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ABSTrACT

This study investigated the streamflow impacts in wet and dry spells using a statistical downscaling projection method to 
obtain 5 km girds under four Representative Concentration Pathway (RCP) scenarios. Two upstream catchments, the Dahan 
and Laonong Rivers were selected as the study areas. A water balance hydrological model, also known as the Generalized 
Watershed Loading Function model, was used to simulate the streamflow impacts. There are 126 projections from 41 general 
circulation models (GCMs) and 4 RCPs used in this analysis. The analytical results indicate that the streamflow impacts in 
different RCP scenarios are significant but vary with individual GCM’s projection. The variance of 20 selected GCMs is close 
to that of all other GCMs. Typically, more than 60% of GCMs project that in the early 21st century, streamflow in each RCP 
increases by 0 - 40% in wet spells and decrease by -40 ~ 0% for the Dahan River, but the streamflow increases during both 
wet and dry spells for the Laonong River. In the late 21st century, the streamflow decreases by 60% during dry spells in the 
Laonong River. Various predictions for the early and late 21st century show high variance of streamflow impacts. As such, 
decision makers must plan for reservoir operation and flexible water deployment adaptations during future dry spells.
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1. InTroDuCTIon

Taiwan is located in a subtropical region with an aver-
age annual rainfall of 2500 mm. This amount is approxi-
mately 3 times as much as the world average. However, 
the Taiwan rainfall distribution is uneven in the temporal 
and spatial dimensions. The streamflow cannot be easily 
retained because the rivers are short and steep. The precip-
itation during the wet season must be retained in distrib-
uted reservoirs for use during the dry season. Rainfall and 
streamflow fluctuate greatly in the wet and dry seasons in 
Taiwan. This makes water resource utilization and manage-
ment particularly difficult.

Climate change is disrupting the global hydrological 
cycle in many regions. Climate change affects, and will con-
tinue to affect, the quantity and quality of water resources 
(Barnett et al. 2005; Bae et al. 2011; Thompson et al. 2013; 

IPCC 2014). Climate change has different impacts on river 
discharge worldwide (Thodsen 2007; Sato et al. 2012; Hong 
et al. 2014). Previous studies that used scenarios from the 
Third Assessment Report (TAR) of the Intergovernmental 
Panel on Climate Change (IPCC) indicated that streamflow 
in Taiwan will decline during the dry season and increase 
during the wet season (Tung  2001; Yu et al. 2002; Li et 
al. 2009; Tung et al. 2012). Taiwan’s water demand has 
grown under global climate change and rapid social and 
economic development. The variations in streamflow in wet 
and dry periods exacerbate water management difficulties, 
resulting in seasonal water shortages (Lin et al. 2010; