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AbstRAct

The number of worldwide extreme drought and flood events has risen significantly in recent years. Many studies confer 
that climate change may cause more intensive and extreme events. Simulating the impact of climate change often requires 
weather data as inputs to assessment models. Stochastic weather generators have been developed to produce weather data with 
the same temporal resolution based on the outputs of GCMs. Reservoir simulation normally uses operational rules in daily 
and hourly time steps for water supply and flood reduction, respectively. Simulating consecutive drought and flood events 
simultaneously requires a weather generator to produce different temporal resolution data. This work develops a continuous 
weather generator to generate daily and hourly precipitation data for regular wet days and severe storms, respectively. Daily 
rainfall data is generated for regular wet days using Exponential distribution or Weibull distribution, while the total rainfall 
data for severe storms is generated using the Pearson type III or Log Pearson type III distribution. Moreover, hourly rainfall is 
determined based on generated hyetographs. Simulation results indicate that the proposed continuous weather generator can 
generate daily and hourly rainfall reasonably. The proposed weather generator is thus highly promising for use in evaluating 
how climate change impacts reservoir operations that are significantly influenced by more frequent and intensive consecutive 
drought and flood events. 
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1. INtRoDUctIoN

Recent extreme weather induced disasters have drawn 
considerable attention, warranting further research on cli-
mate change impact assessment. Climate change impact ar-
eas such as hydrology, agricultural production, ecosystem 
and water resources management are often evaluated using 
simulation models that require weather data as inputs. Daily 
weather data are normally used for continuous simulation, 
while hourly data may be required for simulating extreme 
events, such as inundation or flood reduction operations of 
a reservoir. Due to unavailability, future weather data are 
often generated based on possible climate scenarios. Most 
research derives future climate scenarios (e.g., monthly 
weather statistics) based on outputs of General Circulation 
Models (GCMs). Downscaling methods and weather gen-

erators are subsequently used to produce weather data with 
finer spatial and temporal resolutions (Wilks and Wilby 
1999; Hansen 2002; Dubrovsky et al. 2005). The generated 
weather data must keep weather statistics of climate scenar-
ios to account for extremes and seasonality (Kilsby 2007).

Climate change may significantly influence water re-
sources systems, resulting in changes in water availabil-
ity (IPCC 2007). Many studies have indicated that climate 
change may cause more and stronger extreme droughts and 
flood events, creating further challenges for water resources 
management. Such problems may be further exacerbated for 
a reservoir with a small capacity. In Taiwan a single typhoon 
induced rainfall can refill a dried out reservoir. Most related 
studies address either drought or flood issues independent-
ly (Li et al. 2010; Nagesh Kumar et al. 2010; Araghine-
jad 2011; Lee et al. 2012). Recent observations show se-
vere flood events may occur immediately after a drought. 
Meanwhile, a serious drought may occur immediately after  
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severe flood events. For instance, a serious drought occurred 
in southern Taiwan in the fall of 2009. As the major reser-
voir of southern Taiwan, Tsengwen reservoir had only 25% 
of its capacity full as of August 8, 2009. Later, an extreme 
rainfall event induced by Typhoon Morakot brought a total 
rainfall amount of 1643.5 mm within 48 hours and triggered 
the reservoir to operate in a hourly time step in order to re-
lease flash flood water. The reservoir almost had an over-
topping event because the active capacity is only around 0.5 
billion cubic meters. Following the severe storm the reser-
voir storage significantly decreased again due to extremely 
limited rainfall and high water demand. In 2001 Typhoon 
Nari struck northern Taiwan and seriously inundated the 
metropolitan Taipei area with the return period more than 
100 years. Two months later the drought worsened in the 
same area due to very limited rainfall, small reservoir ca-
pacity and high irrigation water demand. Recent works on 
how climate-induced disasters impact reservoirs stress the 
importance of continuous drought and flood event simula-
tion in an impact assessment study. However, the reservoir 
operation time steps for flood reduction and water supply 
are different and normally are hourly and daily time steps, 
respectively. 

Despite their availability, many weather generators 
can only produce a series of weather data with the same 
time step. Pickering et al. (1994) developed a widely used 
weather generator to produce daily weather data, in which 
conditional wet day probability is used to generate wet day 
events. This generator was also involved an inverse rainfall 
cumulative probability function to produce daily rainfall 
for a wet day, as well as using an autoregression model to 
generate a daily mean temperature. Weather generators can 
be categorized into parametric (Parlange and Katz 2000; 
Fowler et al. 2007; Semenov 2008; Zhang et al. 2011) or 
non-parametric forms (Sharma et al. 1997; Mehrotra and 
Sharma 2007; Eum and Simonovic 2010). Three widely ad-
opted weather generators include WGEN, LARS-WG and 
K-Nearest Neighbor (K-NN) weather generator.

The WGEN and LARS-WG models are parametric 
methods. WGEN is based on a procedure described by Rich-
ardson (1981). Richardson and Wright (1984) used the pub-
licly available version of WGEN. Daily precipitation is gen-
erated using a 2-parameter gamma distribution in WGEN. 
However, LARS-WG is based on the study of Racsko et al. 
(1991), with detailed descriptions provided in Semenov et 
al. (1998) and Semenov and Brooks (1999). Using a semi-
empirical distribution LARS-WG determines the amount of 
precipitation. As a nonparametric method, the K-NN weath-
er generator avoids the difficulties in fitting parameters and 
relevant parametric problems. This model typically begins 
with generating the first daily data randomly from the ob-
served data set and a specified number of days by comparing 
the current day with its neighboring days (Eum and Simo-
novic 2010). Although capable of avoiding the difficulties 

in determining model parameters, this method takes a con-
siderable amount of time in comparing the weather data for 
the next day with the entire database. Moreover, the range 
of historical weather data limits the generation of possible 
extreme events. If not recorded previously, a statistically 
possible extreme event is not generated, possibly resulting 
in underestimation of extreme events.

