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ABSTRACT

This study proposes a probabilistic drought forecasting model to forecast meteorological drought in Southern Taiwan 
using the El Niño-Southern Oscillation (ENSO) index. Meteorological drought is defined by the standardized precipitation 
index (SPI), and the ENSO index is El Niño sea surface temperature (SST). Two probabilistic forecasting model architec-
tures were constructed based on the transition probabilities from El Niño SSTs to SPIs. Both model architectures forecast a 
one-month-ahead probability distribution for meteorological drought using different combinations of El Niño SST variables. 
Forecasting results showed the robustness of the probabilistic drought forecasting models. In addition, this study discussed the 
selection of El Niño SST variables used in the probabilistic drought forecasting model, and found that models with a single 
SST input outperformed those with multiple SST inputs.
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1. INTRODUCTION

A drought can be classified as meteorological, agricul-
tural, or hydrological, based on the hydrological components 
considered. Although there are differing classifications of 
droughts, all types of droughts originate from a shortage of 
precipitation. The interannual precipitation variability in 
Taiwan is large, and the precipitations in the dry and wet 
seasons within a given year are quite distinct. Therefore, Tai-
wan frequently faces the threat of drought, making drought 
monitoring and forecasting an important issue.

This study examines the type of meteorological drought 
that features an extended period of below normal levels of 
precipitation. Meteorological droughts are expressed in 
terms of the standardized precipitation index (SPI) pro-
posed by McKee et al. (1993). The SPI is easy to apply, 
and has various advantages, as discussed by Hayes et al. 
(1999). Therefore, the SPI has been widely used to inves-
tigate meteorological droughts in many countries, includ-
ing Australia (Wen et al. 2011), Canada (Quiring and Pa-
pakryiakou 2003), China (Wu et al. 2001; Liu et al. 2012), 

Greece (Tsakiris and Vangelis 2004; Dimitrakopoulos et al. 
2011), India (Mishra and Desai 2005), Italy (Bonaccorso et 
al. 2003; Piccarreta et al. 2004), Spain (Lana et al. 2001; 
Pasho et al. 2011), Taiwan (Shiau 2006; Chen et al. 2009), 
and the United States (Edwards and McKee 1997; Ji and 
Peters 2003).

Drought is dominated by regional precipitation patterns 
that are influenced by large-scale atmospheric circulation. 
Taiwan is located in the northwestern part of the Pacific 
Ocean; therefore, rainfall and drought in Taiwan are heav-
ily influenced by Pacific ocean-atmosphere systems. The El 
Niño-Southern Oscillation (ENSO) is a large-scale climate 
and ocean phenomenon across the tropical Pacific Ocean. 
Therefore, ENSO has been reported to affect the climate 
and weather in Taiwan, as well as many other places world-
wide (e.g., Chen and Lu 2000; Li and Wang 2005; Deng et 
al. 2008; Zhang and Li 2008; Chen et al. 2012). ENSO is 
conventionally identified as the warming of the sea surface 
temperature (SST) in the eastern Pacific (EP), i.e., the EP 
ENSO. Recently, another type of ENSO has also been re-
ported in the central Pacific (CP) that is referred to as the CP 
ENSO (e.g., Hendon et al. 2009; Kao and Yu 2009; Yu and 
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Kim 2010; Yu et al. 2012). This study focused on the con-
ventional EP ENSO that is identified using the SST indices.

Many studies have described the teleconnection be-
tween droughts and ENSO and its applications. For exam-
ple, Janicot et al. (1996) analyzed the correlation between 
Sahel droughts and ENSO and explained how the dynamics 
of ENSO forcings contributed to the Sahel droughts. Rajag-
opalan et al. (2000) investigated the spatial structure of tele-
connections between the winter ENSO and summer droughts 
for the continental United States, discussing drought telecon-
nections in response to ENSO during different decades in the 
twentieth century. Manatsa et al. (2008) used ENSO-related 
information (extreme positive sea level pressure anomalies 
at Darwin, Australia) to predict drought in Zimbabwe. Ryu 
et al. (2010) investigated the relationship between the mul-
tivariate ENSO index and hydrologic drought in the United 
States, exploring the spatial and temporal variations of hy-
drologic droughts corresponding to ENSO events. Vicente-
Serrano et al. (2011) analyzed the influence of the ENSO 
phenomenon on drought severity at the global scale to reveal 
the differing impacts of ENSO on severity, timescales, and 
periods of drought. Hallack-Alegria et al. (2012) confirmed 
the correlation of seasonal and annual precipitation in North-
west Baja California, Mexico, with ENSO, and analyzed 
drought frequency conditional to the ENSO indices.

