at 1027 m. Furthermore, the boundary between the Chinshui Shale and Kueichulin
Formation (Unit C, i.e., the thick sandstone below finer thick siltstone) is around 1268 m. The
observation of one major fault at 1712 m with a distinct oyster layer of Cholan Formation
around 1754 m suggests that fault contact (Sanyi fault zone) existed between Kueichulin For-
mation and Cholan Formation (Unit D) at 1712 m.

Bedding dip is constant for most places except some disturbed fault zones. Mostly bed-
ding dip is about 30° measured from the core, but the dip changed dramatically into 60 - 70°
right below 1785 m (Fig. 4b). However, the dip changed back to 30° right after passing a fault
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zone at 1856 m. For the fault zone of Hole-A at 1111 m down (FZA1111), there is a trend in
bedding dip change from 30° to 20° and bedding dip changes back to 30° right after passing
FZA1111. Other minor variations in bedding dip disturbed by fault zones are reported by
Hung et al. (2007).

4.3 DEFORMATION STRUCTURE

4.3.1 General Description

Five groups of structures with different orientation can be identified from core examination.
They are composed of vein, fracture, breccia and gouge. Some structures have observable
kinematic indicators, leading them to be classified as micro-faults. The kinematics indicators
we used include alternating-polished-and-rough-facets, calcite-steps, and key bed displace-
ment (cf. Angelier 1994). The calcite-steps commonly exist on fault planes shallower than a
depth of 1300 m. Besides low-angle normal micro-faults with clear calcite-steps, other types
of micro-faults contain both calcite-steps and alternating-polished-and-rough-facets as shear-
sense indicators. Micro-faults with certain shear sense usually belong to a distinctive orienta-
tion group. Based on the geometry (dip direction/dip) and sense of shear, they are recognized
as thrust (105/20 - 60), left-lateral fault (015/30 - 80), right-lateral fault (195/30 - 80), backthrust
(285/30) and normal fault (105/5 - 10). Because not all structures have kinematic indicators, our
plot of structure category (Figs. 4c, d) thus only shows basic groupings of structure (width >1 cm)
of similar orientation, even though we plot them as micro-faults. Also, the plot doesn’t mean
that all the structures in the same group have the same shear sense, i.e., structures in the same
group were not necessarily developed by the same kinematics. However, the distribution of
structural groups along the borehole is strikingly distinctive. For thrust, the dip direction of
thrust is parallel to the down-dip direction of bedding. Some are bedding parallel slip and
others cut the bedding with a high angle. From core observations, the high-angle thrust usually
crosscuts the bedding-slip thrust. For the strike-slip fault, left-lateral and right-lateral faults
alternatively developed along the core. We expected them to be conjugated faults in regional
scale. However, the left lateral fault is more dominant. Backthrust, which is believed to be
associated with thrust kinematics, is observed around 950 m and within some major fault
zones. The normal microfault is mainly observed within the depth of 1262 - 1283 m.

The orientation and population of structures groups are shown in the rose diagram (Figs. 5a, b).
In order to evaluate the effect of width, both rose diagrams of structures with width larger and
smaller than 1 cm are plotted. From the orientation statistics, both patterns are similar, sug-
gesting our measurement is not biased, even with structure width less than 1 cm. Also, the
population of structures with the same orientation of thrust is highest. Structures with strike-
slip fault orientation are the next highest ones. The next one is backthrust. Normal faulting is
the least apparent. Compared with the inferred stress distribution of the dipole sonic image
result (Hung et al. 2007), the kinematics of structure and its distribution are compatible with
the expected kinematics and distribution of derived maximum horizontal stress direction.

Fracture density can provide insight into understanding structure distribution along the
depth. Here, fracture densities with two different counting methods are displayed (Figs. 4e, f).
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We count structures with width larger than 1 cm by using the multiple-count as 1 cm for
1 count within a bin of 2 m and the percentage-count of total structure width within a bin of 2 m.
The fracture densities from these two methods are different but the results are very similar.
Basically, the fracture density pattern is consistent with the distribution of the major fault
zones. For more details, the observations on both plots (Figs. 4e, f) indicates: (1) sporadic
structures from 500 to 900 m; (2) one intensive deformation zone around 900 - 1000 m, espe-
cially around 925 m; (3) increasing fracture density downward from 1050 m; (4) a thick de-
formation zone between 1100 and 1250 m; (5) a structure quiescent zone between 1300 and 1500 m,
except around 1400 m; (6) one thick deformation zone between 1500 and 1712 m; and (7) another
intensive deformation zone around 1750 - 1800 m. Two intensive deformation zones of 1100
- 1250 m and 1500 - 1712 m actually correspond to the Chelungpu Fault System and the Sanyi
Fault System, respectively (see the below).

