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1. IntroductIon

Since the end of the 19th century, several self-similar 
properties of spatial distributions and temporal variations of 
earthquakes have been found. These properties are gener-
ally characterized by a power-law function. Omori (1895) 
observed the temporal variation in the number n(t) of af-
tershocks following a mainshock in the form: n (t) tc p= , 
where c is a constant and p is the scaling exponent and is 
close to 1 for most observations. Utsu (1961) generalized 
Omori’s law to a form of n (t) (1 t)c p= + . Gutenberg and 
Richter (1944) reported a frequency-magnitude (FM) scal-
ing law of earthquakes in the form: logN = a - bM, where 
M is the earthquake magnitude and N is the cumulative or 

discrete frequency of events with magnitudes ≥ M. Ekstrom 
and Dziewonski, (1988) stated that the seismic energy, Es, 
released during an earthquake relates to M in the form: 
log(Es) ~ ξM, where ξ is 1 for earthquakes with Ms < 5.3 
and 3/2 for those with Ms > 6.8. Hence, there is a power-law 
function between N and E: N ~ Es

-B, where B b p= . Kana-
mori and Anderson (1975) reported a power-law function for 
seismic moment, Mo, and rupture length, L, of earthquakes 
in the form: Mo ~ L3. This relation is commonly considered 
to hold up for a wide range of events (Hanks 1977). How-
ever, for Japanese earthquakes, Shimazaki (1986) reported 
a change in scaling from Mo ~ L3 to Mo ~ L2 occurring at 
the point where Mo = 7.5 × 1025 dyne-cm. Aki (1992) and 
Romanowicz (1992) also reported such a change for world-
wide and California earthquakes. However, from more than 
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200 global earthquakes, Wang and Ou (1998) did not find 
such a change in scaling, and they also observed Mo ~ L2 in 
a large range of Mo.

Source rupture duration, τc, is an important parameters 
in the description of earthquake rupture (Kanamori and An-
derson 1975). Average τc is proportional to the fault length 
divided by the rupture velocity and also related to Mo (Ka-
namori and Brodsky 2004). For Japanese earthquakes, Iio 
(1986) found a change in scaling of τc versus Mo from small 
to large events. For the aftershocks of the 28 June 1991 Sier-
ra Madre, California, USA earthquakes, Ma and Kanamori 
(1994) observed a small exponent value of the τc - Mo rela-
tion when Mo < 1021 dyne-cm and a large exponent value 
(~1/3) when Mo > 1021 dyne-cm. Kanamori and Brodsky 
(2004) observed Mo ~ τc

3 in a large range of Mo. 
Using the two-point correlation method, Kagan and 

Knopoff (1980) determined the distribution of distances 
between pairs of both epicenters and hypocenters of earth-
quakes. Their results show that the number of events per unit 
volume at a distance, R, from any earthquake is proportional 
to R h- , where η approximates 1 for shallow earthquakes and 
increases to 1.5 or possibly higher for deeper ones. This in-
dicates an existence of fractal characterization of the spatial 
distribution of earthquakes. Kagan and Jackson (1991) re-
ported a power-law temporal distribution of long-term vari-
ation in seismicity. Wang and Lee (1995, 1997) reported 
that the earthquake sequences show multifractal behavior. A 
detailed description concerning scaling laws of earthquakes 
can be found elsewhere (e.g., Scholz 1990; Turcotte 1992; 
Kanamori 1994).

It is necessary to study the rupture processes of earth-
quakes to understand the physics of their scaling laws. Such 
processes are very complicated, however, and cannot be 
completely solved using a simple model. Several factors 
must be taken into account for modeling. A minimal set of 
ingredients includes: plate tectonics, brittle-ductile fracture 
rheology, the stress re-distribution after fracture, friction, 
the geometry of faults, and the healing process from the dy-
namic friction strength to the static friction strength after a 
fault stops moving. In addition, stress corrosion (Anderson 
and Grew 1977; Atkinson 1984) is often considered to be a 
mechanism for fractures. Since these ingredients are only 
partly understood, a comprehensive equation to describe 
fault dynamics has not yet been established. Nevertheless, 
some significant models have been developed to approach 
fault dynamics.

Burridge and Knopoff (1967) proposed a one-dimen-
sional dynamical lattice model (abbreviated as the 1-D BK 
model henceforth) to approach fault dynamics. This model 
and its revised versions have been widely applied to simu-
late the occurrences of earthquakes (Otsuka 1972; Yamash-
ita 1976; Rundle and Jackson 1977; Cohen 1979; Cao and 
Aki 1984/85 and 1986; Carlson and Langer 1989a, b; Carl-
son 1991a; Carlson et al. 1991; Wang 1991, 1993, 1994, 

1995a, b, 1996, 1997a, b; Knopoff et al. 1992; Shaw et al. 
1992; Shaw 1993, 1994, 1995; Pepke et al. 1994; Xu and 
Knopoff 1994; Schmittbuhl et al. 1996). Before 1989, the 
number of mass elements of the model used was small, and, 
thus, simulation results were not good enough. Since 1989, 
the number of mass elements of the model has been largely 
increased for obtaining good results because of an increase 
in memory and computing speed of computers. Most of 
the studies were based on the 1-D BK model, and only a 
few (e.g., Calrson 1991b; Miyatake 1992; Nakanishi 1992; 
Chen 1996; Wang 2000) were based on the 2-D model. In 
addition, viscous force was also introduced by some authors 
(Burridge and Knopoff 1967; Rundle and Jackson 1977; 
Pelletier 2000; Wang 2007) to study aftershocks and source 
rupture.

Several authors (Carlson et al. 1994; Wang et al. 1995; 
Wang 1999; and Pelletier 2000) have individually published 
review articles concerning studies of seismicity based on the 
1-D BK model. The first group of authors focused their at-
tention on studies of the intrinsic properties and FM relation 
based on the BK model. The second and third authors main-
ly reviewed studies of the FM relation. The fourth author 
paid attention to studies of structural heterogeneity and vis-
cous effect. It seems to be significant to have a more com-
prehensive review article to show studies of scaling laws of 
earthquakes based on the 1-D BK model. Since there is no 
characteristic length in the BK model, this model has been 
widely used to study self-organized criticality (SOC) of dy-
namical systems (Bak et al. 1987, 1988), including earth-
quakes. In addition, there are some publications for studies 
of nonlinear behavior of the 1-D BK model. Although the 
two topics are quite interesting, they are out of the scope of 
this article and it will not be included. 

Hence, an attempt in this article is made to review 
publications, especially for those done by Taiwan’s scien-
tists, on the intrinsic properties of the model and studies 
of several scaling laws based on the 1-D BK model. Those 
scaling laws in this review include: Omori’s law, the FM 
relation, the relation of rupture length versus seismic mo-
ment, the relation of source duration time versus seismic 
moment, the frequency distribution of rupture lengths, and 
the earthquake source power spectra. In addition, the studies 
of frictional and viscous effects on earthquake rupture are 
also reviewed.

2. thEory
2.1 description of the Model

The 1-D BK model consists of a chain of N mass ele-
ments of equal mass, m, and springs with each mass element 
being linked by two coil springs of strength, Kc, with two 
nearest neighbors and each mass element also being pulled 
through a leaf spring of strength, Kl, by a moving plate with 
a constant velocity, Vp. This system is illustrated schemati-
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cally in Fig. 1. Initially, all mass elements rest in an equi-
librium state, and the spacing between two mass elements 
is ‘l’. The n-th mass element is located at position un, mea-
sured from its initial equilibrium position, along the x-axis, 
which is in the direction of motion. Furthermore, the n-th 
mass element is subjected to a frictional force, Fn. The equa-
tion of motion of the n-th mass element of the system is:

m(d u dt ) K (u 2u u )
K (u V t) F (v )

n c n 1 n n 1

l n p n n

2 2 - +
- - -

= + -

                              (1)

In this equation, v ( du d )tn n=  is the sliding velocity of the 
n-th mass element. Obviously, the spacing, l, is not an ex-
plicit parameter in Eq. (1).

Yamashita (1976) compared Eq. (1) with a finite-
difference equation, which is an approximation of a 2-D 
plain-strain-type wave equation in the neighborhood of a 
fault surface. His results led to the relations of Kc and Kl to 
two Lame’s constants (λ and μ) and the ratio of the S-wave 
velocity, vs, and P-wave velocity, vp, of the material, i.e., 

[2 ( ) (v v ) ] ( )K z y2
s pc m n d d+=  and K ( y z)l n d d= . δy 

and δz are the spacing units along and perpendicular to the 
axis of the model, respectively. When δy = δz, both z yd d

and y zd d  are 1, thus leading to the direct relations of Kc 
and Kl to physical parameters of the materials. The plate 
velocity Vp is ~10-12 m s-1.