Research on the ENSO effects on the climate and 
weather in Taiwan usually focuses on the spring rainfall. 
Lu (2002) identified the biennial oscillation signal of Janu-
ary and February precipitation in Taiwan, finding that the 
biennial oscillation of precipitation is associated with the 
biennial oscillation signal of ENSO, revealing that the local 
climate in Taiwan is influenced by low-frequency variations 
of tropical and extratropical climate systems. Jiang et al. 
(2003) examined the effect of interdecadal variation on the 
relationship between spring rainfall (February and March) 
and ENSO, elucidating the characteristics of large-scale 
circulations associated with heavy spring rainfall events in 
Taiwan in strong ENSO and non-ENSO years. Chen et al. 
(2008) studied the asymmetric relationship between spring 
rainfall (February, March, and April) in Taiwan and ENSO. 
This asymmetric relationship shows that spring rainfall 
in Taiwan can be enhanced or suppressed by an El Niño 
event because of connections between ENSO and the Indian 
Ocean SST anomaly and associated large-scale atmospheric 
circulation. Kuo et al. (2010) used wavelet analysis to ana-
lyze the variability and oscillations from November to Janu-
ary and January to March rainfall levels in Taiwan and the 
seasonal SST of the Pacific Ocean.

Research on the connection between rainfall in sea-
sons other than spring in Taiwan and ENSO is scant. This 
is because rainfall in the summer and autumn in Taiwan 
is dominated by typhoons, which are weakly connected to 
ENSO. Because the spring rainfall in Taiwan can be either 

enhanced or suppressed by an El Niño event, and the sum-
mer and autumn rainfall in Taiwan has little direct correla-
tion with ENSO, the obtainment of drought information in 
Taiwan from ENSO is difficult. Therefore, we used a proba-
bilistic model based on our previous study (Kuo et al. 2012) 
to forecast meteorological drought in Taiwan from ENSO 
SSTs. The probabilistic model in this study is based on the 
concept of transition probability. Two forecasting model 
architectures were constructed in accordance with the two 
types of transition probability matrices of drought state and 
SST state in different time horizons. The first transition 
probability matrix was built pertaining to drought state and 
SST state in the same month; the other was constructed us-
ing the drought state in the present month and SST state in 
the previous month.

The methodology of the transition probability matrix 
and the probabilistic model architecture is described in sec-
tion 2 (Methodology). The data description used in this 
study is provided in section 3 (Study Area and Data Sets). 
The analytical process and results, including the probabi-
listic model development, probabilistic drought forecasting 
results, and a comparison of the forecasting performance 
of the two model architectures, are presented in Section 4 
(Results and Discussion). In addition, this study examined 
various combinations of SST variables and discusses the se-
lection of the ENSO SST variables used in the probabilistic 
drought forecasting model. Section 5 (Conclusions) offers 
concluding remarks.

2. METHODOLOGY
2.1 Drought Definition

The SPI, proposed by McKee et al. (1993), was used 
to define the meteorological drought in this study. The first 
step in the SPI calculation was to fit the precipitation data to 
a probability distribution. Thereafter, the cumulative prob-
ability of precipitation could be derived from the probability 
distribution function. This cumulative probability was con-
verted into a standard normal variable with a mean value of 
zero and a variance value of one (i.e., the SPI took on the 
value of a standard normal variable). Therefore, negative SPI 
values imply that precipitation is less than the median. Con-
sequently, positive and negative SPI values indicate wet and 
dry conditions, respectively. Different levels of drought can 
be defined according to the differing thresholds of negative 
SPI values. Detailed description of the SPI calculation can 
be found in the Lloyd-Hughes and Saunders (2002) study.