The frequency and magnitude of extreme weather 
events are likely to increase under climate change (Solo-
mon 2007). Therefore, the ability of weather generators to 
produce extreme weather events must be verified before ap-
plicable to climate change studies. Kyselý and Dubrovský 
(2005) evaluated the ability of a weather generation model 
based on the first-order autoregressive (AR) model to gen-
erate extreme events, indicating that this model is limited in 
reproducing most daily values of extreme events. Semenov 
et al. (1998) indicated that LARS-WG tends to underesti-
mate the variance in monthly means of some variables, 
owing to a simple auto-correlation structure. In addition to 
using semi-empirical distribution to generate precipitation 
and radiation data, LARS-WG applies normal distribution 
to simulate temperatures. However, the means of reproduc-
ing maximum daily temperature is less than observations. 
Thus, while attempting to reproduce extreme events data, 
Semenov (2008) suggested two possible solutions: using 
the generalized extreme value (GEV) distribution fitting the 
observed and synthetic data to estimate the return values or 
using semi-empirical distribution for temperature. Three pa-
rameters (i.e., μ, σ, ξ) are estimated in the GEV distribution 
for observed and synthetic data, where μ is location param-
eter; σ is the scale parameter; and ξ is the shape parameter 
governing the tail behavior of the distribution (Payne et al. 
2007). Furrer and Katz (2008) also discussed the feasibil-
ity of advanced statistical methods to increase the simula-
tion accuracy of extreme precipitation, such as a hybrid 
technique with a gamma distribution and a generalized Pa-
reto distribution. However, above works can only provide 
weather data in the same temporal resolution.

Many works have already demonstrated that climate 
change significantly impacts water resources, especially 
reservoirs (Wood et al. 1997; Hamlet and Lettenmaier 1999; 
Payne et al. 2004; Simonovic and Li 2004; VanRheenen et 
al. 2004; Eum and Simonovic 2010; Li et al. 2012). In ad-
dition to providing a water supply, a reservoir stores high 
inflows during a severe storm to protect downstream areas 
from flooding. Evaluating these functions simultaneously 
requires daily and hourly rainfall to model daily water sup-
ply and hourly flood reduction operations, respectively. 
Therefore, this work develops a continuous weather genera-
tor to provide daily and embedded hourly precipitation data 
for the continuous simulations of hydrology and reservoir 
operations. 

The rest of this paper is organized as follows. Section 2 
describes the methodology to generate continuous daily and 
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embedded hourly rainfall for regular wet days and severe 
storms. Section 3 then describes the study area, selection 
of essential variables for the weather generation model and 
formulation of the observed data as well as the simulation 
rules. Next, section 4 discusses the above results. Conclu-
sions are drawn in section 5, along with recommendations 
for future research.

2. MEtHoDoloGy 

The proposed continuous weather generator (CWG) is 
based on the works of Richardson (1981) and Pickering et 
al. (1988). However, this work focuses only on generating 
daily rainfall and hourly rainfall for regular wet days and 
severe storms, respectively. Figure 1 shows the generation 
procedure. The generator first produces a wet day or dry 
day event based on conditional wet day probability. If it is a 
wet day, a random number is generated to compare with the 
probability of severe storms in order to determine whether it 
is a regular rainfall event or a severe storm. If it is a severe 
storm, hourly rainfall is generated for the day. The amount 
of daily rainfall for regular wet days and severe storms is 
generated based on different distributions. If it is a severe 

storm, the daily rainfall is further allocated to 24 hours 
based on generated hyetograph. The following sections de-
scribe the proposed weather generator in detail.

2.1 Wet Day Event

Wet day event generation is described first. The crite-
rion to generate a wet or dry day is established by compar-
ing a uniformly distributed random number with conditional 
probabilities P(W|W) and P(W|D), which is the same as 
Richardson’s method (1981). A wet day is generated if the 
criterion, as shown in Eq. (1), is fulfilled.
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where ε denotes a uniformly distributed random number; 
Pm(W|W) represents the probability of a wet day on day t 
given a wet day on previous day t-1; and Pm(W|D) refers the 
probability of a wet day on day t, given a dry day on previ-
ous day t-1. Pm(W|W) and Pm(W|D) can be calculated based 
on historical rainfall data for each month, respectively. Ad-
ditionally, the wet day event on the first day for each month 
is determined based on the unconditional wet day probabil-
ity Pm(W) for each month. 

If it is a wet day, whether or not it has a severe storm 
must also be determined. Thus, another uniformly distrib-
uted random number is generated to compare with the prob-
ability of severe storm, as shown in Eq. (2). 
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where Pw(S) and Pd(S) denote the probabilities of severe 
storm for wet and dry seasons, respectively. A severe storm 
is defined as daily rainfall more than 130 millimeters, ac-
cording to the definition of the Central Weather Bureau of 
Taiwan. Owing to insufficient storm events for each month, 
the probability is determined for wet (May through Octo-
ber) and dry (November through next year April) seasons 
only. The threshold to determine severe storms and seasons 
may differ in different locations. If it is a wet day, a certain 
amount of daily rainfall is generated based on different dis-
tributions for a regular wet day and a severe storm. For a 
severe storm, daily rainfall is further allocated to each hour, 
based on a hyetograph generation. The following section 
describes how to generate rainfall amount and hyetograph.