The equation of motion essentially consists of two pro-
cesses: The first one is the coupling process between the 
moving plate and a mass element through the leaf spring 
L. The other one is the generation of “self-stress” defined 
by Andrews (1978). Self-stress originates from the joint ef-
fect of the coil spring Kc between two mass elements and 
the leaf spring Kl. The coil spring Kc plays a role only in 
transferring energy from one mass element to another; thus, 
it does not change the total energy of the system. However, 
the spring Kl plays two roles: One is to provide energy to the 
system from the driving force caused by the moving plate, 
i.e., the KlVpt term in Eq. (1), and the other is to take en-
ergy from the system. This indicates that the spring Kl can 
change the total energy in the system. Therefore, the stiff-
ness ratio ( K )s Kc l=  is a significant parameter represent-

ing the level of conservation of energy in the system. Larger 
s shows that the coupling between two mass elements is 
stronger than that between a mass element and the moving 
plate. This results in a smaller loss of energy through the 
Kl spring, thus indicating a higher level of conservation of 
energy in the system. Smaller s indicates a lower level of 
conservation of energy. When Kc is much smaller than Kl 
or Kc equals zero, Eq. (1) becomes of the following form: 
m(d u dt ) K (u V t) Fn l n p n

2 2 = - -- . The system loses the cou-
pling between the mass elements, and, thus, each mass el-
ement slides independently. Hence, the system can only 
generate a small event consisting of either one single mass 
element or only a few mass elements. In other words, the 
system cannot self-organize itself to form a large event con-
sisting of a large number of mass elements. The magnitude 
of each event is proportional to the amount of force drop. 
Unless the distribution of the force drop is initially designed 
to be a power-law function, the resultant FM distribution 
will not necessarily be a power-law function. There might 
be two extreme cases of occurrence of events: one of them 
shows a sequence of equal-magnitude small events when 
the distribution of the breaking strengths is inhomogeneous. 
The other displays a very large event consisting of all inde-
pendent small events when the distribution is homogeneous 
and all isolated mass elements can slide simultaneously. On 
the other hand, when Kl is much smaller than Kc or Kl equals 
zero, the effect due to the leaf spring disappears, and the cou-
pling between two mass elements dominates the behavior of 
the system. For the case not including the frictional action, 
the system is mainly a conservatively self-organized one. 
Numerous authors have studied this kind of system, which 
can easily show SOC, using the cellular automata iteration. 
Since the fault system is a dynamic one with dissipation, its 
stiffness ratio, s, must be a non-zero finite value.

For a slip weakening, single-degree-of-freedom spring-
slider model, the stiffness K of the spring is considered to be 
the main parameter controlling the instability of the model 
system (cf. Rice 1979 and Li 1987). For such a model, small 
K (less than a critical value) rather than large K can produce 
an unstable rupture. Based on a simple two-dimensional an-
ti-plane strain softening model, Stuart (1981) considered the 
ratio KKf s , where Kf and Ks are the stiffness of the fault 
zone and that of the elastic surroundings, respectively, to be 
a significant indicator of earthquake instability. He stated 
that instability occurs when the ratio reaches unity. Stuart 
(1986) redefined K Ks f  as the stiffness ratio to indicate 
the instability of the system. Obviously, this parameter is 
just the ratio between the stiffness of the fault zone to that 
of the elastic surroundings and cannot directly display the 
coupling between them unless a constitution law is given 
to describe the correlation between the fault and the elastic 
surroundings. Although the stiffness K was considered in a 
series of work by Stuart and his co-authors (cf. Stuart 1988), 
they did not study in depth the effect of the variation in K Fig. 1. One-dimensional dynamical lattice model.
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on the earthquake rupture. In numerous studies through the 
cellular automaton iteration, the 1/s value was designated 
to be zero, i.e., Kl = 0, (cf. Takayasu and Matsuzaki 1988; 
Bak and Tang 1989) or to be a very small value (Brown et 
al. 1991). In those studies, the effect due to the coupling be-
tween a mass element and the moving plate was mostly ig-
nored. In this kind of modeling, the system can self-organize 
itself very easily and shows SOC. However, in some other 
studies, the effect of the variation of the stiffness ratio on the 
scaling of seismicity was included. Based on a simulation 
for a two-degree-of-freedom earthquake model, Nussbaum 
and Ruina (1987) addressed the importance of the stiffness 
ratio (called the coupling ratio in their article) on the slip 
pattern. The value of the stiffness ratio, s, which best models 
the earth, has not yet been well determined. Based on theo-
retical considerations, Carlson and Langer (1989a, b) used 
large values of ~1000. The values of s used by Wang (1991, 
1993, 1994, 1995a, b, 1996, 1997a, b; Wang and Huang 
2001) in numerical simulations were less than 120. Knopoff 
et al. (1992) and Xu and Knopoff (1994) used very small 
values of 0.625 to 2.632 in simulations.

The boundary conditions at the ends of the model affect 
the numerical results. Christensen and Olami (1992a) first 
stated that the scaling exponent depends on the boundary 
condition. However, their result shows that the difference 
of the scaling exponents for free and open boundary condi-
tions is reduced as the parameter ( )s s4 1+  increases. A 
periodic boundary condition has been applied at the two end 
mass elements in solving Eq. (1) for most studies. However, 
Xu and Knopoff (1994) supposed that systems with periodic 
boundary conditions will ultimately display runways if the 
computations are extended to sufficiently long times.

2.2 Friction

Friction is a very complicated physical process. From 
laboratory experiments, Dieterich (1972) first observed the 
time-dependence of the static frictional strength of rocks in 
laboratory experiments. Dieterich (1979) and Shimamoto 
(1986) pointed out the velocity-dependence of the dynamic 
friction strength. Dieterich (1979) and Ruina (1983) pro-
posed empirical velocity- and state-dependent friction laws. 
Essentially, the velocity-dependent friction law includes 
two processes: the velocity-weakening process and the ve-
locity-hardening one. A detailed description of the general-
ized velocity- and state-dependent friction law can be found 
in Marone (1998).

For numerical simulations and theoretical analyses, 
several simple friction laws have been used. Burridge and 
Knopoff (1967) first considered a velocity-dependent, 
weakening-hardening friction law. Cao and Aki (1984/85) 
used a displacement hardening-softening friction law. By 
comparing a slip-dependent friction law and a velocity-de-
pendent one through numerical computations, Cao and Aki 

(1986) concluded that the two kinds of friction laws cause 
different effects on simulation results. Carlson and Langer 
(1989a, b) considered a velocity-weakening friction law:

F(v) F (1 v v )lo= +         (2)

where v1 is a particular speed that characterizes the velocity 
dependence of F. The function F(v) ranges between Fo at  
v = 0 and decreases monotonically to zero as v  becomes 
large. Carlson et al. (1991) made two changes from the defi-
nition of F(v) as described in Eq. (2). First, the breaking 
strength (i.e., the static friction strength) at v = 0 can have 
any value in the range (-3 , 1]. In other word, F(v) is a multi-
valued function at v = 0. The frictional force is a negative 
infinity when v < 0, thus indicating that no backward mo-
tion is allowed. The second change is that while the break-
ing strength remains at unity, slipping friction begins at  
φ = 1 - σ, where σ is a small value used by Carlson et al. 
(1991) for the initiation of an event. This quantity can affect 
the lower bound magnitude of localized events as mentioned 
below. Hence, the revised frictional law used by Carlson et 
al. (1991) has the following form:

, 1], v 0=3F(v) (= -        (3a)

   
(1 )F {1 [v (1 )]}, v > 00v v= - + -    (3b)

In the normalized, non-dimensional form of the equation of 
motion used by Carlson and her co-authors, Fo in Eqs. (2) 
and (3) is unity. Theoretically, Carlson and Langer (1989a, 
b), Carlson (1991a) and Carlson et al. (1991) studied in 
depth the intrinsic properties of the 1-D BK model with 
velocity-weakening friction described by Eq. (2) as well as 
Eq. (3).

For the first-order approximation, Wang and Knopoff 
(1991) considered a piece-wise, linearly velocity-dependent 
weakening-hardening friction law (as shown in Fig. 2) in 
the form:

0F(v) F rv,o c= - v < vE        (4a)

o cgF , v v= =       (4b)

o cgF ,vc= + v > v       (4c)

which is a simplified form of the friction law proposed 
by Burridge and Knopoff (1967). Fo denotes the breaking 
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strength. The decreasing rate, r, and increasing rate, γ, of 
dynamic friction strength with sliding velocity are two pa-
rameters of the model. As shown in Fig. 2, Eq. (4) is defined 
only for v 0F  and F(v) is a negative infinity when v < 0.  
This means that no backward motion is allowed. When  
v = vc, F(v) is the minimum value, gFo. Wang (1995a) 
called g the frictional drop ratio. The value of g is positive 
yet smaller than 1. Smaller g produces a larger force drop, 
thus being able to generate a larger event. Hence, a drop in 
the frictional strength from Fo to gFo behaves like a source 
supplying additional energy to a mass element for sliding. 
From analytic analysis, Wang (2002) deeply studied the 
commonly used velocity- and state-dependent friction law 
and claimed that Eq. (4) is a good approximation of it.

The distribution of the breaking strengths affects dy-
namical behavior of the system. Carlson and her co-workers 
used an almost uniform distribution of the breaking strengths. 
Thus, de-localized events, for which all mass elements of 
the model are in an unstable state, can be easily generated 
in their simulations. Nussbaum and Ruina (1987) claimed 
that such a homogeneous fault stress is generally unstable. 
It is known that the fault zones where earthquakes occur 
are usually quite complicated. Seismological and geological 
observations show that the mechanical properties and ge-
ometry of a fault zone are heterogeneous (cf. Wang 2006a, 
b). From laboratory experiments, Mogi (1963) addressed 
the importance of the heterogeneity of the materials of the 
fault plane on the variations for seismicity and the b-value. 
But, in contrast, based on laboratory results, Scholz (1968) 
stressed that the state of stress, rather than the heterogeneity 
of the material, plays the most important role in determin-
ing the b-value. The breaking strength is the main mechani-
cal parameter representing the state of stress over the fault 

zone for generating ruptures and is one of the most impor-
tant properties certain to influence seismicity and its scaling 
laws. Das and Aki (1977) and Aki (1979) defined a barrier 
model and Kanamori and Stewart (1978) defined an asper-
ity model to describe such an inhomogeneous distribution 
of the breaking strengths of the fault zone for earthquake 
occurrences. Based on a single rider model, Nur (1978) used 
a one-body dynamical model to study the effect of displace-
ment-dependent or position-dependent friction on a rupture. 
His results reveal the importance of the inhomogeneities of 
the breaking strengths over the fault plane on the propaga-
tion of a rupture. He related the rupture velocity to the gra-
dient of the breaking strengths. Rice (1993) and Knopoff et 
al. (1992) also stressed the importance of inhomogeneous 
friction on earthquake ruptures. In addition, a reason to form 
de-localized events might be the use of uniform friction for 
which the fault plane can break in a short time.

In earlier studies, several authors (e.g., Yamashita 
1976; Rundle and Jackson 1977; and Cao and Aki 1984/85, 
1986) used an inhomogeneous distribution of the breaking 
strengths in seismicity simulations. In practice, different dis-
tribution functions can be used to describe the inhomogene-
ities. Field survey results (Scholz and Aviles 1986; Aviles et 
al. 1987; Okubo and Aki 1987) and laboratory observations 
(Brown and Scholz 1985) have suggested that the geophysi-
cal and geometrical properties over the fault planes have, in 
general, a fractal distribution. Fractal properties are com-
monly found in natural phenomena (cf. Mandelbrot 1982; 
and Turcotte 1992). Mandelbrot (1982) defined the fractal 
dimension, D, to describe the fractal set of objects or a frac-
tal geometrical structure. Wang and Knopoff (1991) first 
suggested a fractal distribution of the breaking strengths for 
numerical simulations. Since a fractal distribution of a phys-
ical property leads to nonlinear behavior, the use of such a 
fractal distribution makes the model become nonlinear.

Wang (1996) applied an infinite BK model together 
with a linear velocity-weakening frictional law to deduce 
three types of the propagation of motion of mass elements. 
Such three types are related to three kinds of velocity-
weakening friction, which depend on three parameters of 
the friction law, i.e., the decreasing rate r, the stiffness Kl, 
and the mass m. The three kinds of friction are (1) subson-
ic-type friction when r > 2 (Klm)1/2, (2) sonic-type friction 
when r = 2 (Klm)1/2, and (3) supersonic-type friction when  
r < 2 (Klm)1/2. Obviously, supersonic-type friction leads to 
non-causal ruptures, because the propagation velocity is 
greater than the sound speed. Knopoff et al. (1992) stated 
that when r = 2 (Klm)1/2 (r was denoted by α in their article.), 
the system is asymptotic to dispersive-free elasticity in the 
continuum limit. Wang (1996) also mentioned that the dy-
namical friction strength with large r or r = 3  behaves like 
an impulse, and it can supply energy to a mass element in a 
very short span, thus resulting in a large initial acceleration 
to the mass element. But, the dynamical friction strength 

Fig. 2. A piece-wise, linearly velocity-dependent frictional law: Fo = 
the breaking strength; vc = the critical velocity; and g = the frictional 
drop ratio.



Jeen-Hwa Wang

with small r cannot work in this way. Therefore, large r is 
more capable of generating large events than small r. How-
ever, velocity-weakening friction with large r intrinsically 
prohibits the formation of very large events, for which a 
large number of mass elements slide in a short span. Such 
an event was called the ‘de-localized event’ by Carlson and 
Langer (1989a, b) and can be very easily generated from 
the models used by Carlson and her co-authors. When the 
friction law has the form of Eq. (2), the related decreasing 
rate is v (1 + v v )1 2

l l , whose value changes from v1 1  
to 0 when v varies from 0 to 3 . Whereas, in Carlson et al. 
(1991), Eq. (3) was used, and, thus, the decreasing rate is 

[1 + (1 )]v1 2v- , whose value changes from 1 to 0 when 
v varies from 0 to 3 . Their model basically exhibits su-
personic behavior with r < 2 (Klm)1/2, for which the above-
mentioned intrinsic effect does not exist. Hence, their model 
is potentially capable of producing very large events.

When a mass element stops motion after sliding, the 
healing process of friction from dynamic friction strength to 
breaking strength, including the type and delay time of the 
healing process, would influence the next rupture. In other 
words, the consequence of non-instantaneous healing must 
be significant for seismicity (Rundle and Jackson 1977). 
Cao and Aki (1986) stated that the non-instantaneous heal-
ing lengthens the time needed for a fault slip to stop, reduces 
the interaction between different fault segments and, finally, 
counteracts the smoothing effect. Wang (1997a) studied the 
effect on the scaling of seismicity due to the healing process 
of friction. He defined a parameter to be the ratio of the 
frictional healing rate, h, to the tectonic loading rate, KlV. 
From simulation results, he claimed that the ratio h K Vl p  
is only a minor factor in affecting the scaling of seismicity. 
Other than these, the effects caused by a non-instantaneous 
healing process were not included in other papers.

2.3 Intrinsic Properties of the Model

Rice (1993) and Rice and Ben-Zion (1996) discussed 
whether the self-organizing process is capable of generating 
slip complexity on a spatially uniform fault. They argued that 
all results from the self-organizing models are an artifact of 
the use of simplified constitutive laws and also sensitive to 
the spatial cell size, h, used for numerical simulations. They 
also suggested a characteristic length-scale h* based on the 
rate- and state-dependent frictional law proposed by Ruina 
(1983). They called those models with h > h* the inherently 
discrete models, for which some GR-type range of small 
events seems to be generic. For those self-organizing mod-
els, they suggested that h* = 0. Xu and Knopoff (1994) stat-
ed that slip complexity should not be regarded as a generic 
feature of the nonlinear dynamics of a smooth fault, whether 
we model this fault from the framework of continuum me-
chanics or from dynamical lattice system, but rather should 
be considered as part of an evolutionary transient process. 

They stressed that inhomogeneity is a critical property of 
earthquake models. On the other hand, Shaw (1994) pre-
sented a counter-example to this suggestion. His numerical 
results are shown to be independent of the spatial discretiza-
tion for small discretizations compared to the characteris-
tic length-scale. The qualitative features of the complexity 
produced are seen to be invariant with respect to two very 
different types of small-scale cutoffs, implying a universal-
ity of the results with respect to the details of the small-scale 
cutoff. From studies of the rupture propagation along the 
anti-plane fault models with single and twin asperities in the 
presence of nonlinear velocity-weakening friction, Cochard 
and Madariaga (1994) observed a complex distribution of 
stresses after a rupture. Ben-Zion and Rice (1995) and Rice 
and Ben-Zion (1996) argued that the possible existence of 
weaknesses in the models used by Shaw (1994) and Co-
chard and Madariaga (1994). Wang and Huang (2001) con-
sidered that the two factors are both important in controlling 
slip complexity of earthquake faults. They also stressed that 
only under inhomogeneous breaking strengths, can nonlin-
ear friction play a significant role on slip complexity.

2.4 definitions of Model Events and Magnitude scales

For a certain mass element, when the sum of the driv-
ing forces due to the moving plate and spring forces from 
its neighbors exceeds the breaking strength, it is acceler-
ated and starts to slide. After a while, the increase in either 
the spring force due to the change in the relative positions 
of the mass element and its neighbors or in the dynamic 
friction strength with sliding velocity decelerates the mo-
tion. Finally, the mass element stops moving and sticks, and 
the results in a drop in the total force. However, the mov-
ing plate, which always loads the mass element, increases 
the total force on the mass element to reach the breaking 
strength, and then to push it to slide again.

The displacement of a mass element is measured from 
its new equilibrium position to the one where it sticks after 
sliding. This position becomes a new equilibrium position 
for the next stage of motion. Since several mass elements 
might slide almost simultaneously within a certain time 
span, the sum of the displacements of the related mass ele-
ments in such a time span provides the time history of the 
displacement. Such a time history is considered an event. 
An example to show the space-time patterns (abbreviated 
as the ST pattern) of synthesized events for four values of s, 
i.e., 5, 40, 80, and 120, are shown in Fig. 3. The line segment 
linking up the slid mass elements represents an event. The 
longer line segment consists of a larger number of mass ele-
ments and represents a bigger event. In all cases considered, 
the number of mass elements slid during an event is about 
one or two. It is evident that different values of s produce 
different ST patterns. For small s (for instance 5 and 40), the 
number of mass elements slid during an event is generally 
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small; in contrast, for large s (for instance 80 and 120), a lot 
of larger events with longer line segments appear. This indi-
cates that for larger s, a larger number of mass elements can 
be driven to an unstable state almost simultaneously dur-
ing a time span, thus leading to a bigger event. In the four 
cases, the number of events in the range with strong break-
ing strengths is evidently smaller than that in the range with 
weak breaking strengths. When s = 40 and 80, the events 
repeat themselves very frequently at two small ranges with 
very low breaking strengths.