2.2 ENSO Indices

ENSO can have effects on regional rainfall world-
wide. Therefore, scientists developed a number of indices 
to monitor ENSO events. Two groups of ENSO indices are  
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commonly used. One group of indices is based on the sur-
face atmospheric pressure, and the other is based on the 
SST. A well-known index of the former group is the South-
ern Oscillation Index (SOI), which is the pressure difference 
between the eastern and western tropical Pacific (i.e., Tahiti 
and Darwin, respectively). The latter group often refers to 
the SST of specific regions along the equatorial Pacific, in 
which SST regions of El Niño 1 + 2 (0° - 10°S, 90° - 80°W), 
El Niño 3 (5°N - 5°S, 150° - 90°W), El Niño 3.4 (5°N - 5°S, 
170° - 120°W), and El Niño 4 (5°N - 5°S, 160°E - 150°W) 
are well known. El Niño SST is a more direct measure of 
ENSO relative to the SOI. Therefore, this study used El 
Niño SST as the ENSO index in the analysis.

2.3 Transition Probability Construction

This study employed a concept similar to a Markov 
chain to build a probabilistic model that used the El Niño 
SST state as the input to determine the probabilities of dif-
ferent states of the SPI. A Markov chain is a process in 
which the state of a variable at the present time step chang-
es depending on the states of the same variable at previ-
ous time steps. The changes of state are the transitions, and 
the probabilities pertaining to the changes among states are 
called transition probabilities. Two essential elements of the 
Markov chain are the definition of states and the derivation 
of the transition probability matrix among states. The study 
also used the terminology of a Markov chain to elucidate the 
proposed probabilistic model, although the proposed model 
is not a Markov chain model.

The probabilistic model establishes the state transition 
probability matrix between El Niño SST and SPI variables. 
The first step is to split the variables into several states. 
Based on the data properties and the preliminary test work, 
the monthly El Niño SST was divided into u states with an 
interval increment of 0.2°C, and the monthly SPI was divid-
ed into v states with an interval increment of one. Thereaf-
ter, the numbers of state transitions nij were calculated with 
respect to the observed data, where i was the state of El Niño 
SST (i = 1, 2, …, u); j was the state of SPI (j = 1, 2, …, v); 
and nij indicated the El Niño SST state i that corresponded to 
the SPI state j. Therefore, the matrix of transition numbers 
can be written as Eq. (1).
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Next, let nij be divided by Ni, where Ni is the total number of 
El Niño SST values that falls within state i, as shown by the 
following equation:

N n n ni i i iv1 2 g= + + +  (2)

The transition probability pij can thus be calculated by

p n Nij ij i=  (3)

Consequently, the transition probability matrix P from El 
Niño SST to SPI variables was derived as Eq. (4).

P

p
p

p

p
p

p

p
p

pu u

v

v

uv

11

21

1

12

22

2

1

2

h h

g

g

j

g

h
=

R

T

S
S
S
SS

V

X

W
W
W
WW
 (4)

With the transition probability matrix P, the prob-
ability of occurrence of SPI state j, conditional on El Niño 
SST state i can be specified as pij. The summation of all pij 
in a certain row i is one. Furthermore, where no historical 
El Niño SST data exist in a certain ith state, the transition 
probabilities in the ith row are all zero. The state transition 
probability matrix P built by El Niño SST and SPI variables 
at the same time t can be represented as a conditional prob-
ability form in Eq. (5).

( ) ( )P state j of SPI t state i of SST t6 @ (5)

Figure 1 shows an example of transition probability 
construction. Monthly El Niño SST data were divided into 
several states with an interval increment of 0.2°C, and SPI 
with an interval increment of one. Whereas the SST data 
were within the state of the interval, for example, [24.6°C, 
24.8°C), their corresponding SPI during the same month 
were within states of intervals (-∞, -2), [-2, -1), [-1, 0), [0, 
1), [1, 2), and [2, ∞), which had counts of 0, 0, 1, 3, 2, and 
1, respectively. Therefore, the transition probabilities of the 
respective SPI states conditional on the SST being in the 
state [24.6°C, 24.8°C) were 0, 0, 1/7, 3/7, 2/7, and 1/7 (i.e., 
0, 0, 0.14, 0.43, 0.29, and 0.14). The derived transition prob-
abilities then formed the SPI probability distribution condi-
tional on the SST (as shown in the lower panel of Fig. 1).