2.2 Rainfall Amount 

The rainfall amount is generated by the inverse function 
of rainfall cumulative distribution function. Additionally,  Fig. 1. Flow chart of continuous rainfall generation. 
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the amounts of rainfall for a regular wet day and a severe 
storm are generated from different distributions. The rainfall 
distribution of regular wet days is assumed here to be expo-
nential distribution or Weibull distribution. Meanwhile, the 
rainfall distribution of severe storms could be Pearson type 
III distribution (PT3) or Log Pearson type III distribution 
(LPT3). Although the distribution function is assumed to 
be the same for each month, the parameters used in the dis-
tribution differ from each other and are calculated based on 
the historical rainfall data for each month. 

The cumulative distribution functions (CDF) of expo-
nential distribution and Weibull distribution are given in 
Eqs. (3) and (4). 

;F x e1 x
1

1m = - m-^ h         (3)

; ,F x k e1 x
2

k
2m = - m-^ ^h h         (4)

where λ1 is average rainfall; λ2 is the scale parameter and k 
is the shape parameter of the distribution. The daily rainfall 
can be generated with the inverse CDF of exponential distri-
bution as shown in Eq. (5) or Weibull distribution as shown 
in Eq. (6). The inverse CDF of Weibull distribution is based 
on the single-parameter Weibull distribution estimated by 
Selker and Haith (1990).

lnP RND1m #m= - -^ h6 @        (5)
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where P is the rainfall amount for a wet day, and λm is the 
average rainfall of wet day in month m. RND, the uniformly 
distributed random variable in (0,1), is defined as the rain-
fall probability. With these two inverse equations, the daily 
rainfall amount of a regular wet day can be generated. 

The distribution of extreme events is often assumed to 
be a Pearson type III distribution (PT3) or Log Pearson type 
III distribution (LPT3). Heavy seasonal rainfall in June and 
typhoons bring heavy rainfall to Taiwan every year. With-
out generating severe storm rainfall properly, rainfall char-
acteristics are not reproduced realistically. This work selects 
the PT3 distribution and LPT3 distribution as candidates to 
generate storm rainfall.

When PT3 is used to generate rainfall the relationship 
between generated rainfall and frequency index (KT) can be 
expressed as Eq. (7).

x X K St m T= +          (7)

where Xt is the daily rainfall amount; Xm  represents the 
mean rainfall of month m; and S is the standard deviation. 
The frequency index (KT) is calculated based on coeffi-
cient of skewness (Cs), the standard normal value and the 
exceedance probability. While LPT3 is used to generate 
rainfall, the relationship between estimated rainfall and fre-
quency index is the same. However, Xm , S, and Cs denote 
the mean, standard deviation and coefficient of skewness of 
the values of the logarithms of data, respectively. 

2.3 Hyetograph 

If it is a severe storm, daily rainfall amount is further al-
located to each hour based on a generated hyetograph. Sev-
eral methods have been developed to describe the temporal 
distribution of rainfall for severe storms (Huff 1967; Yen 
and Chow 1980; Pilgrim and Codery 1975; Koutsoyiannis 
and Foufoula-Georgiou 1993; Cheng et al. 2001). Eagleson 
(1970) noted that considerable evidence suggests that for 
given climatic conditions, events of a given scale exhibit 
quite similar distributions when normalized with respect to 
size and duration. According to that work, convective and 
frontal storms tend to have their peak rates near the begin-
ning of rainfall. Meanwhile, cyclonic events have peak 
rainfall somewhere near the central of the storm duration. 
Therefore, this work adopts the Huff method (Huff 1967) 
to classify rainfall into 4 types. The storms are classified 
into four groups, depending on whether peak rainfall oc-
curs in the first, second, third, or fourth quarter of the storm 
period. The percentage of rainfall during each hour can be 
calculated for different groups. The shape functions and oc-
currence probabilities of the four patterns can be estimated 
from historical weather data.

When a severe storm event is generated, a uniformly 
distributed random number is sampled to generate a hyeto-
graph, as shown in Eq. (8)

K
if P

Min P i P i

1 1

<
w

K i
K

w i
K

w2 4 1
1

1

#

#

f

f
=

# # =
-

=

^
^ ^

h
h h"

*
,/ /

     (8)

where K is the generated severe storm pattern; Pw(i) is the 
probability of pattern i for the wet season; and i = 1, 2, 3, 
4. If a severe storm is generated for dry seasons, Pw(i) is 
replaced with Pd(i). After the severe storm pattern K is gen-
erated, the hourly rainfall is expressed as Eq. (9).

, , ....,X p X for h 1 2 24, ,t h k h t= =        (9)

where Xt, h is hourly rainfall of day t; Xt is total daily rainfall 
generated by Eq. (7); and pk, h is rainfall percentage of h hour 
of pattern k, respectively.
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3. REsUlts

The proposed weather generator is applied to two study 
areas, Shihmen reservoir and Tsengwen reservoir water-
sheds, in Taiwan. The following subsections describe the 
study areas and results with respect to generating daily and 
embedded hourly rainfall data.