Since the seismic energy Es is proportional to the 
maximum slip, umax, and the related force drop Δf, i.e., 
E f umaxs $D= , Wang and Knopoff (1991) defined the loga-
rithmic value of the sum of the seismic energy of mass el-
ements slid during an event to be the magnitude, M, i.e., 

/( )logM Ei si= . This magnitude is an energy-based mag-
nitude rather than the commonly used magnitude based on 
the peak amplitude of the seismogram. This magnitude was 
exclusively used in Wang’s studies. The magnitude used by 
Carlson and her co-workers was based on the earthquake 
moment, which is the sum of the displacements of mass ele-
ments slid during an event, i.e., /( )logM ui iD= . This mag-
nitude is different from the above-mentioned one. Thus, for 
the energy-based magnitude, the scaling exponent of logN 
versus M must be similar to ‘B’ in the relation of N ~ E-B as 
mentioned previously and different from ‘b’ in the GR-type 
FM relation and from ‘b’ in the relation used by Carlson 
and her co-authors. But, for simplicity, the notation ‘b’will 
hereafter be used to express the scaling exponent of the FM 
relation.

3. studIEs oF thE scAlIng lAWs oF EArth-
quAkEs

3.1 omori’s law for Aftershocks

Only few studies about aftershock activity are based on 
the 1-D BK model. Burridge and Knopoff (1967) stated that 
by the introduction of viscosity into the model, aftershocks 
occur following a major shock, and the time sequence of the 
number of simulated aftershocks can be fitted by Omori’s 
law. Rundle and Jackson (1977) mentioned that foreshocks 
and aftershocks were observed as the amount of anelasticity 
put into the system. Pelletier (2000) constructed a structur-
ally-heterogeneous 1-D dynamical lattice model coupled to 
a viscous asthenosphere. His model can generate foreshocks 
and aftershocks which follow Omori’s law. 

3.2 relation of Frequency Versus Magnitude as well as 
Energy

Gutenburg and Richter (1944) first proposed a frequen-
cy-magnitude (FM) law, i.e., log N a bM= - , to describe 
the earthquakes in southern California. This law appears to 
hold not only for mainshocks but also for aftershocks and 

not only for global earthquakes but also for regional ones 
(cf. Utsu 1961). It also holds for rock fractures (cf. Mogi 
1967). The b-value, usually ranging from 0.8 to 1.2, varies 
from region to region and is also different for various time 
periods (cf. Wang 1988). In principle, this relation has been 
taken as an indication of self-similarity or scale-invariance 
of earthquakes at all magnitudes. However, observations 
usually show that self-similarity exists only in a range of 
magnitudes. For individual matured faults, however, the 
number of large earthquakes and the maximum earthquake 
usually cannot be interpreted by observed FM relation ob-
tained from small earthquakes (cf. Stirling et al. 1996). The 
Gutenberg-Richter FM relation implies the number rate 
of occurrence of earthquakes with energies E in the form: 
[ ( ) ] ~dN E dt dE E dEp l- - , where p is almost 2/3. If the rate 
of energy released in earthquakes [ ( ) ]E dN E dt dE#  is to 
be finite, p cannot be greater than 2/3 (cf. Knopoff et al. 
1992; Knopoff 1997). Hence, the scale-invariance implied 
by the GR-type FM relation for the low-energy branch can-
not extend to the high-energy one, and there must be a cut-
off to the size spectrum at the high-energy end. Knopoff 
and his co-workers stressed that the low-energy branch is 
indeed due to a universal process, which does not exhibit 
SOC. They also argued that the high-energy branch is a re-
sponse to physical processes that are strongly influenced 
by the geometry of earthquake fault. The geometry of fault 
maps varies from region to region. Hence, the high-energy 
branch must have a local character rather than a universal 
one, unless the major faults on which large earthquakes oc-
cur have some universality of their own geometrical struc-
tures. However, this does not seem likely.

Pacheco et al. (1992) pointed out the existence of 
a break in the FM distribution, from small to large earth-
quakes. The magnitude related to such a break is about 7.5 

Fig. 3. The space-time patterns of events for four values of s: (a) for 5, 
(b) for 40, (c) for 80, and (d) for 120, when r = 3  and γ = 1. D = 1.5, 
level = 7, and Fomax = 5.
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for shallow earthquakes, about 6.4 for intermediate and deep 
earthquake, and about 5.9 for the earthquakes on the trans-
form faults in the oceans. Okal and Romanowicz (1994) 
also reported a similar result, even though their break mag-
nitudes are different from those obtained by Pacheco et al. 
(1992). It has been hypothesized that the break might oc-
cur at a point where the dimension of the event equals the 
down-dip width of the seismogenic layer. Such a change of 
the scaling FM relation is comparable with the observations 
(e.g., Shimazaki 1986) that the seismic moment released 
in small earthquakes scales differently with rupture length 
than it does for large events, where the crossover between 
small and large events is associated with a rupture dimen-
sion equal to the down-dip width of the seismogenic layer. 
Knopoff (1996a) found that there is an absence of such a 
break for California earthquakes occurring during the 1933 
- 1992 period. In addition, no such a break can be found 
from simulation results as described below. From a large set 
of earthquake source parameters for more than 200 global 
earthquakes, Wang and Ou (1998) did not find any change 
in the scaling relation of seismic moment versus fault length 
from small to large earthquakes.

Early studies of the physical factors in affecting the b-
value were based on laboratory work on rock fractures. Mogi 
(1967) considered the effect of the degree of heterogeneity 
of the media on the b-value. Scholz (1968) correlated an 
increase in the b-value with a decrease in the ambient stress 
level. Burridge and Knopoff (1967) first studied the FM re-
lation based on their 1-D model. They stated that the scaling 
exponent of the energy-frequency relation is about 1. Ac-
cording to the simulation results using the 1-D BK model, 
Rundle and Jackson (1977) found that linear behavior of the 
GR-type FM relation is not immutable but rather is depen-
dent on the mechanical properties of the faults. From the 
fragmentation of materials and the fractal distribution of the 
strain and stress of crustal deformations, Turcotte (1986a, 
b) interpreted the FM relation. King (1983) considered a 
geometrical origin of the b-value based on self-similar fault 
systems. The cellular automatum model, percolation theory, 
and some other statistical physics models have also been 
applied to study the FM relation (cf. Chelidze 1986; Sor-
nette et al. 1991; Ito 1992; Lomnitz-Adler 1993; and Main 
1996). Based on a quasi-dynamic elastic model, Ben-Zion 
and Rice (1995) stated that FM statistics are approximately 
self-similar for small events, with b = 1.2, but strongly en-
hanced with respect to self-similarity for events larger than 
a critical size.

From analytic studies and numerical simulations based 
on a modified version of the 1-D BK model, Carlson and 
Langer (1989a, b) classified the events into three types: mi-
croscopic, localized, and de-localized events (as shown in 
Fig. 4). Theoretically, they defined several parameters, i.e., 

K m2
p l~ = , F Ko o l=D , ,D~p p o= Vy  and D vp o l~=2a .  

The parameter α is the ratio of the largest slipping speed 

to the characteristic speed. They derived the upper bound 
magnitude of localized events, i.e., ( )lnM s l22

1/2 a= , the 
largest magnitude, i.e., [2 ( ) ]lnM l L s2 3/2

d r y= , where L 
is the total number of mass elements of a model, and the 
smallest magnitude, i.e., [ ( ) ]lnM sl2 2 /

s
3 2r y= - . Carlson et 

al. (1991) obtained the lower bound magnitude of localized 
events, i.e., [ ( )]lnM l s2 2 11 v= + . Only localized events 
in the magnitude range of from M1 to M2 exhibit a GR-type 
FM relation. Since the real fault zones are, at least, two-
dimensional, their analytical results could only partly in-
terpret observations. The number of microscopic events in 
the magnitude range from Ms to M1 is remarkably increased 
with magnitude, and they do not follow a power-law func-
tion. In the regime of de-localized events in the magnitude 
range from M2 to Md, there is a pronounced peak in the FM 
distribution, and, thus, it is impossible to extrapolate the 
magnitudes of de-localized events from the FM relation of 
localized events. The general feature of simulated FM dis-
tribution obtained by Carlson and her co-authors is shown 
in Fig. 4.