4.3.2 Mineralization

Mineralization can be an indicator of the fluid conduit and also can provide information
about the deformation stage. Mineral filling is very common on the Hole-A core of the TCDP,
but is usually very thin (<2 mm). Most mineral filling is carbonate composition shallower than
1618 m; however, some thin filling, below 1618 m, is no-stiff white minerals (quartz?) with no
reaction to HCl acid. Certainly, there is an increasing trend for filling mineral development
with depth (Fig. 6). The distribution of calcite veins is a multiple-clustering pattern and gradu-

Fig. 5. Rose diagram of structure azimuth between 500 and 1800 m. (a) All 6444
structures. (b) 804 structures with width larger than 1 cm.
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ally increases to a maximum around 1250 m and ends suddenly around 1300 m. Below 1300 m,
it is a quiescent zone as revealed by fracture density patterns until 1500 m, except at around
1450 m. Another gradual growing mineral-filling starts from 1500 m and reaches a maximum
at around 1620 m. After that, the main composition of filling-mineral changes and mineral-
filling density decreases until 1730 m. The mineral filling pattern suggests that there might be
two separate major fluid conduits, one at around 1285 m and the other 1620 m. The fluid
conduit of 1285 m down might be correlated with the above mentioned unusual low-angle
normal faults of 1263 - 1285 m.

Mineral filling exists not only as vein but also as calcite steps within micro-faults. If a
higher abundance of calcite-filling on a microfault corresponds to a longer activation of the
microfault, then we should be able to determine the relative age of different groups of micro-
faults based on their calcite-filling abundance. From our observation, most intensive calcite-
filling is found on the left-lateral fault when all micro-faults coexisted in the same core. Thus,
the left-lateral fault could be the older deformation structure. However, left-lateral fault, thrust,
and right-lateral faulting cross-cut each other in some cases. So, we interpret that the left-
lateral fault is the older deformation but left-lateral fault, thrust, and right-lateral faulting de-

Fig. 6. Histogram of mineralization distri-
bution by a single count with the bin
of 2 m. A multiple-clustering pattern
exists above 1300 m and vein num-
ber increases to a maximun at 1250 m
and suddenly ends around 1300 m.
Another growing number of filling
veins exists between 1500 and 1712 m.
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veloped in the same period. But, no clear deformation stage can be recognized for backthrust
and normal faulting.

4.3.3 Fault Zones

Based on fracture density and fault architecture, ten major fault zones between 500 and
2003 m of TCDP Hole-A are identified. They are named as the Fault Zone of Hole-A at 1111 m
down (FZA1111), FZA1153, FZA1221, FZA1241, FZA1525, FZA1581, FZA1632, FZA1679,
FZA1712, and FZA1856 (Figs. 7 - 16). There might be more major fault zones around 1800 -
1850 m; however, without more detailed destructive examination by splitting cores and mak-
ing thin sections, we are not able to determine whether they are natural or artificial by the
coring process. For those ten fault zones, the shallower four fault zones, including the Chelungpu
fault zone (one of FZA1111, FZA1153, and FZA1221), are within the siltstone-dominant
region and the deeper six fault zones, including the Sanyi fault zone (FZA1712), are within the
sandstone-dominant region. Therefore, we called the shallower four fault zones and the deeper
six fault zones as the Chelungpu Fault System and the Sanyi Fault System, respectively. Both
of them are also strongly correlated to the fluid conduits inferred from the mineralization
distribution (Fig. 6). More interestingly, the fault spacing for the Chelungpu Fault System is
roughly about 40 - 50 m, except FZA1244; and also approximately 40 - 50 m for the Sanyi
Fault System, except FZA1856. This consistent regional fault-spacing in these two Fault Sys-
tems might reflect some fundamentally intrinsic characteristics about material properties in
the context of the fracture mechanics.