3.1 study Area

Because the tropic of Cancer passes through Central 
Taiwan, weather patterns in northern and southern Taiwan 
markedly differ from each other. Northern and southern Tai-
wan are subtropical and tropical climates, respectively. This 
work evaluates the applicability of the proposed rainfall 
generator by selecting the Shayun rain gauge located in the 
Shihmen reservoir watershed and the Tsengwen rain gauge 
in the Tsengwen reservoir watershed as case studies. Shih-
men reservoir is a vital water supply for northern Taiwan. 
Total area of the Shihmen reservoir watershed is approxi-
mately 763 square kilometers. The mean monthly temper-
ature is around 12 to 26°C, and the average annual tem-
perature is about 20°C. Annual rainfall is about 2800 mm,  
and nearly 74% of annual rainfall occurs in the wet sea-
son (May through October). However, the Tsengwen rain 

gauge is in the Tsengwen reservoir watershed, located in 
the upstream of Tsengwen River (Fig. 2). As the largest res-
ervoir in Taiwan, Tsengwen reservoir is the most important 
reservoir in southern Taiwan. Although annual temperature 
of Tsengwen reservoir watershed is around 24.6°C, more 
than 80% of the days during the wet season has a maxi-
mum temperature exceeding 30°C. Even over 40% of the 
days in March, April and November have a daily maximum 
temperature higher than 30°C. Annual rainfall in this area 
is approximately 2900 mm, and 90% of the rainfall occurs 
during the wet season. According to recorded weather data, 
the Tsengwen Reservoir watershed has a high temperature, 
few wet days, and high rainfall intensity. 

3.2 Rainfall Generation

Rainfall is separated into regular rainfall and severe 
storms with the threshold of 130 mm daily rainfall. The 
rainfall data used in this study for the Shayun and Tsengwen 
rain gauge stations are from 1968 to 2008 and 1975 to 2010, 
respectively. In the proposed CWG model, exponential dis-
tribution and Weibull distribution are candidates for repro-
ducing regular daily rainfall, while the PT3 distribution and 
LPT3 distribution are candidates to generate daily rainfall 
for severe storms. Proper distributions are selected using the 

Fig. 2. The locations of the two study watersheds and rain gauges.
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goodness of fit (GOF) test. This section discusses the per-
formance of generating wet day probability, daily rainfall, 
and hourly rainfall.

3.2.1 Wet Day Probability

Reproducing wet day probabilities performance is 
examined. Table 1 lists the historical and generated un-
conditional wet day probability P(W) and conditional wet 
day probability P(W|W) and P(W|D). While generating the 
rainfall data, whether or not the first day of each month is 
a wet day using P(W). The monthly P(W) of the Shayun 
rain gauge ranges from 0.23 to 0.52 (Table 1). Notably, 
P(W) during the wet season is slightly higher than during 
the dry season. As mentioned earlier, 90% of the rainfall 
in the Tsengwen reservoir watershed occurs during the wet 
season. This explains why the wet day probability during 
the wet season is significantly higher than during the dry 
season. Additionally, P(W) ranges from 0.15 to 0.66 during 
the wet season and from 0.09 to 0.24 during the dry season, 
respectively. In particular, P(W) of November and Decem-
ber is only 0.09.

P(W|D) is the probability of a wet day given that the 
previous day is a dry day. A lower P(W|D) implies more 
difficulty in changing to a wet day if the previous day is a 
dry one. Therefore, while P(W|D) is lower, the correspond-
ing P(W) is lower. The most obvious example is Tsengwen, 
in which the P(W|D) values in November and December are 
only 0.06, and the corresponding P(W) is only 0.09. P(W|W) 
is the probability of rainfall for two consecutive days. In 
both Shayun and in Tsengwen the probability of rainfall for 
two consecutive days exceeds 40%. Additionally, P(W|W) 
for the two areas exceeds 50% during the wet season. 

Table 1 indicates that the generated P(W), P(W|D) and 
P(W|W) are the same or only slightly differ from historical 
data for each month. The generated monthly trends are the 
same as the historical ones, indicating that the seasonality 
and daily variation of rainfall can be reproduced properly by 
the proposed CWG model.

3.2.2 Daily Rainfall for Regular Wet Days

The rainfall cumulative distribution function profound-
ly plays a key role in the amount of rainfall generated. Be-
fore the CWG model is applied, daily rainfall data for each 
month are used to undertake the GOF test for each month. 
The distribution deemed appropriate for the most months is 
selected. Notably, the statistical parameters of the distribu-
tions (e.g., monthly mean wet day rainfall) differ for each 
month. Table 2 summarizes the GOF test results and the 
used parameters for each month.

According to the GOF test results, the Weibull distribu-
tion passes the test for all months and is subsequently used 
for the Shayun rain gauge. The Weibull distribution fits 

well in the months having lower rainfall, such as January 
and February. In January, the Weibull distribution repro-
duces the rainfall data close to the historical data (Fig. 3a).  
In those months with higher rainfall, some errors occur be-
tween generated rainfall and historical rainfall. For instance, 
in July, the application of Weibull distribution slightly over-
estimates the rainfall, which is less than 10 mm and little 
underestimates the rainfall ranging from 20 to 80 mm. Anal-
ysis results indicate that, except of December, the Weibull 
distribution tends to perform better in terms of rainfall re-
production of the dry season for the Shayun rain gauge as 
shown in Table 3.

Both the Exponential distribution and Weibull distribu-
tion do not pass the GOF test for all months of the Tsengwen 
rain gauge. The distribution to have more months passing 
the GOF test is selected. Thus, the Weibull distribution is 
used for the Tsengwen rain gauge. Similar to the application 
to the Shayun rain gauge, the errors between generated and 
observed rainfall data are negligible in January. However, in 
July, although the generated rainfall between 20 to 80 mm 
is slightly underestimated, the errors are less than 8 mm. 
The above results are also reflected in the monthly rainfall. 
The generated and historical rainfall errors are greater dur-
ing the wet season than during the dry season (Fig. 3b and 
Table 3). 

Historical rainfall data are compared with correspond-
ing generated rainfall data, which have the same cumulative 
probability. The root mean square error (RMSE) of Shayun 
and Tsengwen are 12.8 mm (0.6%) and 26.8 mm (1.3%), 
respectively. The Nash-Sutcliffe efficiency coefficients are 
0.98 and 0.97 in Shayun and Tsengwen, respectively. The 
above results further indicate that regular daily rainfall can 
be reproduced reasonably by the CWG model for the two 
study rain gauges.