Based on the 1-D BK model with inhomogeneous 
breaking strengths, Knopoff et al. (1992) found that the 
near-saturation of small events is identified with finite lat-
tice spacing effects and the roll-off of large events is as-
sociated with the constraint that all fractures are confined, 
and hence that there must be a maximum event. They also 
stressed that a self-organizing, spatially localized sequence 
of events constrained by spatial fluctuations and the usual 
GR-type FM relation is a correlation of the geometry of lo-
calization. In addition, they also found that the linear and 
the roll-off intervals should be fitted by a gamma func-
tion, which span both, because they are caused by the same 
mechanism. Schmittbuhl et al. (1996) reported that two dis-
tinct regimes in the statistical distribution of event sizes and 

Fig. 4. Figure shows the general pattern of simulated distribution of 
frequency versus magnitude by Carlson and her co-authors.
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magnitudes are separated by a characteristic size, L*, which 
depends on the elastic stiffness and the dissipation ratio. A 
characteristic length, Lc, related to L*, controls a crossover 
between two different dynamical regimes. For events of size 
smaller than Lc, the system exhibits scaling laws.

From the above-mentioned expressions for M1 and M2, 
the magnitude range of localized events is (logM M10 2d =  

) ~ ( )logM s /
1 10

3 2 v  (see Carlson et al. 1991). It is obvious 
that the range of localized events is essentially influenced, 
at least, by two factors. The first one is the stiffness ratio 
s (denoted by l2 in their articles) actually reflects the dis-
sipation of energy through the coupling between the fault 
and the plate. The second one is the amount of the initial 
drop in the frictional strength when a mass element begins 
to slide. Furthermore, ~ ( )logM s /

10
3 2d , because the value of 

σ is almost a constant and only yields a minor effect on the 
estimate of δM. From observations, δM is usually in the 
range of from 2 to 5, thus leading to s = 10 to 103, which 
were usually used by Carlson and her co-authors in numeri-
cal simulations.

Aki (1981) postulated a positive relation between 
the b-value and the fractal dimension, D, in the form of  
D b c3= , where c is the slope of log moment versus mag-
nitude relation, and c is about 1.5. The theoretical relation 
between the two parameters proposed by Turcotte (1986a, 
b) are, respectively, b D 3=  and b D 2=  based on dif-
ferent models. For the aftershocks of the 1999 Chi-Chi, 
Taiwan, earthquake, Chen et al. (2006) observed a positive 
correlation between b and D. However, Hirata (1989) and 
Wang and Lee (1996) reported a negative correlation be-
tween the two parameters for earthquakes in Japan and Tai-
wan, respectively. Hirata (1989) stated that Aki’s fractal di-
mension of the geometry of fault planes is a special case of 
the capacity dimension of asperity or barrier distribution, in 
which all asperities or barriers are connected to each other 
without isolation. And in such a distribution, the dimension 
can be regarded as the fractal dimension of the surface of 
the fault plane. Yet, this is not necessarily true for the ob-
served seismicity produced from various fault planes. Wang 
(1991) studied the correlation between the b-value and the 
fractal dimension of the distribution of breaking strengths 
from synthetic seismicity based on the 1-D BK model. From 
the numerical results shown in Fig. 5, he concluded that the 
b-value is not noticeably dependent upon fractal dimension. 
This result is different from the theoretical speculation by 
Aki (1981) and by Turcotte (1986a, b) and from observa-
tions (Hirata 1989; Wang and Lee 1996; Chen et al. 2006). 
A possible reason for the difference might be that Wang 
(1991) considered a fractal distribution of the breaking 
strengths of the fault, while the others applied a fractal geo-
metrical structure of the fault plane.

Friction would be a factor in affecting the FM relation. 
Carlson and Langer (1989b) reported that the b-value is af-
fected by the parameter α as defined above. The b-value 

first increases with α and then becomes a constant when α is 
larger than a certain value. Wang (1996) stressed that seis-
micity patterns and the b-values are different for the three 
types of friction as mentioned above: The largest b-value 
is associated with supersonic friction, the intermediate one 
with sonic friction and the smallest one with subsonic fric-
tion. He also stated that large r is more capable of yielding 
localized events and of prohibiting the generation of de-lo-
calized events than small r. The magnitude range of local-
ized events slightly increases with r and the related b-value 
decreases with increasing r. In simulation results obtained 
by several authors (Knopoff et al. 1992; Xu and Knopoff 
1994; and Wang 1994, 1995a), de-localized events, obtained 
by Carlson and her co-authors (as shown in Fig. 4), cannot 
be found, even though there are few large events obtained 
by Wang when r < 3 (i.e., supersonic and sonic friction). 
The number of microscopic events obtained by Knopoff and 
co-authors and Wang is smaller than that obtained by Carl-
son and her co-authors. In the case with r = 3 , the friction 
immediately drops from breaking strength to dynamic fric-
tion strength after a mass element starts to slide. The drop 
behaves like an impulse to provide additional energy to a 
mass element for advanced sliding. Immediately after the 
frictional force drops, the dynamic friction strength again 
increases with sliding velocity. This decelerates the motion. 
On the other hand, in the case with r = 1, the work caused by 
a decrease in the frictional force rises very slowly. Thus, the 
restoring force caused by a change of the relative distance 
between the slid mass element and its nearest neighbor in-
creases gradually, thus leading to a resistance to the motion 
of the mass element. Therefore, the case with r = 1 has less 
potential than the case with r = 3  to produce large events. 
Furthermore, Wang (1996) stated that the FM distributions 

Fig. 5. The log-log plots of N versus M for six values of s: ‘+’ for  
s = 110, ‘o’ for s = 90, ‘*’ for s = 70, ‘4 ’ for s = 50, ‘Δ’ for s = 30, 
and ‘×’ for s = 10, when r = 3 , γ = 1, D = 1.5, level = 7, and Fomax = 5  
(from Wang 1995a).
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for two different values of g are almost similar for localized 
events, but different for large events. Smaller g can lead to a 
greater number of large events than larger g. This is due to 
the fact that the drop of the friction strength from Fo to gFo 
behaves like an impulse to push an object to slide. Smaller g 
will provide more energy, thus being capable of resulting in 
a greater number of large events, than larger g.

Although the magnitude range of localized events ob-
tained from analytic studies by Carlson and her co-authors 
is proportional to log(s3/2), Carlson et al. (1991) reported 
that the b-values for three large values of s, i.e., 36, 64, and 
144, are almost around 1.0 and independent of s. For the 
2-D BK model, Huang et al. (1992) also obtained a scaling 
exponent of about 1.36 for five values of s, i.e., 10, 15, 20, 
30, and 40, using the cellular automaton iteration. On the 
other hand, simulation results obtained by Xu and Knopoff 
(1994) and Wang (1994, 1995a) showed that the b-value 
decreases with increasing s. The simulation results by Wang 
(1994, 1995a) will be discussed in depth below. In addition, 
Nakanishi (1990) calculated the FM distributions for four 
small values of s, i.e., 2.00, 2.83, 4.50, and 9.50, using the 
cellular automaton iteration. His results showed a depen-
dence of b on s, even though he did not calculate the scal-
ing exponent. From the results for the isotropic 2-D models 
based on the cellular-automaton iteration, Christensen and 
Olami (1992a, b) stated that the b-value decreases continu-
ously as a function of ( )s s4 1+ . The b-values are almost 
constant for large s, but it does decrease with increasing s 
for small s.

The plots for six values of s, i.e., 10, 30, 50, 70, 90, 
and 110, are shown in Fig. 5 (Wang 1995a). The number 
of events used for each case is greater than 6000. The mag-
nitude range, within which the GR-type FM relation ex-
ists, seems to decreases with decreasing s. And, it seems 
more appropriate to interpret the data points by using two 
regression lines or a curve. It can be seen that the point with  
M = 0 (denoted as Mc) is almost the point, where all the dis-
tributions of logN versus M for different values of s inter-
sect one another. When M < Mc, logN decreases somewhat 
with increasing s and the difference between two values 
of logN for two values of s at a certain M is small. When  
M > Mc, logN increases with s. Nevertheless, the distribu-
tion of logN versus M for the cases with 30 100sE E  are 
somewhat close to each other. Results indicate that a change 
of s causes the opposite effects on rupture for large and small 
events. Smaller s represents a weaker coupling between two 
mass elements and can only make a smaller number of mass 
elements slide, thus leading to a larger number of smaller 
events and a smaller number of bigger events. Whereas, 
larger s indicates a stronger coupling between mass ele-
ments and can induce a larger number of mass elements to 
slide almost simultaneously, thus resulting in a larger num-
ber of bigger events and a smaller number of smaller events. 
Results show that the lower bound of the magnitude range 

is almost constant, and both the upper bound magnitude of 
localized events and the maximum magnitude somewhat 
increases with s. Simulation results seem to be consistent 
with the theoretical result obtained by Carlson and Langer 
(1989a, b).