Here we define the terminology used for fault texture and architecture before describing
the fault zones. The terminology for the damage zone and fault core is adopted from that
defined by Chester et al. (1993) (Table 1). For texture description, we use the terms including
fracture, breccia, gouge and ultra-cataclasite defined by Sibson (1977). In Table 1, the damage
zone is the same as the fracture zone and the fault core includes breccia and gouge zones. We
will use the word “width” to represent the core length of a certain structure/layer.

In the context of fault architecture, the components of deformation zones of fracture,
breccia, gouge and ultra-cataclasite are identified within a fault zone. Based on different com-
binations and different distributions from fracture, breccia, gouge zones and ultra-cataclasite,
the different fault architecture is constructed. For example, in our description of fault zones,
fracture deformation means that each deformation component has a certain comparative vol-
ume in the fault zone. i.e., each zone is comprehensible and distinct. Some of these zones
exhibit increasing deformation upwards or downwards, depending on the fault types. What we
call “soft-rock deformation” is sandy-rock on recovered cores that is soft and deformable to
the touch of a hand when the core is retrieved and a flow-like (micro-folding) pattern is ob-
servable on the cores due to many small microfaults with tiny displacements. Also, the gouge
is very thin (~2 mm). The clayey gouge deformation is a dark-grey or brown gouge zone
within a fault zone. It contains some relic clasts within the gouge zone. Most importantly, the
clayey gouge occupies a major amount of the volume within the fault zone. We will make
more detailed explanations for these terms when we describe each major fault zone as examples.

Below, these ten fault zones are described in the terms of fault architecture and texture.
Some of them are also described in detail by Sone et al. (2007) and Song et al. (2007).
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4.3.3.1 FZA1111

The FZA1111 is a bedding-slip thrust and has distinguished fracture deformation (Fig. 7).
The fault zone developed within the siltstone-dominant region close to the lithological bound-
ary between the siltstone-dominant region and a bioturbated sandstone region. Most cores
from this fault zone were retrieved completely. The only loss might be in the Section 2 of Run
357. Also, a slight washout took place at the core surface around the top 8 - 18 cm of Run 358 -2
due to the uncompleted recovery of Run 357. The bedding dip in the interval is disturbed by
the FZA1111. From top to bottom, the FZA1111 contains a sequence of fracture zone, breccia
zone, light-gray clayey gouge (~85 cm width), thin black gouge (2 - 3 cm), foliated gouge (10 cm),
black gouge (8 cm), two fragile black ultra-cataclasite in the shape of hard disks (~2 cm width
for each), clayey gouge (13 cm), breccia zone (~17 cm), fracture zone and a return to wall
rock. The upper black ultra-cataclasite layer was accidentally broken during core handling
before photos were taken so that it was not shown on the slab-mode photo of Run 358-2. The

Fig. 7. Texture interpretation of FZA1111. The insert at the right-bottom corner
displays the slickenside (red arrow) of 70°SW on the ultra-cataclasite. Fr.Z.
stands for fracture zone, Int.Fr.Z. for intensive fracture zone, Br for breccia,
G for gouge, UC for ultra-cataclasite. Pink arrow indicates the specific layer.
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lower ultra-cataclasite layer keeps its shape and includes a clear slickenside with a rake of 70°
SW. The orientation of this slickenside set is consistent with the slip direction of the Chi-Chi
earthquake from seismic data inversion (Ma et al. 2001), suggesting the black ultra-cataclasite
could be the product of slip deformation during the Chi-Chi earthquake. Furthermore, the dip
of wet clayey black-white foliated gouge is steeper than that of surrounding black gouge. We
interpreted that the foliated gouge and surrounding black gouge are the S-C structure. Consid-
ering the black ultra-cataclasite is the slip zone, the deformation interval and deformation
intensity is much thicker and stronger at the hanging wall than that at the footwall. Therefore,
FAZ1111 is an asymmetric fault zone with more damage in terms of fault architecture at the
hanging wall of the thrusting event.