3.3 Hourly Rainfall Generation for severe storms

A severe storm is defined here as daily rainfall exceed-
ing 130 mm; in addition, hourly rainfall is required. The PT3 
and LPT3 distributions are examined using the GOF test to 
identify the appropriate distribution for the study areas. Due 
to limited data, all storm events are tested together. Notably, 
only LPT3 passes the test for the Shayun station, while both 
PT3 and LPT3 pass the test for the Tsengwen station. Thus, 
LPT3 and PT3 are selected for the Shayun and Tsengwen 
stations, respectively. Figures 4a and b compare the gener-
ated and historical distributions for the two study areas. The 
historical distribution here is an empirical distribution based 
on historical rainfall data.

Although the amount of severe storm data in both sta-
tions is for more than 100 days, the historical rainfall prob-
ability distribution of the two stations is unlikely to perfect-
ly fit the selected distributions. Although LPT3 passes the 
GOF test, Fig. 4a indicates that LPT3 may underestimate 
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Table 1. Historical and generated wet day probability of Shayun and Tsengwen rain gauges.

Month

shayun tsengwen

P(W) P(W|D) P(W|W) P(W) P(W|D) P(W|W)

His Gen His Gen His Gen His Gen His Gen His Gen

1 0.30 0.30 0.20 0.20 0.54 0.53 0.12 0.12 0.08 0.09 0.42 0.38

2 0.40 0.40 0.22 0.23 0.67 0.66 0.17 0.17 0.11 0.11 0.49 0.47

3 0.43 0.42 0.25 0.26 0.66 0.65 0.19 0.19 0.12 0.12 0.47 0.46

4 0.43 0.42 0.30 0.30 0.60 0.59 0.24 0.24 0.16 0.16 0.50 0.48

5 0.51 0.50 0.33 0.33 0.68 0.67 0.35 0.34 0.22 0.22 0.59 0.57

6 0.52 0.52 0.31 0.32 0.71 0.71 0.53 0.52 0.32 0.31 0.72 0.71

7 0.41 0.40 0.26 0.26 0.63 0.61 0.52 0.51 0.35 0.35 0.68 0.67

8 0.45 0.45 0.29 0.30 0.64 0.63 0.66 0.66 0.46 0.47 0.76 0.76

9 0.41 0.40 0.24 0.24 0.66 0.64 0.49 0.49 0.35 0.35 0.64 0.64

10 0.23 0.22 0.12 0.13 0.57 0.54 0.15 0.15 0.10 0.10 0.43 0.41

11 0.24 0.24 0.16 0.17 0.51 0.48 0.09 0.08 0.06 0.06 0.43 0.40

12 0.23 0.22 0.16 0.16 0.46 0.43 0.09 0.09 0.06 0.06 0.40 0.39

Table 2. The GOF test results for the Shayun and Tsengwen rain gauges. 

severe storm

shayun tsengwen

season PT3 LPT3 PT3 LPT3

Wet/Dry No Yes Yes Yes

Regular Wet Day

Month
shayun tsengwen

Exponential Weibull Mean rainfall  
(mm day-1) Exponential Weibull Mean rainfall  

(mm day-1)

January Yes Yes 8.6 Yes Yes 5.6

February Yes Yes 13.8 Yes Yes 7.7

March Yes Yes 13.8 Yes Yes 9.0

April Yes Yes 14.0 No Yes 12.5

May No Yes 16.7 Yes Yes 20.3

June No Yes 21.8 Yes No 25.1

July No Yes 18.6 No Yes 22.9

August No Yes 20.9 No Yes 25.7

September No Yes 20.7 No Yes 17.7

October No Yes 15.1 Yes Yes 12.9

November Yes Yes 7.5 Yes Yes 7.2

December Yes Yes 8.5 Yes Yes 5.4

rainfall for cumulative probabilities in the range of 0.7 to 
0.9 for the Shayun station. Meanwhile, according to Fig. 4b, 
PT3 may underestimate rainfall for cumulative probabilities 
ranging from 0.8 to 0.9 for the Tsengwen station. The errors 
between the historical and generated heavy rainfall can thus 
be expected. The average severe storm rainfall of historical 
and generated is 237 and 230 mm in Shayun and 230 and 

240.6 mm in Tsengwen, respectively. 
The hyetography is assumed to last only 24 hours. A 

future study should improve this work to generate different 
rainfall durations. The hyetographs for two study areas are 
also analyzed in the CWG model. According to the Huff 
method, the hyetograph in each study area is classified into 
four categories, followed by estimation of average rainfall 
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Table 3. Historical and generated monthly rainfall (mm) for Shayun and Tsengwen.

Fig. 3. Historical and generated distributions of regular rainfall for January and July (a) Shayun and (b) Tsengwen. 

Month
shayun tsengwen

Historical Generated Error Historical Generated Error

1 82.5 83.5 1.3% 21.8 23.0 5.6%

2 153.7 150.9 -1.9% 37.4 36.7 -2.1%

3 185.1 173.2 -6.4% 52.9 50.7 -4.2%

4 177.4 168.3 -5.1% 90.9 84.5 -7.1%

5 269.7 247.4 -8.3% 216.2 189.3 -12.4%

6 330.3 305.1 -7.7% 385.8 331.0 -14.2%

7 229.6 219.0 -4.6% 351.4 320.2 -8.9%

8 274.4 257.3 -6.2% 499.0 440.7 -11.7%

9 243.8 231.5 -5.1% 253.0 231.3 -8.6%

10 98.2 96.8 -1.4% 60.7 59.0 -2.7%

11 60.2 61.5 2.1% 19.3 18.8 -2.6%

12 62.1 57.1 -8.1% 15.1 14.9 -1.5%

Fig. 4. Historical and generated distributions of severe storms (a) Shayun and (b) Tsengwen.