Wang (1994, 1995a) explored the correlation between 
the b-value and the stiffness ratio s. The plots of b (based on 
the cumulative FM relation) versus s are shown in Fig. 6. 
Wang (1995a) stated that the b-value of the cumulative FM 
relation is in general smaller than that of the discrete FM 
relation. This is similar to the conclusion obtained by Main 
(1992) from observations. The data points for s > 20 are 
distributed around a line very well, while those for s < 20 
depart from the linear trend. The slope value of the regres-
sion line for the data points for s > 20 is about -2/3. In Fig. 6,  
the related regression line is denoted with a solid line. A 
similar result can also be obtained for the b-s relation based 
on the discrete FM relation. For the discrete FM distribu-
tion, the related slope value is about -1/2. Obviously, there 
is a power-law function between b and s: b ~ s-2/3 for the 
cumulative frequency and b ~ s-1/2 for the discrete frequency. 
Included also in Fig. 6 are the data points for r = 1 (shown  
by triangles) and those for g = 0.6 (denoted by diamonds) 
when s = 50 and 100. Although those data points are distrib-
uted above the distributions of data points for the cases with 
r"3 , they are somewhat distributed along a line being par-
allel with the solid one. This phenomenon also exists for the 
discrete frequency distribution. Consequently, for different 
model parameters b still relates to s in the form of b ~ s-2/3 
for the cumulative frequency and of b ~ s-1/2 for the discrete 
frequency. This seems to suggest that for a certain value of 
s, the b-value depends upon r and g, but the scaling relations 
of b versus s are quite robust. Wang’s scaling correlation 
between b versus s is consistent with that shown in Xu and 

Fig. 6. The log-log plot of b versus s when r = 3  (denoted by open 
circles). The slope value of the solid line is -2/3. The circle with a cross 
inside shows the data point when r = 1 (from Wang 1995a).
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Knopoff (1994), but different from that shown in Carlson 
and Langer (1989a, b) and Carlson et al. (1991). The dif-
ference between the results obtained by the former authors 
and those obtained by the latter authors might be due to the 
use of different distributions of the breaking strengths and 
friction laws by the two groups of authors.

3.3 relation of source rupture duration Versus Earth-
quake Moment 

The earthquake source rupture duration τc is the time 
span of the rupture process and is of the order of the di-
mension of the rupture zone, ξR, divided by the shear-wave 
velocity, β, (Brune 1970). From Haskell’s model, Brune 
(1970, 1971) related τc to the corner frequency fc, in the 
form: ~f 1c cx , in the displacement spectrum S(f), where 
f is the frequency. When f < fc, ( )S f  is approximately in-
dependent of frequency, but when f > fc, ( )S f  bends over 
and decreases as a power function of f, roughly  ( )S f  ~ f--2. 
Sato and Hirasawa (1973) pointed out that for the circular 
fault, the width of the displacement P pulse (denoted by tp) 
is almost equal to the τc calculated by v2R rp , where the vr is 
the rupture velocity. Boatwright (1980) approximated tp to 
τc, which is calculated by v1 r  because of the consideration 
of the healing stage, by multiplying a factor.

For Japanese earthquakes, Iio (1986) correlated the ra-
diated energy with the period of the first cycle for P waves 
(EsP) and S waves (EsS) in a power-law form for tp and ts, 
which is the width of the displacement S pulse, of from 10-4 
to 10-1 seconds. It is necessary to use two power-law equa-
tions to describe two parts of the log-log plots of EsP versus 
tp and those of EsS versus ts. The first part for the P waves 
with tp < 1 sec as well as that for the S waves with ts < 10-1/2 
sec is described by a regression line with a scaling exponent 
value of 4. The second one for the P waves with tp > 1 sec as 
well as that for the S waves with ts > 10-1/2 sec is described 
by a regression line with a scaling exponent value of 3. In 
other words, two different relations exist for the EsP - tp and 
EsS - ts scaling and change at the 1-second period of the first 
cycle or at the radiated energy of about 1015 erg, the related 
seismic moment of which is about 10-21 dyne-cm.

From the broadband seismograms recorded on the 
TERRAscope for the aftershocks of the 28 June 1991 Si-
erra Madre, California, USA earthquakes, Ma and Kana-
mori (1994) calculated the values of τc and Mo. Their results 
show that it is impossible to describe the log-log plot of τc 
versus Mo by using a single linear equation. They tried the 
exponential-law functions with different values of stress 
drop and attenuation factor to describe the plot. Of course, 
their selection is one of the ways to describe the data points. 
An alternative selection is the use of two power-law func-
tions: one with a small exponent value for the part with  
Mo < 1021 dyne-cm and the other with a large exponent value 
(~1/3) for the other with Mo > 1021 dyne-cm. Kanamori and 

Brodsky (2004) observed Mo ~ τc
3 in a large range of Mo. 

The seismic moment, at which the τc - Mo scaling chang-
es, is almost the same for Japanese earthquakes and the 
1991 Sierra Madre earthquake sequence, even though their  
τc - Mo scaling laws in the two regimes of small and large 
events are different.

The change in the τc - Mo scaling from the regime of 
small events with a smaller scaling exponent to the regime 
of large events with a large scaling exponent is important 
for numerous seismological studies. For instance, the cor-
ner frequency fc as well as the related τc must be given for 
the prediction of the strong-ground motions for an imped-
ing large earthquake. In generally, the two quantities can 
be estimated only from the τc - Mo relation obtained from 
small earthquakes. However, the value of τc estimated from 
small events might not be appropriate for large earthquakes. 
Consequently, it is necessary to study this problem more 
profoundly. 

Carlson and Langer (1989a, b) defined an earthquake 
moment, M’, to be the total displacement of a connected set 
of mass elements, which slide during an event. This defini-
tion is different from the original definition of seismic mo-
ment, i.e., Mo = μδA, where μ, δ, and A are the rigidity, 
the average displacement, and the source area, respectively. 
The definition of M’ = /ui  leads to M’ = Nδ, where N is the 
number of mass elements slid during an event. This leads 
to M’ ~ L, where L is the rupture length of an event and is 
almost equal to Nl, where “l” is the spacing between two 
mass elements in the equilibrium state as mentioned above. 
Since A = LW, where W is the fault width, we have M’ ~ 
δLW ~ δA, because the width, W, of the 1-D model fault 
can be considered to be unity. This indicates that there is a 
positive correlation between Mo and M’. From numerical 
results (see Fig. 7 as an example), Wang (1993) observed 

Fig. 7. The log-log plots of τc versus M for the model with D = 1.5,  
s = 100, r = 3 , and g = 0.8. Two solid lines represent the regression 
lines with different slope values (from Wang 1993).
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that the stiffness ratio, s, is a major parameter, while the 
decreasing rate, r, fractal dimension, D, and roughness, R, 
are three minor parameters affecting the τc - M’ relation. 
He also reported that when s > 60, the scaling relations are 
τc ~ M’1/3 for small events and τc ~ M’3/5 for large ones. On 
the other hand, when s < 60, the scaling relation does not 
change too much for small and large events, and having a 
form of τc ~ M’1/3. This simulated τc - Mo relation is con-
sistent with the observed one, especially for larger-sized 
earthquakes. Considering a circular crack model, the seis-
mic moment is given by Mo = μπR2δ, where μ is the shear 
modulus, δ is the average fault slip, and R is the radius of 
the fault plane. The static stress drop during an earthquake 
is proportional to the displacement divided by a fault di-
mension, i.e., ~ R M R0

3v nrdD = , thus, leading to 
~ ( )R M /

0
1 3vD . The source duration time τc is proportional 

to R vs  assuming that the rupture velocity is proportional 
to the shear velocity vs. Since ( )R v M v1/3 1/3

s o s vD= , we 
have ~ ( )M v/ /

c o s
1 3 1 3x vD . Hence, the source duration time 

scales with seismic moment in a form of τc ~ Mo
1/3, if vs and 

Δσ are almost constant. This indicates that Wang’s results 
for s < 60 are similar to those for a circular crack model.

3.4 relation of rupture length Versus Earthquake 
Moment

A positive correlation between seismic moment (Mo) 
and rupture length (L) of the faults has been studied for a 
long time. According to the crack model, Kanamori and An-
derson (1975) reported a power-law function in a form of Mo 
~ L3 to correlate the two parameters. This Mo - L correlation 
is commonly considered to hold for a wide range of events 
(see Hanks 1977), with L varying from meters to hundreds 
of kilometers. Actually, there is a large scatter in the data 
points of Mo versus L between the stress drops from 1 bar to 
100 bars, and there may be systematic deviations in the case 
of very small earthquakes. A close examination of Hank’s 
plots of Mo versus L seems to show that the scaling laws are 
different in two magnitude ranges: one with a larger scaling 
exponent value (> 3) for smaller events and the other with a 
smaller one (about 3) for larger events. For Japanese earth-
quakes, Shimazaki (1986) found that a change from Mo ~ L3 
to Mo ~ L2 scaling occurs almost at a point with Mo = 7.5 × 
1025 dyne-cm and a fault length of 17 km, which is nearly 
the thickness of seismogenic layer in the region. Scholz et 
al. (1986) stated that large intraplate earthquakes consistent-
ly have greater moments per unit fault length than interplate 
events, the difference being about a factor of five. The slip 
rate of the fault is larger for interplate earthquakes than for 
intraplate ones. Aki (1992) showed a deviation of the Mo - L 
correlation for the California earthquakes from the average 
relation in Japan. However, the deviation is larger for strike-
slip earthquakes and smaller for thrust ones. Romanowicz 
(1992) stressed different scaling for strike-slip earthquakes 

and pure thrust and normal events. She also reported two 
different scaling laws for small and large strike-slip events, 
separating at Mo = 1027 dyne-cm: Mo ~ L1/2 for small events 
and Mo ~ L for large ones. However, from more than 200 
global earthquakes, Wang and Ou (1998) did not find such 
a change of scaling, and they also reported that Mo ~ L2 in a 
large range of Mo.