4.3.3.2 FZA1153

The FZA1153 is also a bedding-slip thrust and has a multiple fracture pattern (Fig. 8). The
core was well retrieved within this interval. In terms of lithology, FZA1153 contains mainly
sandy clasts and a high amount of fine sandy grains within the breccia zone and gouge zone.
Also, in the top and bottom of this fault zone, there are several squeezed (compacted?) dark

Fig. 8. Texture interpretation of FZA1153. The symbols as per Fig. 7.
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gray breccia layers. To the eye, water content in the gouge of the FZA1153 is less than that of
the FZA1111. Three black ultra-cataclasite disks were observed in this fault zone but the
second one was broken during core handling. Having three main slip zones within the FZA1153,
the fracture pattern is not as systematic as the FZA1111. Furthermore, some N-dipping strike-
slip faults postdated the thrusts in the foot wall to disturb the deformation pattern.

4.3.3.3 FZA1221

The FZA1221 is a complicated fault zone, within the siltstone-major interval, comprising
older bedding-slip thrusts and younger strike-slip faults with a normal-slip component. Many
gouge layers of 1 cm width were observed within this fault zone, including both thrusting and
strike-slip faulting (Fig. 9). Most of these gouge layers were dry and brown, compacted by
later deformation, suggesting the gouge was dewatered. Four layers of black ultra-cataclasite

Fig. 9. Texture interpretation of FZA1221. The symbols as per Fig. 7. White
arrows are representative of the shear sense.
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were found in this fault zone. The first and second black ultra-cataclasite layer and some
dewatered brown gouge layers in the upper portion of the FZA1221 were parallel to the bed-
ding but were cross-cut and dragged by strike-slip faulting (015°/60°) with normal-slip
component, indicating that the thrusting event was overprinted by strike-slip deformation. The
third and fourth black ultra-cataclasite layers were strike-slip deformation with some normal
slip. Around the interval of the fourth ultra-cataclasite layer, the fault architecture downward
displays a sequence of host rock, black ultra-cataclasite, gouge/breccia layer, fracture zone,
and host rock. It shows asymmetric fault architecture with more damage in the footwall owing
to normal slip deformation.

4.3.3.4 FZA1241

The FZA1241 is the only major fracture zone showing backthrust deformation in Hole-A
(Fig. 10). This zone is a fracture zone, rather than a fault zone within the siltstone interval. No
distinct breccia and gouge is observed. Oppositely, many bedding-parallel fractures and
backthrust-like fractures (285°/40°) are observed. We interpret that the thrust and backthrust

Fig. 10. Texture interpretation of FZA1241. The backthrust is displayed by drag fold-
ing of thin ultra-cataclasite seams in the insert. The symbols as per Fig. 7.
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are conjugated in the larger scale. Within the backthrusts, many thin black ultra-cataclasite
seams are found. They collocated into a dense slip zone with drag folds with reverse move-
ment in one fracture (Fig. 10, insert). The appearance of these thin ultra-cataclasite seams is
very similar to the ultra-cataclasite disks of the shallower major fault zones we mentioned
above. However, no thin ultra-cataclasite seam is observed within any bedding-parallel frac-
ture around the depth interval of the FZA1241.

4.3.3.5 FZA1525

The FZA1525 is a high angle strike-slip fault zone with strong clayey gouge deformation
in the sandstone-dominant interval (Fig. 11). The core within this fault zone was recovered in
good condition without any significant loss. The deformation boundary is sharp with an orien-
tation of 015°/75°, even though there might be a sampling bias due to the small angle between
the vertical coring direction and the high dip of this strike-slip fault zone. The observation, that
the gouge zone is next to host rock and no much distinct fracture zone and breccia zone is

Fig. 11. Texture interpretation of FZA1525. It is a clayey gouge deformation. The
symbols as per Fig. 7.
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observed between them, supports the interpretation of the sharp deformation boundary. However,
within the light-brown gouge zone (dewatering?), many gray sandy clasts (0.5 - 1.5 cm width),
similar to the lithology of host rock, are still found, suggesting relic clasts of host rock survive
with strong deformation of clayey gouge zone.

4.3.3.6 FZA1581

The FZA1581 is a strike-slip fault zone with soft-rock deformation in a sandstone interval
(Fig. 12). The recovered cores are not in good condition; they were fractured and broken
during coring and core handling due to high deformability. Some veins were filled within
fissures in the intact and deformed portions. Although the deformed fracture zone and breccia
zone occupy a major portion of this fault zone, four thin dark-brown gouge layers (0.5 - 1 cm
width) with an orientation of 015°/60° - 70° were found. These gouge layers were straight but
some brown streaks around them are wavy; obvious displacement on the beddings and pre-

Fig. 12. Texture interpretation of FZA1581. The clayey gouge deformation within
this fault is very typical. The symbols as per Fig. 7. White arrows are
representative of the shear sense.
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existing gouge layers is observed, suggesting those thin straight gouge layers reflect the most
recent deformation within the FZA1581. Moreover, tiny displacements on microfaults are
obvious between the gouge layers of Run 588-1 and a noticeable displacement pattern can be
recognized with displacement direction of 195°/50°. As a result, we interpret two strike-slip
faults of opposite dip directions being conjugated and displacement along 015°/60° being
dominant within this fault zone.