2.4 Probabilistic Drought Forecasting Model

A state transition probability matrix was used to build 
the probabilistic drought forecasting model. This study pro-
poses two forecasting model architectures, with the input of 
El Niño SSTs, to forecast SPI one month ahead. The first 
model architecture used the state transition probability matrix 
P built by El Niño SST and SPI variables at the same month 
t, as shown in Eq. (5). To obtain a one-month-ahead forecast  
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of SPI(t + 1) at the present time t, the future SST(t + 1)  
is needed. This study applied an autoregression model of 
SST to obtain SST(t + 1) at the next time step. The archi-
tecture of the first probabilistic drought forecasting model 
(Model 1) is shown in Fig. 2. The second model used a state 
transition probability matrix P built by El Niño SST at time 
t and SPI at time t + 1, as shown in Eq. (6).

( 1) ( )P state j of SPI t state i of SST t+6 @ (6)

Using this state transition probability matrix, SPI(t + 1) at 
the next time step was directly derived using SST(t) at pres-
ent. The architecture of the second probabilistic drought 
forecasting model (Model 2) is shown in Fig. 3.

3. STUDY AREA AND DATA SETS

Taiwan is an island located between the northwestern 
Pacific Ocean and the southeastern coast of the Asian con-
tinent. The climate in Taiwan is marine tropical, and the av-
erage annual precipitation is approximately 2510 mm, with 
a rainy season from May to October and a dry season from 

November to April. Although the mean precipitation in Tai-
wan is plentiful, the temporal distribution of the precipita-
tion is uneven. A large proportion of the annual precipita-
tion is delivered by typhoons that last for only a few days. 
In years where Taiwan experiences few typhoons, below-
average amounts of precipitation are stored in reservoirs, 
and drought is probable in the spring of the following year. 
This type of situation is particularly serious in Southern Tai-
wan (Fig. 4), where 90% of the annual rainfall occurs during 
the wet season. In 2002, a serious drought occurred and had 
a significant impact on industry and agriculture through-
out Taiwan. Huang and Yuan (2004) and Huang and Chou 
(2008) discussed the 2002 drought from the perspective of 
reservoir operation.

This study collected long-term monthly precipitation 
records in Southern Taiwan. Data quality control was con-
ducted to remove suspicious and incomplete data. Conse-
quently, only seven stations (Fig. 4) had completely con-
secutive and high-quality records from 1950 to 2009. The 
average monthly precipitation in Southern Taiwan was cal-
culated pertaining to the seven stations by using the arith-
metic mean method. The average monthly precipitation dis-
tribution in Southern Taiwan during 1950 to 2009 is shown 
in Fig. 4, and the average annual precipitation in this period 
was 2039 mm.

The average monthly precipitation series were used to 
calculate the drought index (i.e., the SPI). This study used 
precipitation data with a three-month timescale to calculate 
the SPI series, which satisfactorily reveals meteorologi-
cal drought in Taiwan (Chen et al. 2009). Therefore, the 
monthly precipitation at month t was taken as the mean of 
precipitation data at months t - 2, t - 1, and t. Data from the 
derived three-month precipitation series were then fitted to 
a probability distribution to calculate the SPI. McKee et al. 
(1993) used the gamma distribution to fit the monthly pre-
cipitation. This study confirmed that the gamma distribution 
fit the precipitation data at a level of significance of 0.05 by 
applying the Kolmogorov-Smirnov test to the three-month 
precipitation data. The gamma distribution was therefore 
used to transfer the cumulative probability of the three-
month precipitation series into the monthly SPI series.