(a) (b)

(a) (b)
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percentages for each hour. Table 4 lists the rainfall percent-
ages. According to this table, the hourly rainfall can be gen-
erated. 

4. DIscUssIoN
4.1 benefits of separating severe storms from Regular 

Rainfall

Conventionally, regular rainfall and severe storms are 
generated from the same distribution. In this work the rain-
fall data are separated into two groups and generated using 
two different distributions. The generated rainfall data in 
July of the Shayun station illustrates the benefits of using a 
different distribution for severe storms. Historical statistics 
are used first to reproduce rainfall data using the Weibull 
distribution for regular rainfall. Closely examining rain-
fall amounts less than 130 mm reveals that RMSE is only  
3.9 mm. If rainfall data are not classified into two categories 
and the Weibull distribution is used to generate all rainfall 
events, RMSEs are 5.8 and 14.7 mm for rainfall amount less 
than 130 mm and for all rainfall data, respectively. Further 

examining the generated rainfall over 130 mm reveals that 
RMSE is 115.3 mm using one distribution, while RMSE 
is only 22.0 mm using a different distribution for severe 
storms. The analysis results indicate that the Weibull distri-
bution or a single distribution may not be able to generate 
rainfall amount for both regular rainfall and severe storms 
well. Rainfall data should thus be classified into different 
categories as well as data generated using different distribu-
tions. 

4.2 threshold of severe storms

Based on a threshold of 130 mm, rainfall data are 
classified into regular rainfall and severe storm categories. 
Rainfall data are then generated for the two categories using 
two distributions. The performance of different thresholds is 
also considered and evaluated in this work. According to the 
storm rainfall definition provided by the Central Weather 
Bureau of Taiwan, accumulated rainfall in 24 hours over 
50, 130, and 200 mm is called heavy rainfall, extremely 
heavy rainfall and torrential rainfall, respectively. Thus, the 

Table 4. Rainfall percentage in each hour of 4 severe storm types.

Hour
shayun tsengwen

type1 type2 type3 type4 type1 type2 type3 type4

1 4.37 1.66 1.68 1.38 0.86 0.83 2.01 0.71

2 10.16 1.47 2.11 1.28 2.06 1.61 1.72 4.12

3 10.51 1.30 2.18 1.32 3.49 2.45 1.73 2.26

4 7.75 2.23 2.68 1.70 6.56 3.93 2.15 2.24

5 7.46 2.66 2.22 2.46 9.34 3.76 2.13 5.95

6 7.40 3.34 2.48 2.53 10.42 5.46 2.37 5.19

7 5.28 4.99 3.20 3.24 8.08 7.21 2.55 7.21

8 3.29 6.47 3.54 2.56 5.33 7.98 3.23 7.32

9 2.00 6.64 3.57 2.87 6.31 8.92 4.87 5.07

10 2.75 6.75 4.24 2.75 3.64 8.90 5.70 6.06

11 3.01 8.09 4.76 2.24 2.84 7.30 5.84 6.42

12 3.27 10.98 5.28 3.70 3.57 6.59 8.65 4.24

13 2.20 8.56 7.04 3.78 4.46 4.93 9.22 2.02

14 2.35 4.26 8.08 3.90 3.34 4.18 7.92 1.76

15 1.77 3.55 7.89 5.02 4.54 3.31 6.92 2.92

16 3.47 3.95 7.64 5.43 2.53 2.53 6.66 3.42

17 3.51 4.19 6.77 6.71 1.82 3.63 5.10 3.11

18 3.20 4.40 6.31 7.42 3.34 3.62 3.59 5.29

19 3.72 4.07 5.07 10.47 4.41 2.92 3.57 7.86

20 3.76 3.14 3.90 9.15 3.58 2.46 3.90 9.12

21 3.02 2.46 3.37 7.34 3.59 2.62 4.03 4.42

22 3.21 2.25 2.83 7.35 2.95 2.16 2.77 1.24

23 1.62 1.35 1.83 3.74 1.35 1.85 1.89 1.07

24 0.95 1.26 1.34 1.68 1.62 0.86 1.48 0.98
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thresholds of 50, 130, and 200 mm are tested and evalu-
ated. The CWG model can reproduce weather data well for 
the regular rainfall category, regardless of which threshold 
is selected. Therefore, this section discusses how different 
thresholds affect the ability to generate severe storms by ex-
amining the GOF test. 

A higher rainfall threshold (i.e., 200 mm day-1) results 
in less rainfall data in the severe storm category, making it 
difficult to identify a proper distribution. However, although 
a lower rainfall threshold (i.e., 50 mm day-1) has more data 
in the severe storm category; neither PT3 nor LPT3 can pass 
the GOF test. As mentioned earlier, the rainfall threshold 
of 130 mm can result in adequate generation for the severe 
storm categories. The threshold is thus proper for the two 
study areas in Taiwan. However, the threshold may vary for 
different locations and, therefore, must be examined.

4.3 length of Generation

The CWG model requires, at most, two more random 
numbers to generate a rainfall event than conventional 
weather generators. One random number is used to deter-
mine whether it is a severe storm, while the other number 
is used to select the hyetograph type. Thus, the different 
lengths of generation are tested to determine whether the 
CWG model requires generating more years to hold weather 
statistics. In this work, lengths of 10, 30, 50, 100, and 500 
years are generated for the Shayun station. The statistics of 
different generation lengths are analyzed as follows. 