Carlson et al. (1991) first studied the correlation be-
tween the two parameters using a revised version of the 
1-D BK model with a velocity-weakening friction law as 
described in Eq. (2) and with an almost uniform distribu-
tion of the breaking strengths. Their results showed that the 
simulated M’ - L distribution cannot be fitted by a simple 
power law but varies with the size of events: M’ ~ L3/2 for 
small events, and M’ ~ L for large ones. For intermediate-
size events, it is not possible to describe the simulated M’ 
~ L distribution by using a simple and/or single power-law 
function. As a result, the M’ is not given by any single power 
law of L throughout the entire range of fault lengths. Based 
on the 1-D BK model, Wang (1995b) studied the M’ - L 
relation. His definition of seismic moment is similar to that 
used by Carlson et al. (1991). His results show that the pro-
cess of velocity-weakening friction from breaking strength 
to dynamic one obviously affects the relation. Only the rap-
idly weakening process can produce a well-defined power-
law M’ - L relation. The stiffness ratio s is not a signifi-
cant factor in affecting the scaling relation. Wang (1995b) 
stressed that the stiffness ratio is a parameter representing 
the level of energy conservation or the degree of dissipation 
of energy. Hence, the independence of the M’ - L relation 
on the stiffness ratio shows that the degree of dissipation 
of energy cannot change this scaling law. Wang’s simulat-
ed M’ - L relations have the following forms: M’ ~ L2 for 
small events and of M’ ~ L for large ones (an example for 
the simulated M’ - L distribution is shown in Fig. 8). How-
ever, no transition zone is recognized. Based on continuum 
models associated with the 1-D BK model, several authors 
(e.g., Langer et al. 1996; Myers et al. 1996; and Shaw 1997) 
stated that M’ ~ L2 for the smallest events, and M’~ L for the 
largest ones. Meanwhile, there is a transition range, where 
no power-law function can be derived, for the intermediate-
sized events. The M’~ L relations obtained from simulation 
results by different authors are obviously different from ob-
served ones. This might be due to a fact that simulations are 
made based on the 1-D model, while the observations come 
from natural 2-D fault zones. Hence, it would be significant 
to study further this problem using a 2-D BK model.

3.5 Frequency distribution of rupture length

Field observations show that the fault populations 
obey fractal geometry in the form of N ~ L-d, where N is 
the cumulative number of faults having lengths ≥ L and d 
is the scaling exponent (cf. Davy 1993). A variety of scal-
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ing exponent values have been observed for fault systems, 
e.g., 0.89 for the fractures on the Reykjanes, southwest Ice-
land (Gudmundsson 1987), 2.1 for intraplate faults in Japan 
(Scholz and Cowie 1990), 1.8 for several data sets obtained 
by Marrett and Allmendinger (1991), 1.91 for Basin and 
Range faults and 1.24 at Yucca Mountain, Nevada (Mar-
rett 1994) and 1.3 for the Volcanic Tableland faults (Scholz 
et al. 1993). For earthquakes occurring in the Geysers geo-
thermal field in northeast California, Sahimi et al. (1993) 
obtained a value of about 1.9. From laboratory experiments 
to simulate continental collisions, Sornette et al. (1991, 
1993) and Davy et al. (1990) reported that the value of d is 
in the range of from 0.7 to 1.6. However, Davy (1993) and 
Davy et al. (1995) suggested that a Gamma function in the 
form of ( ) ( )expN L CL L L1q

o= -- + , where C is a constant, 
is more appropriate than other functions to fit the discrete 
frequency-length (FL) distribution obtained from the San 
Andreas fault system and those from experimental results. 
They also stated that the characteristic length Lo is close to 
the thickness of the brittle crust. In those observations, the 
FL power-law holds only in a small range of an order of 
magnitude in length.

Based on the 1-D BK model, Wang (1997b) simulated 
the population of earthquake faults. An example of simu-
lated FL distribution is shown in Fig. 9 [L was denoted by 
∆ in Wang (1997b)]. His results show that the fractal di-
mension, D, of the distribution and the maximum value of 
the breaking strengths is a minor parameter affecting the 
FL distribution, especially for small and intermediate-size 
events. Nevertheless, larger D can produce longer events 
than smaller D. The stiffness ratio, s, makes some effects on 
the FL distribution. The decreasing rate, r, and the increas-
ing rate, γ, and the frictional drop ratio, g, of Eq. (4) are 
three parameters significantly affecting the FL distribution. 

Large r, with small γ is more appropriate for generating a 
power-law FL relation than small r with large γ. Different 
values of g result in different scaling exponent values of the 
FL relation existing in an almost same length range. Smaller 
g (with a larger frictional drop) can lead to a smaller scal-
ing exponent value than larger g (with a smaller frictional 
drop). When other model parameters are fixed, the scaling 
exponent value is 1.5 for g = 0.8 and 1.0 for g = 0.6. These 
simulated scaling exponent values are comparable with the 
observed ones as mentioned above.

3.6 Earthquake source spectra

The body-wave seismic spectrum is controlled by the 
seismic moment Mo and the corner frequency, fc, which is 
associated with the source dimension. The generally ac-
cepted earthquake source functions have either f-2 or f-3 
high-frequency spectral decay, and are commonly referred 
to as ω-square and ω-cubic models (ω = 2πf) (cf. Aki 1967, 
1972). Some authors (cf. Boatwright 1978; Dysart et al. 
1988; Patane et al. 1997) claimed that neither of them is ap-
propriate to describe the observations.

Power spectral density with a form of f-2 or f-3 shows a 
general type of f-β signal. The f-2 signal is considered to be a 
result of the Brownian motions. Bak et al. (1987, 1988) pro-
posed self-organized criticality to explain f-β signal. Frankel 
(1991) assumed that the high frequency energy of a main-
shock is produced by a self-similar distribution of subev-

Fig. 8. The log-log plots of L versus M’ for a model with r = 3 ,  
s = 100, D = 1.5, and g = 0.8. Two solid lines represent the lines with 
a slope value of 0.517 (about 1/2) and 0.875 (about 1), respectively 
(from Wang 1995b).

Fig. 9. The log-log plots of N versus L: ‘+’ for g = 0.8 and Fomax = 5, 
‘o’ for g = 0.6 and Fomax = 5, and ‘*’ for g = 0.8 and Fomax = 10 when 
s = 100, D = 1.5 and r = 3 . Two solid lines represent the lines with a 
slope value of -1 and -1.5, respectively (from Wang 1997).
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ents, where the number of subevents with radii greater than 
R is proportional to R-D, D being the fractal dimension. In 
his model, an earthquake is composed of a hierarchical set 
of smaller events. The static stress drop is parameterized to 
Rν, and strength is assumed to be proportional to static stress 
drop. He found that a distribution of subevents with D = 2 
and stress drop independent of seismic moment (ν = 0) pro-
duces a mainshock with an f-2 falloff, if the subevents areas 
fill the rupture area of the mainshock. Based on an ideal sys-
tem under external random forces, Koyama and Hara (1992) 
studied the dynamical process of random activation. In their 
model, the time evolution of the system is described by the 
Langevin equation, and a scaling rule (represented by an 
auto-correlation function) to describe the random activation 
is introduced to generalize the system. Their generalized 
system predicts the fractional power spectrum f-β (f being 
the frequency) from a white spectrum to a Lorentzian. Their 
results show that the exponent β is a function of the fractal 
dimension of the scaling rule. The fractal dimensions of 2, 
1, and of about 0.47 indicate a Lorentz spectrum, an f-1 spec-
trum, and a power spectrum of f-1.53 type, respectively.

It is significant to study the scaling of earthquake 
source spectra based on a dynamical model. However, pres-
ently only Shaw (1993) has studied this problem. Based on 
a modified version of the 1-D BK model in the presence of 
velocity-weakening friction as used by Carlson and Langer 
(1989a, b), Shaw (1993) obtained the theoretical moment 
spectra, P(ω). He mentioned that large and small events 
show different spectra. For large events with M > M*, where 
M* = 2 a , there are different power-law relations in three 
angular-frequency regions:

, M2<0~ ~ r

( ) ~ ,P M2 2< <1~ ~ r ~ r g-

>~, 2~ r gf-         (5)

In Eq. (5), M is the moment, defined as being the sum of 
the change in the displacements of all mass elements and 

2 ( )ln l4 2g v a= . The definitions of α and σ are given 
previously. When σ is small and α > 1, the exponent ε has 
almost a value of 2.5. Eq. (5) shows that there are two turn-
ing points in the moment power spectrum for large events. 
At low frequencies, the theoretical result is similar to that 
mentioned by Aki. At medium frequencies, the theoretical 
power spectrum shows the so-called 1/f noise (cf. Bak et al. 
1987, 1988). At high frequencies, the theoretical result is 
somewhat between ω-2 and ω-3 models, because ε is about 
2.5. This is somewhat different from that shown in Aki 
(1967, 1972). For large events, Shaw’s theoretical source 

power spectra are more complicated than those obtained 
from Aki’s model.