El Niño SST data used in this study were obtained 
from the Extended Reconstructed Sea Surface Temperature 
(ERSST, Version 3b) reconstructed by Smith and Reynolds 
(2003, 2004) and Smith et al. (2008). The ERSST data in-
cluded regions of El Niño 1 + 2, El Niño 3, El Niño 3.4, and 
El Niño 4. The monthly ERSST data (1950 to the present) 
are available at the National Oceanic and Atmospheric Ad-
ministration (NOAA) Web site (http://www.cpc.ncep.noaa.
gov/data/indices).

Consequently, the monthly data of SPI in Southern 
Taiwan and El Niño SST (four sets of El Niño 1 + 2, El 
Niño 3, El Niño 3.4, and El Niño 4) from 1950 to 2009 were 
available for this study. Data from 1950 to 2000 (85% of the 

Fig. 1. Example of transition probability and probability distribution 
construction.

http://www.cpc.ncep.noaa.gov/data/indices
http://www.cpc.ncep.noaa.gov/data/indices
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Fig. 2. Architecture of the first probabilistic drought forecasting model (Model 1).

Fig. 3. Architecture of the second probabilistic drought forecasting model (Model 2).

Fig. 4. Study area and monthly precipitation.
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total data) were used for model calibration. The remaining 
15% of the data (from 2001 to 2009) were used for model 
validation.

4. RESULTS AND DISCUSSION
4.1 Autoregression Model of SST

To use Model 1 to forecast SPI(t + 1) one month ahead, 
autoregression models of SST were constructed. The SST 
data at time t and time t + 1 pertaining to the calibration 
period are shown in Fig. 5, exhibiting high autocorrelation 
between SST data at time t and time t + 1. Linear regres-
sion models can represent the SST relationship. However, 
exponential regression models better fit the SST data. The 
autoregression models of four El Niño SST data sets are 
shown in Eqs. (7) to (10).

El Niño 1 + 2: SST(t + 1) = 9.636 · exp[0.0376 · SST(t)] (7)

El Niño 3: SST(t + 1) = 10.653 · exp[0.0342 · SST(t)] (8)

El Niño 3.4: SST(t + 1) = 10.867 · exp[0.0337 · SST(t)] (9)

El Niño 4: SST(t + 1) = 11.316 · exp[0.0324 · SST(t)] (10)

Table 1 lists the coefficient of correlation (CC) and root 
mean squared error (RMSE) pertaining to the calibration and 
validation results of the autoregression models. As shown in 
Fig. 5 and Table 1, the temperature ranges and accuracies 
of the autoregression models varied, and had the following 
characteristics. The El Niño 1 + 2 region enclosed a smaller 
area than did the other El Niño SST regions. Therefore, the 

Fig. 5. Relationship of sea surface temperature data at time t and time t + 1, and their exponential regression lines.
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average temperature in the El Niño 1 + 2 region had a larger 
interval (approximately 18 to 30°C). The additional El Niño 
SST regions had larger areas and extended toward the west 
to the central equatorial Pacific. The average temperature 
changes in these regions were therefore smaller, although 
they had upper limits (approximately 30°C) that were simi-
lar to El Niño 1 + 2, and lower limits of approximately 22, 
24, and 26°C for El Niño 3, El Niño 3.4, and El Niño 4 
SSTs, respectively. Furthermore, the regression models for 
El Niño 1 + 2, El Niño 3, El Niño 3.4, and El Niño 4 in the 
series had increasing accuracy (with larger CCs and smaller 
RMSEs), as shown in Table 1.

4.2 Probabilistic Model Ensemble

Because four sets of El Niño SST data were available, 
different combinations of state transitions (from various El 
Niño SST combinations to SPI) could be identified. With only 
one El Niño SST variable as the model input, four state transi-
tion probability matrices were built. Therefore, four probabi-
listic models were developed. Using two El Niño SSTs as the 
model inputs, six probabilistic models (six combinations of 
input variables) were derived. In total, 15 probabilistic mod-
els ( 15,C C C C Cwhere r

k
1
4

2
4

3
4

4
4+ + + =  indicates the number 

of combinations to choose r out of k elements) were estab-
lished. These 15 combinations of El Niño SSTs are shown 
in the four left columns of Table 2. Each probabilistic model 
could output a probability distribution of SPI conditional on 
the inputted El Niño SST states. For conciseness, this study 
used a multi-model ensemble scheme to combine these 15 
probability distributions into one probability distribution. 
Uniform weights were given to the original 15 probability 
distributions in the multi-model ensemble procedure.