A shorter generation length results in larger mean 
monthly rainfall errors between the historical and generated 
data, as shown in Table 5. The error in November reaches 
50% while the generation length is only 10 years. Table 5 
reveals that increasing the generation length gradually re-

Table 5. The monthly rainfall data errors for different simulation years.

duces the error. Notably, the error for each month is less 
than 10%, while the generation length is 500 years. Ad-
ditionally, RMSE of 10-year generation is 29.5 mm, and 
RMSE of 500-year generation decreases to 12.5 mm. A lon-
ger generation length implies a more accurate reproduction 
of rainfall statistics. Table 5 further demonstrates that the 
100-year generation may be sufficient to reproduce statis-
tics reasonably.

Historical and generated wet day probabilities differ by 
less than 4% in each month in the 500-year data (Table 6). 
Moreover, historical and generated P(W) and P(W|D) dif-
fer by less than 1% for each month. However, the maximal 
difference reaches 10% in the 10-year data. In most of the 
months, the difference between historical and generated wet 
day probabilities is higher than that of 500-year data. This 
finding suggests that longer data implies a closer proximity 
of the statistical properties to the historical data. However, 
Table 6 also shows that 100-year generation may reproduce 
wet day probabilities as well as 500-year generation.

4.4 comparison of the Proposed cWG Model with 
lARs-WG Model

The proposed CWG model is compared with the LARS-
WG model. The LARS-WG model is a mature and widely 
implemented weather generation model. In this work, this 
model is applied to generate 500-year rainfall data for the 
Shayun rain gauge station, followed by a comparison of that 
data with those generated by the CWG model. To compare 
the results of the two models, this subsection discusses the 
rainfall probabilities, rainfall amount, and maximum rain-
fall of storms. 

Table 7 lists the difference in wet day probabilities be-
tween the historical and generated data from the CWG mod-
el and the LARS-WG model. The average errors of P(W), 
P(W|D), P(W|W) using the CWG model are 2.5, 1.9, and 
2.7%, while those errors using the LARS-WG model are 
5.1, 6.8, and 5.6%, respectively. The CWG model gener-
ates rainfall events based on rainfall probabilities, thus per-
forming better in terms of reproducing these probabilities.  
Table 8 lists average annual, wet season, dry season, and 
maximal rainfall amounts. The errors of annual rainfall for 
the CWG and LARS-WG models are only 1.6 and 2.2%, re-
spectively. The CWG model provides slightly better genera-
tions for annual and dry season rainfall than the LARS-WG 
model. The generated annual and wet/dry season rainfall is 
all close to observed weather data. Both the CWG and the 
LARS-WG model can reproduce historical statistics accu-
rately.

Calculations are made of the mean wet day rainfall of 
those, which are lower than 130 mm for each month. RMSEs 
of the CWG model during the wet season, dry season, and 
the entire year are 1.36 mm (6.2%), 0.20 mm (1.6%), and 
0.97 mm (3.9%); meanwhile, RMSEs of the LARS-WG 

Month 10 years 30 years 50 years 100 years 500 years 

1 14.9% 11.6% -5.1% -4.8% 0.5%

2 -12.6% -8.9% 15.4% 0.6% -2.7%

3 -30.2% 18.2% 4.0% 2.6% -5.8%

4 -2.2% -3.1% -8.8% -2.9% -5.4%

5 -0.1% -3.7% -14.3% -7.3% -7.0%

6 -18.1% -9.9% -12.6% -10.3% -7.6%

7 3.7% -17.7% -19.1% -4.7% -4.4%

8 -12.8% 1.8% -5.9% -8.0% -7.6%

9 -10.3% -31.0% -10.2% -8.4% -3.6%

10 21.8% 5.6% 5.3% -4.0% -3.6%

11 47.8% -14.1% -2.4% -2.8% 8.4%

12 -16.5% -15.6% 1.4% 6.5% -8.3%

Average 15.9% 11.8% 8.7% 5.2% 5.4%
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Table 6. The wet day probability errors for different simulation years.

Table 7. The wet day probabilities for the historical data and generated weather data from the CWG 
model and the LARS-WG model.

P(W) P(W|D) P(W|W)

  years 
 Month

10 30 50 100 500 10 30 50 100 500 10 30 50 100 500

1 0.00 0.02 -0.02 -0.01 0.00 -0.02 0.01 -0.02 -0.01 0.00 0.04 0.02 -0.02 0.00 -0.02

2 -0.04 -0.02 0.05 0.00 0.00 0.00 0.02 0.04 0.00 0.01 -0.07 -0.05 0.01 0.00 -0.01

3 -0.07 0.04 -0.01 0.00 -0.01 -0.01 0.04 0.02 0.01 0.01 -0.09 0.00 -0.04 -0.01 -0.02

4 0.02 -0.02 -0.03 -0.02 -0.01 0.00 -0.03 0.00 0.00 0.00 0.03 0.01 -0.04 -0.02 -0.01

5 0.05 0.01 -0.03 0.01 0.00 0.08 0.01 -0.02 0.01 0.01 -0.01 0.01 -0.02 0.00 -0.01

6 -0.03 0.00 -0.02 -0.01 0.00 0.02 0.00 -0.01 0.00 0.01 -0.05 0.01 -0.01 0.00 0.00

7 -0.06 -0.01 -0.04 0.00 -0.01 -0.02 0.00 -0.02 0.00 0.00 -0.08 -0.02 -0.04 -0.01 -0.02

8 -0.08 0.01 0.04 0.00 0.00 -0.06 0.03 0.05 0.01 0.01 -0.03 -0.01 0.00 -0.02 -0.01