4.3.3.7 FZA1632

The FZA1632 is a typical of what we called “soft-rock deformation” in the sandstone
interval and it has no distinctive slip orientation (Fig. 13). The core condition was poor, as in
FZA1581. Some intensive fine veins with web geometry are observed in Run 611-3. Many
thin dark-gray gouge streaks are displaced as microfolds along the conjugated microfaults of
strike-slip fault orientation in Runs 611-1 and -2, suggesting that no central slip direction is
detectable in these small conjugated strike-slip faults within this fault zone, even though some
distinct slickensides are observed. Besides, three thin dark-gray straight gouge layers (2 - 3 mm)

Fig. 13. Texture interpretation of FZA1632. It is typical soft-rock deformation
(the details in the context). The symbols as per Fig. 7.
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of bedding-parallel orientation in Run 611-3 were found. Within the interval of small conju-
gated faults, some residual sedimentary structures were still found; this is consistent with the
observation of tiny displacement on these faults.

4.3.3.8 FZA1679

The FAZ1679 is a fragile fault zone with soft-rock deformation in the sandstone interval
(Fig. 14). The core condition was bad since the core was dismembered and was influenced by
the heat induced by coring as a thin black membrane covered the cores. Although no obvious slip
or microfold was observed within the soft fracture zone, some fractures of 075° - 085°/40°- 60°
were found. Also, a few thin veins (~1 mm width) and black gouge layers (~2 mm width) of
085° dip direction and 60° dip were discovered in Run 637-2. Therefore, we believed that the
FZA1679 is a strike-slip fault zone with an orientation of 075° - 085°/40° - 60°. It is soft-rock
deformation; however, the rock is too deformable, and fragile to keep the core of this fault
zone integration intact after cores were retrieved for further on-site examination.

4.3.3.9 FZA1712

The FZA1712 is a bedding-parallel reverse fault zone with a clayey gouge deformation
within the sandstone interval (Fig. 15). The core was recovered well within the gouge zone;

Fig. 14. Texture interpretation of FZA1679. The symbols as per Fig. 7.
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but, there was damage on the core above and below the gouge zone during coring and core
handling, perhaps partly due to the fragile and fractured lithology. One distinctive black ultra-
cataclasite was found in the top of Run 652-1 but it was broken. Also, we were not sure how
much loss of the core between Run 651-1 and 652-1 occurred. As a result, the complete archi-
tecture of deformation components in this fault zone cannot be determined. However, clayey
gouge deformation with obvious bedding-parallel foliation is still remarkable. Furthermore,
several clayey gouge zones are intermittent with fracture zones. Contrary to bedding-slip within
the clayey gouge, strike-slip faults of 015°/50° with normal-slip are dominant within the frac-
ture zones. Because clayey gouges crosscut the strike-slip faults, the deformation stage of
strike-slip faulting is older than the development of clayey gouge.

4.3.3.10 FZA1856

The FZA1856 is a bedding-parallel reverse fault zone with a fracture deformation in the
sandstone/shaly sandstone interval (Fig. 16). The condition of the recovered core was not

Fig. 15. Texture interpretation of FZA1712. T The symbols as per Fig. 7. White
arrows are representative of the shear sense.
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good. Some damage and washout on this fault zone can be clearly observed. Some distur-
bances on the bedding dip were also perceptible around this fault zone. The bedding dip of
about 60° decreased with depth when approaching the fault zone, reached the dip of 30° at the
fault zone and changed back to the original dip after the FZA1856. Intensive thin veins devel-
oped in the top of this fault zone. Although deformation components are sporadic, the main
slip zone is located within the foliated breccia of Run 715-4. The color of the FZA1856 is
brown/dark brown, suggesting this fault zone might be dewatered (older?).