4.3 Drought Forecasting

Various combinations of El Niño SSTs as input variables 
were used to construct 15 transition probability matrices.  

CC RMSE (°C)

Calibration Validation Calibration Validation

El Niño 1+2 0.87 0.85 1.14 1.23

El Niño 3 0.88 0.85 0.61 0.54

El Niño 3.4 0.91 0.89 0.42 0.38

El Niño 4 0.91 0.93 0.28 0.27

Table 1. Calibration and validation results of autoregression models 
of El Niño SSTs.

Combination of inputs (El Niño SSTs) Model 1 Model 2

El Niño 1 + 2 El Niño 3 El Niño 3.4 El Niño 4 SPI < 0 SPI > 0 SPI < 0 SPI > 0

V 17.38 11.91 16.46 11.07

V 17.83 12.10 17.07 12.70

V 15.96 11.70 16.01 12.21

V 17.00 12.36 16.40 11.61

V V 11.71 10.07 11.66 7.11

V V 13.89 9.24 6.25 5.16

V V 9.14 9.62 7.29 4.50

V V 14.62 8.11 14.91 8.66

V V 16.07 9.92 10.11 13.85

V V 18.70 8.59 12.19 9.92

V V V 14.88 10.13 11.01 5.09

V V V 14.38 12.95 9.60 7.23

V V V 14.62 11.88 10.87 8.91

V V V 16.29 10.33 15.68 8.70

V V V V 8.87 9.08 7.08 3.83

Multi-model ensemble 14.76 10.53 12.17 8.70

Table 2. Comparison of model scores.
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The transition probability matrices in Eq. (5) were calibrated 
using calibration data. Thereafter, the 15 drought forecasting 
models (Model 1) were established with the calibrated tran-
sition probability matrices and the autoregression models for 
El Niño SSTs. These drought forecasting models were ap-
plied for validation data (monthly data from 2001 to 2009) 
to forecast one-month-ahead SPI probability distributions 
conditional on El Niño SST data in the present month.

Each monthly SPI probability distribution was a proba-
bilistic forecast of drought from El Niño SSTs. For example, 
the model that used El Niño 4 data as the single input vari-
able forecasted the probability distribution of SPI in Janu-
ary 2002, as shown in Fig. 6a. The probabilistic distribution 
indicated that the observed SPI would probably appear in 
the interval [-1, 0) with the highest probability; the second 
probable interval in which the observed SPI would appear 
was [0, 1). The observed SPI in January 2002 was -0.74, 
as shown in Fig. 6 (denoted with the star sign), indicating 
that this forecasted probabilistic distribution of SPI was 
practical. Using the 15 forecasted probability distributions 
from all models, the ensemble probability distribution was 
calculated, as shown in Fig. 6b. The result from this multi-
model ensemble did not outperform that of the single model  

(with El Niño 4 as the input variable) in the case of January 
2002. The Model 2 results for January 2002, pertaining to 
the El Niño 4 model and multi-model ensemble, are shown 
in Figs. 6c and d, respectively. Both forecasted probability 
distributions demonstrated robust results because they pre-
dicted the highest probability of the interval [-1, 0), in which 
the observed SPI occurred.

The multi-model ensembles of the forecasted SPI prob-
ability distributions for 2002 concerning Models 1 and 2 are 
shown in Figs. 7 and 8, respectively. The negative SPI val-
ues in all months throughout the year indicated that 2002 
was a drought year. The multi-model ensemble of the fore-
casted probability distributions can reflect the probabilistic 
characteristics of the SPI. However, for some months, the 
results were unsatisfactory. We calculated the number of ob-
served SPIs that was properly positioned within the interval 
with the highest probability during the validation period. For 
clarity, the interval with the highest probability was termed 
Interval 1, similar to the interval [-1, 0) shown in Fig. 6a; the 
interval with the second highest probability was termed In-
terval 2, similar to the interval [0, 1) shown in Fig. 6a; and so 
on. The numbers that had the observed SPIs located within 
Interval 1 to Interval 6 (multi-model ensemble results) were  

Fig. 6. Forecasted SPI in January 2002.