On the other hand, for small events with M < M*, there 
are two power-law relations in two angular frequency rang-
es:

( ) ~ ,M L2<0~ ~ ~ r

>~, L22~ r-         (6)

In Eq. (6), L is the rupture length of an event. Eq. (6) ex-
hibits that there is only a turning point, which is dependent 
upon L, in the moment power spectrum for small events. 
Eqs. (5) - (6) show that at low frequencies, M(ω) is almost 
constant for both small and large events, while at medium 
and high frequencies, the spectral scaling laws for the two 
kinds of events are different. Moreover, Shaw’s theoretical 
result for small events is similar to the ω-square model pro-
posed by Aki based on the dislocation theory. 

Shaw’s theoretical results do not seem able to confirm 
which model, i.e., the ω-square model or the ω-cubic one, 
is more acceptable than the other for interpreting the source 
power spectra of earthquakes, especially for large events. 
The Shaw used friction law was a purely velocity-weak-
ening friction law and an almost uniform distribution of 
the breaking strengths for numerical simulations. It would 
be significant to use a velocity- and state-dependent fric-
tion law and a heterogeneous distribution of the breaking 
strengths for further studies. Like the models used by Carl-
son and her co-authors as mentioned above, Shaw’s model 
was basically a non-causal one. Whereas, Aki (1967) drove 
the source power spectra based on a causal dislocation 
model. Therefore, the difference in the models could cause 
in-consistence between their source power spectra. In addi-
tion, Shaw’s simulations were based on a one-dimensional 
model. However, the real earthquake fault must be of two 
dimensions; and hence, to study this problem, a two-dimen-
sional model is required.

3.7 Frictional and Viscous Effects on Earthquake rup-
ture

On 20 September 1999 (at 1747 UTC) an M7.6 earth-
quake ruptured the Chelungpu fault in central Taiwan (cf. 
Ma et al. 1999; Shin 2000). The earthquake initiated at 
23.853°N, 120.816°E, with a focal depth of ~8 km. The 
fault is mainly a transpressive one, striking N5°E and dip-
ping 34° to east. Various observations lead to a difference 
between the northern and southern segments. Wang (2006a) 
made a detailed review of the differences. Wang (2003) ap-
plied a one-body model in the presence of a conventional 
static/kinetic friction law to approach the motions of each 
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segment. His results suggest that the average displacement 
on a ruptured area is capable of representing its behavior, 
which would consist of several asperities with different di-
mensions, while the predominant period of displacement 
waveforms is only able to display the oscillations of the 
major asperity. However, Wang’s (2003) simplified model 
cannot interpret the differences in velocities and accelera-
tions between the northern and southern segments. 

In order to understand the detailed properties of fault-
ing, a more comprehensive model is needed. Wang (2007) 
assumed that viscosity is also a significant factor; and thus, 
applied a strike-slip-type, two-body BK dynamical model 
in the presence of both friction and viscosity to approxi-
mate the rupture processes of an earthquake along the fault-
striking direction. Results show that in addition to friction, 
viscosity is also an important factor in controlling rupture. 
For the Chi-Chi earthquake, his simulation results from the 
model can explain the differences in displacement, velocity, 
acceleration, and predominant period between the two fault 
segments.

4. suMMAry

Studies on the effects on several scaling laws of earth-
quakes due to model parameters based on the one-dimen-
sional Burridge-Knopoff dynamical lattice model (Burridge 
and Knopoff 1967) have been reviewed. The scaling laws 
in utilized in the reviewed studies include: Omori’s law, the 
Gutenberg-Richter-type magnitude-frequency (or energy-
frequency relation), the relation between the source duration 
time and seismic moment, the relation between the source 
rupture length and seismic moment, the frequency-length 
relation, and the source spectra. In addition, the effects on 
scaling exponent, i.e., the b-value of the Gutenberg-Rich-
ter-type frequency-magnitude relation are also taken into 
account. The frequency-magnitude relation as well as the 
b-value is obviously affected by the changing rate of dy-
namic friction strength varying with sliding velocity and the 
stiffness ratio of the model. However, the fractal dimension 
of the distribution of the breaking strengths is not a signifi-
cant parameter affecting the b-value. Except for the source 
power spectra, simulation results are comparable with ob-
servations to some extent. This seems to indicate that it is 
appropriate to apply the 1-D BK model to study the scal-
ing relations between source parameters, even though the 
values of some model parameters are not yet well known. 
Consequently, the one-dimensional BK dynamical lattice 
model acceptably approaches fault dynamics. Of course, a 
two-dimensional model must be better than a one-dimen-
sional one.
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APPEndIx

a          the coefficient of the Gutenberg-Richter’s frequen-
cy-magnitude law

A         the fault area

b          the coefficient of the Gutenberg-Richter’s frequen-
cy-magnitude law, i.e., the b-value

B         the scaling exponent of N ~ Es
-B

c          a constant of Omori law and also the slope of log 
moment versus magnitude relation

d          the scaling exponent of N ~ L-d

D         the fractal dimension

Do        the ratio of Fo to Kl

Es         the seismic radiation energy 

EsP        the radiated energy with the period of the first cycle   
for the P-waves

EsS         the radiated energy with the period of the first cycle 
for the S-waves

f           the frequency

fc          the corner frequency

F          the frictional force

Fn         the frictional force at the n-th mass element 

Fo         the static frictional force or the breaking strength

g          a constant defining the minimum frictional force in 
the velocity-dependent frictional force

h          the frictional healing rate 

h*        a characteristic length-scale

K         the stiffness of an elastic body
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Kc        the strength of the coil springs between two nearest 
mass elements

Kf         the stiffness of a fault zone and that of the elastic 
surroundings 

Kl         the strength of the leaf springs between a mass ele-
ment and the moving plate

Ks        the stiffness of the elastic surroundings of a fault 
zone

l           the spacing between two mass elements in the 
equilibrium state

L          the fault length and also the rupture length

Lc         the characteristic length 

Lo         the characteristic length of 
( ) ( )expN L CL L L1q

o= -- +

L*        the characteristic length

m          the mass of a mass element

M         the earthquake magnitude

M2       the upper bound modeled magnitude of localized 
events [ ( )]ln s l2 /1 2 a=  

Mc        a characteristic earthquake magnitude

Md        the largest modeled magnitude 
{ [ ( ) ]}ln l L s2 2 /3 2r y=

Ml         the lower bound modeled magnitude of localized 
events { [ ( )]}ln l s2 2 1v= +

Mo        the seismic moment

Ms        the smallest modeled magnitude 
[ ( ) ]}{ ln sl2 2 /3 2r y= -

M’        the moment of an event defined by /ui  

M*       a characteristic earthquake magnitude

N         the cumulative or discrete frequency of events with 
magnitudes ≥ M

n(t)      the number of aftershocks at time t

p           the scaling exponent of Omori law

P(ω)    the power spectrum

q          the scaling exponent of ( ) ( )expN L CL L L1q
o= -- +

r           the decreasing rate of the velocity-dependent fric-
tional force

R         the distance or the radius of a fault plane

s          the stiffness ratio (= K Kc l )

S(f)      the displacement spectrum

SOC    Self-organized criticality

tp          the width of the displacement P pulse 

ts          the width of the displacement S pulse

un         the displacement of the n-th mass element 

umax      the maximum displacement

vc         the particular speed to define the minimum friction-
al force in the velocity- dependent frictional force 

vl          a particular speed that characterizes the velocity 
dependence of the frictional force 

vn         the velocity of the n-th mass element

vp         the P-wave velocity

vr          the rupture velocity

vs          the S-wave velocity

Vp        the speed of the moving plate

y          the y axis

z           the z axis

α          the ratio of the largest slipping speed to the charac-
teristic speed

β          the scaling exponent of the f-β-type source spectra

γ          the increasing rate of the velocity-dependent fric-
tional force

δ          the average displacement

ε          the scaling exponent of the modeled source spectra 
in Eq. (5)

ζ          the sum of the change in the displacements of all 
mass elements [ 2 ( ) ]ln l4 2 v a=   

η          the scaling exponent of the correlation between the 
number of events per unit volume at a distance, R, 
and R, i.e., N ~ R-η

λ          the Lame constant 

μ          the Lame constant or the rigidity

ν          the scaling exponent of the correlation between Δσ, 
and R, i.e., Δσ ~ Rν

ξ          the coefficient of log(Es) ~ ξM

ξR         a dimension of a rupture zone

σ          a small value used by Carlson and Langer (1989a, 
b) to reduce the normalized breaking strength

τc          the source rupture duration

υ          the normalized plate speed ( )V Dp o~=

φ         a smaller normalized breaking strength used by 
Carlson and Langer (1989a, b) for the triggering of 
an event
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ω         the angular frequency

ωp        the predominant angular frequency [ ( ) ]K m 1/2
l=

Δf        the force drop

Δσ       the static stress drop