5. DISCUSSION

5.1 The Candidate for the Chi-Chi Earthquake Rupture

Identification of the Chi-Chi earthquake rupture on the cores of the TCDP is a fundamen-
tal issue before studying the earthquake generation and the rupture mechanism on the core
samples. First, on a regional scale, results from the high-resolution shallow seismic reflection
indicate that the Chelungpu fault zone is at a depth of ~1200 m with 10% error beneath the

Fig. 16. Texture interpretation of FZA1856. The symbols as per Fig. 7.
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drill site (Wang et al. 2002, 2004). In other words, the potential candidates will be in the range
of 1100 - 1300 m, i.e., one of the fault zones within the Chelungpu Fault System (FZA1111,
FZA1153, FZA1221, and FZA1241). Second, as per the descriptions of fault zones (Section 4.3),
FZA1241 is a backthrust and FZA1221 is strike-slip fault, indicating that both fault zones can
be ruled out from the candidate list. As a result, the FZ1111 and FZ1153 are the most likely
candidates of the fault zone which slipped during the Chi-Chi earthquake.

Third, on a local scale, without further detailed examination on the multiple slip zones of
the FZA1153, no evidence to for or against this possibility for the Chi-Chi earthquake rupture
could be found. In contrast, the S-C texture of the FZA1111 implies that there is high-strain
concentrated within the lower black gouge and/or ultra-cataclasite. Furthermore, the slicken-
side with a rake of 70° SW on the fragile black ultra-cataclasite within the bottom of FZ1111
is consistent with the slip direction inferred from seismic inversion (Ma et al. 2001), suggesting
the black ultra-cataclasite could be the product of slip deformation during the Chi-Chi
earthquake. Fourth, FZ1111 shows anomalies of low resistivity, low density, low Vp and Vs
and high Poisson’s ratio (Hung et al. 2007). Also, if the amount of water content is consistent
with high activity of fault slip, the light-gray color of the gouge within the FZA1111, com-
pared with the dark-grey/brown color within the FZA1153 gouge zone implies that FZA1111
is more active than the FZA1153. Consequently, we interpret that the FZA1111 is the more
probable slip zone for the Chi-Chi earthquake.

5.2 The Location of the Sanyi Fault

The location of the Sanyi fault zone beneath the Chelungpu fault zone in the drill site can
provide an important constraint on regional tectonics and displacement regarding the fault
separation and segmentation. The regional distribution of the fault zones indicates that the
northern Chelungpu fault zone should climb up onto the southern Sanyi fault zone in the
northern Taichung basin (Yue et al. 2005). However, there is no surface outcrop to show their
relation in the northern Taichung basin. The lithologic column of 1712 - 2003 m depth in
TCDP Hole-A is interpreted as the Cholan Formation. Furthermore, a unique oyster layer as
an aspect of Cholan Formation around 1754 m was found. Therefore, the Cholan Formation
seems to re-appears around 1754 m and is overlaid by the Kueichulin Formation (Fig. 4).
Consistently, the significant fault zone, FZA1712, is observed as a reverse fault with thick
foliated gouge. Additionally, the data from down-hole physical logging display a significant
difference existing above and below FZA1712 (Hung et al. 2007). Thus, the evidence from
lithology, fault zone location and physical log data indicates that the Kueichulin Formation
overthrusts the Cholan Formation at a depth of 1712 m by the FZA1712 (the Sanyi fault zone),
which is about 600 m beneath the Chelungpu fault zone (Fig. 1b).

5.3 Lithological Influence on the Development of Fault Zones

Lithology is one of the main factors influencing the development of fault zones, including
the location and the architectural pattern. For fault zone location, it is obvious from our obser-
vation that most of fault zones developed on the finer-grain side of the lithologic boundary,
instead of right at the boundary. For example, in the thrusts of FZA1111 and FZA1153, the
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grain size of the hanging wall is finer than that of the footwall and more damage is also evident
at the hanging wall. On the contrary, this feature of lithology is opposite in FZA1221 for the
sinistral fault with normal slip, i.e., the grain size of the hanging wall is coarser. For FZA1241
(the backthrust with dry ultra-cataclasite seams), the lithology of the hanging wall and foot-
wall are the same. Moreover, the fault zones within the Sanyi Fault System developed within
the lithology having finer-grain parts and being close to the lithologic boundary when com-
pared with nearby regions.

Regarding the fault architecture of the major fault zones, there is a distinguishing differ-
ence between the Chelungpu Fault System and the Sanyi Fault System, probably due to a
discrepancy of the protolith. Generally, the architecture of fault zones within the Chelungpu
Fault System encloses distinct fracture deformation (FZA1111, FZA1153, and FZA1221) and
a fracture zone with aggregates of hard ultra-cataclasite seams (FZA1241). In contrast, the
architecture of fault zones within the Sanyi Fault System contains clayey-gouge deformation
(FZA1525, FZA1712), soft-rock deformation (FZA1581, FZA1632, and FZA1679) and dis-
tinct fracture deformation (FZA1856). As noticed (Table 1), the Chelungpu Fault System de-
veloped within the Chinshui Shale and the Sanyi Fault System is mainly within the Kueichulin
Formation and Cholan Formation. Thus, lithology-related physical properties, such as strength,
porosity and water content, between siltstone and sandstone could play the main roles in con-
structing fault architecture.

In detail, the architectural pattern of fault zones with fracture deformation is highly
asymmetric. For example, regarding a thrusting fault zone from top to bottom, such as the
FZA1111, the architectural patterns change from fracture zone to intense fracture zone, brec-
cia zone, gouge zone, black ultra-cataclasite, and finally, a thin layer of breccia zone or frac-
ture zone. Thus, the damaged zone is thicker above the fault core than below, and also the
lower boundary appears sharper compared to the broad upper transient boundary. Another
notable feature of the fault zones is that usually there is a thin layer of ultra-cataclasite at the
bottom part of the fault core. Conversely, the opposite pattern is found in the normal slip zone.
For instance, the architecture of the FZA1221 is opposite the shallower reverse fault zones.
That is, the ultra-cataclasite and gouge are at the upper end, whilst the breccia zone and frac-
ture zone are at the deeper end of the fault zone. The asymmetric architecture of the fault zone
is also reported in the Nankai trough drilling (Taira et al. 1992). Recently, studies based on
numerical simulation showed that a wrinkling-like pulse could be the driving force in the
development of asymmetric fault zones (Ben-Zion and Sammis 2003).

5. SUMMARY

The Taiwan Chelungpu-fault Drilling Project (TCDP) provides a unique opportunity to
study the rupture mechanism of the Chi-Chi earthquake in the northern segment and the location
of the Sanyi fault zone. Based on the core observation at 500 - 2003 m down from TCDP Hole-A,
the lithostratigrphic boundaries have been identified but need to be further confirmed by
biostratigrapy and magnetostratigraphy studies. The recognized lithostratigraphies are Cholan
Formation (500 - 1027 m), Chinshui Shale (1027 - 1268 m), Kueichulin Formation (1268 -
1712 m) and Cholan Formation (1712 - 2003 m).
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Although the deformation structure within the Hole-A core is rather complicated, five
groups still can be differentiated, including reverse fault, left-lateral and right-lateral faults,
backthrust and normal faulting. The left-lateral strike-slip faulting is interpreted as the oldest
deformation, which occurred earlier than the reverse faulting of the Chi-Chi earthquake slip.
Furthermore, ten major fault zones have been observed between 500 and 2003 m. They can be
grouped as the Chelungpu Fault System of about 100 m wide within the Chishui Shale
(FZA1111, FZA1153, FZA1221, and FZA1241) and the Sanyi Fault System of about 300 m
wide within the Kueichulin and Cholan Formations (FZA1525, FZA1581, FZA1632, FZA1679,
FZA1712, and FZA1856). After compiling with other currently available data, we interpret
that FZ1111 is the most likely candidate for the Chi-Chi earthquake rupture. The Sanyi fault
zone is located about 600 m beneath the Chelungpu fault zone and corresponds to FZA1712,
based on the deformation structure, lithostratigraphy, fossil and logging data.

The architecture of major fault zones based on the deformation textures can be classified
as the fracture deformation, clayey-gouge deformation and soft-rock deformation. Fracture
deformation is dominant within the Chelungpu Fault System and two other architectures pre-
vail in the Sanyi Fault System. Specifically, the fracture-deformation architecture is asymmetric,
depending on the shear sense of the fault zone. From the distribution of fault zones along the
core, the lithology or rock strength could be a major factor controlling the location and archi-
tectural pattern for fault zone development.
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