(a) (b)

(c) (d)



Probabilistic Drought Forecasting from ENSO 919

Fig. 7. Multi-model ensemble of SPI probability distribution in 2002 (Model 1).
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Fig. 8. Multi-model ensemble of SPI probability distribution in 2002 (Model 2).
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respectively 38, 24, 18, 14, 4, and 0 for Model 1. The num-
bers that had the observed SPIs within Interval 1 to Interval 
6 were correspondingly 30, 36, 21, 15, 3, and 2 for Model 2. 
Note that the sum of the numbers within intervals is not equal 
to the number of monthly SPI values in the calibration set 
(that is, 108), because when no historical SST data exist in a 
certain ith state, the transition probabilities in the ith row are 
all zero. Thus, when the current SST state matches the row 
with all zero values in the transition probability matrix, the 
model output shows no probability distribution. The results 
for numbers that were properly positioned within the inter-
vals demonstrate that the proposed probabilistic forecasting 
method is practical for drought forecasting. Furthermore, 
assuming that more observed SPIs within Interval 1 were 
better for forecasting, Model 1 outperformed Model 2.

4.4 Comparison of Model Performance and El Niño 
SSTs

To assess the probabilistic forecasting performance, 
this study used a simple score that was the probability value 
dependent on the observed SST states and the observed SPI 
interval. Figure 1 can be used to show the proposed model 
score. For example, when an observed monthly data pair of 
SST and SPI was (24.7°C, 0.3), the forecasting model gave 
a forecasted probability distribution of 0, 0, 0.14, 0.43, 0.29, 
and 0.14 for each SPI interval conditional on the SST of 
24.7°C. In this condition, the observed SPI value of 0.3 was 
in the interval of [0, 1). The model therefore obtained a high 
score of 0.43 because it precisely forecasted with a high 
probability that the SPI would be in the interval of [0, 1).  
Furthermore, when an observed data pair of SST and SPI 
was (25.1°C, -1.2), the forecasting model forecasted a prob-
ability distribution of 0, 0.08, 0.17, 0.25, 0.50, and 0 for 
each SPI interval under an SST of 25.1°C. The observed SPI 
value of -1.2 was within the interval of [-2, -1). Therefore, 
the model obtained a low score of 0.08 because it gave a low 
probability of 0.08 for the second interval of [-2, -1). The 
proposed score followed the probability concept and was 
easy to compute. The final model score was determined as 
the sum of all the monthly scores.

( )Score p tij
t

T

1
=

=
/  (11)

The score in Eq. (11) is dependent on the observed SST(t) 
in the ith state, the observed SPI(t) in the jth state, and the 
month t = 1, 2, …, T.

Scores that pertained to all 15 models and the ensemble 
model were calculated during the validation period to re-
view the model’s performance. To further show the mod-
el’s performance pertaining to dry conditions (SPI < 0) and 
wet conditions (SPI > 0), the model scores in the two cases 
(dry and wet) are shown in Table 2. The left-hand side of  

Table 2 shows the combinations of the SST input variables. 
The check marks indicate the variables used in the model. 
The right-hand side of Table 2 shows the scores from the 
results of all 15 models, as well as the ensemble model 
for Models 1 and 2. Models with higher scores have bet-
ter forecasting performances. Considering the dry and wet 
conditions, the model scores for dry conditions (SPI < 0) 
are generally higher than those for wet conditions (SPI > 0), 
indicating that the proposed probabilistic forecasting model 
is better suited to predicting drought conditions than to pre-
dicting wet conditions.

Model 1 had higher scores and outperformed Model 2. 
Model 1 used SST forecasts from autoregression models. 
Although autoregression models include forecasting errors, 
Model 1 was still more accurate than Model 2. The state 
transition probability matrix of Eq. (5) used in Model 1 was 
therefore more efficient than that of Eq. (6), which was used 
in Model 2. The state transition probability matrix of Eq. (5) 
was built using El Niño SST and SPI variables in the same 
month, whereas that of Eq. (6) was constructed using SST 
in month t and SPI in month t + 1. These results imply that 
using El Niño SST in the same month is more informative 
for drought forecasting in Southern Taiwan than using El 
Niño SST in the previous month. 