9 -0.01 -0.07 -0.02 -0.01 -0.01 0.00 -0.02 0.01 0.01 0.00 -0.01 -0.08 -0.04 -0.03 -0.01

10 0.00 -0.02 0.01 -0.01 -0.01 0.00 0.00 0.01 0.00 0.00 -0.01 -0.05 0.00 -0.05 -0.03

11 0.10 0.00 -0.02 0.01 0.00 0.05 0.01 -0.02 0.00 0.01 0.08 -0.05 -0.01 0.02 -0.03

12 0.03 -0.01 0.00 0.00 -0.01 0.04 -0.01 0.01 0.01 0.00 -0.03 0.01 -0.05 -0.03 -0.04

Month
P(W) P(W|D) P(W|W)

His cWG lARs His cWG lARs His cWG lARs

1 0.30 0.30 0.32 0.20 0.20 0.22 0.54 0.53 0.52

2 0.40 0.40 0.40 0.22 0.23 0.22 0.67 0.66 0.67

3 0.43 0.42 0.45 0.25 0.26 0.27 0.66 0.65 0.68

4 0.43 0.42 0.45 0.30 0.30 0.31 0.60 0.59 0.62

5 0.51 0.50 0.49 0.33 0.33 0.37 0.68 0.67 0.61

6 0.52 0.52 0.50 0.31 0.32 0.30 0.71 0.71 0.70

7 0.41 0.40 0.40 0.26 0.26 0.25 0.63 0.61 0.62

8 0.45 0.45 0.39 0.29 0.30 0.28 0.64 0.63 0.56

9 0.41 0.40 0.41 0.24 0.24 0.23 0.66 0.64 0.66

10 0.23 0.22 0.21 0.12 0.13 0.13 0.57 0.54 0.51

11 0.24 0.24 0.21 0.16 0.17 0.14 0.51 0.48 0.47

12 0.23 0.22 0.23 0.16 0.16 0.18 0.46 0.43 0.40

model are 0.85 mm (4.1%), 1.04 mm (7.7%), and 0.95 mm 
(5.9%). Notably, the CWG model performs better during the 
dry season and similar outcomes as the LARS-WG model in 
wet season and annual rainfall generation. 

Owing to its ability to generate rainfall based on the 
semi-empirical distribution, the LARS-WG model can re-
produce historical distribution. The generated maximal 
rainfall from the LARS-WG model is 601 mm (Table 8), 
which is very close to the observed maximal rainfall, 605 
mm among year 1968 through 2008. Possibly severe rain-
fall events that have not yet been observed can be gener-
ated from the LPT3 distribution. Among 500-year genera-

tion, the generated maximal rainfall is 1060 mm (Table 8), 
which is significantly larger than the observed maximum. 
To generate rainfall for severe storms under climate change 
scenarios the CWG model can generate possible extreme 
events, while the LARS-WG model may underestimate pos-
sible future extreme events. 

5. coNclUsIoNs

A weather generator often produces weather data based 
on weather statistics. Conventional weather generators re-
produce data from a single distribution function and can only 
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generate the same temporal resolution data, such as daily 
temperature, rainfall, or solar radiation. Recent observa-
tions have identified more frequent and intensive flood and 
drought events in the recent decades. Additionally, serious 
flood and drought events may occur consecutively. Climate 
change may worsen this situation. Assessing the impacts of 
consecutive floods and droughts requires different temporal 
resolution weather data to conduct a continuous simulation. 
Thus, this work develops a continuous weather generation 
(CWG) model to produce daily rainfall for regular wet days 
and embedded hourly rainfall for days with severe storms. 
The CWG model was applied to two study areas to evaluate 
its performance. Simulation results indicate the proposed 
model can keep rainfall statistics and reproduce rainfall data 
reasonably. The CWG model was also compared with the 
widely used LARS-WG model. The analysis results indi-
cate that the CWG model can provide daily rainfall data 
as reliably as the LARS-WG model can. Additionally, the 
CWG model can produce daily rainfall data with embedded 
hourly rainfall for those wet days with severe storm events. 
Moreover, the proposed model can generate more extreme 
events than the LARS-WG model can. The CWG model is 
applicable to climate change studies that evaluate the im-
pacts of consecutive extreme flood and drought events. 

The proposed CWG model adopts a threshold to divide 
rainfall data into two categories: regular rainfall and severe 
storms. The threshold of 130 mm is validated for the two 
study areas. However, the threshold may vary for differ-
ent locations. Besides, two consecutive days having severe 
storms are treated as independent events in this study due 
to the limited number of consecutive severe storm events. 
However, the consecutive severe storm events require more 
attention in future studies. If there are many consecutive se-
vere storm events, conditional probabilities or severe storm 
duration should be considered in the generation model. On 
the other hand, the proposed model requires two more ran-
dom numbers to generate hourly rainfall data for each se-
vere storm. If shorter data, such as 10-year or 30-year data, 
are generated, they may not be sufficient to keep rainfall 
statistics. Generating longer data is suggested and the length 
of 100 year may be sufficient. Finally, the proposed CWG 
model focused only on generating rainfall data for a single 
gauge station in this work. Future studies should examine 

the feasibility of generating other weather variables with 
embedded hourly data and generating areal weather data for 
a watershed. Efforts are underway to develop a hydrological 
model and reservoir operation model, which continuously 
run in daily and hourly time steps for regular wet days and 
severe storms. Importantly, the CWG model along with 
these simulation models is expected highly promising for 
use in climate change studies to assess the possible impacts 
of consecutive extreme weather and hydrological events in 
the future.
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