Regarding the forecasting performance among models 
with different El Niño SST variables, a comparison shows 
that models with single El Niño SST inputs had higher 
scores. Models with multiple El Niño SST inputs did not 
have improved forecasting performances. The three worst 
models were those with inputs as (El Niño 1 + 2, El Niño 
3.4), (El Niño 1 + 2, El Niño 4), and (El Niño 1 + 2, El 
Niño 3, El Niño 3.4, El Niño 4). The regions El Niño 1 + 2 
and El Niño 3.4 were distant from each other; therefore, the 
SSTs of these regions had low correlations. The correlation 
coefficient of El Niño 1 + 2 and El Niño 3.4 SSTs during 
the calibration period was 0.47. The regions El Niño 1 + 2  
and El Niño 4 were also far apart. The correlation coeffi-
cient of El Niño 1 + 2 and El Niño 4 SSTs was only 0.11. 
Occasionally, the SST variability in the El Niño 1 + 2 and 
El Niño 3.4 (and El Niño 4) regions did not have the same 
temperature phase. Therefore, including additional El Niño 
SST variables, especially those with inconsistent variability, 
was redundant and did not improve the models’ forecasting 
capabilities. However, different locations of SSTs can have 
different time responses that influence Taiwan’s climate. 
Therefore, using multiple SST variables with different lags 
as inputs may improve the model performance when using 
the multiple SST indices. Nevertheless, the results of this 
study demonstrate that using one El Niño SST to forecast 
drought in Southern Taiwan is sufficient, and that complex 
models with additional El Niño SSTs are unnecessary. In 
addition, the ensemble model performance ranks middle in 
this work. Although the ensemble model is not superior, it is 
generally a useful scheme that is worth applying. 
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5. CONCLUSIONS

This study proposed a probabilistic drought forecast-
ing model to forecast drought in Southern Taiwan using the 
ENSO index. The proposed methodology used a concept 
similar to a Markov chain to construct the transition prob-
ability matrix used in the probabilistic drought forecasting 
model. Two types of forecasting architectures were con-
structed to forecast the drought one month ahead. Model 1  
used the transition probability matrix of SPI and El Niño 
SSTs in the same month, and then applied autoregression 
models that provided one-month-ahead SSTs forecasts. 
Model 2 used the transition probability matrix pertaining to 
SPI in the present month and SSTs in the previous month. 
Both Models 1 and 2 presented satisfactory probabilistic 
forecasting results for forecasted drought probability dis-
tributions. Scoring based on the probability concept was 
proposed to quantitatively assess the probabilistic forecast-
ing performance. The analytical results from these scores 
showed that Model 1 outperformed Model 2, indicating that 
El Niño SST in the same month is more informative for 
drought conditions in Southern Taiwan than is El Niño SST 
in the previous month. Comparing models with differing 
combinations of El Niño SST inputs revealed that models 
with a single El Niño SST input had good performances, but 
models with multiple El Niño SST inputs did not have high 
scores. This is because some El Niño regions (e.g., El Niño 
1 + 2 and El Niño 4) were more distant from each other, 
causing the SSTs of these regions to have low correlations. 
Therefore, using one El Niño SST to forecast drought in 
Southern Taiwan is sufficient, and complex models with ad-
ditional El Niño SSTs are not recommended.

The division of SPI and SST states is optional, and the 
analytical results can be influenced by choice of interval. 
Following preliminary analysis, we used an SST interval in-
crement of 0.2°C and an SPI interval increment of 1.0 to con-
struct the state transition matrix. In addition, only the variable 
of drought in Southern Taiwan was studied, and one-month-
ahead drought was predicted. Additional cases (with different 
input variables, interval definition, local regions, large-scale 
ocean-atmospheric indices, lagged SST inputs, longer lead 
times, and so on) can be investigated in future studies.
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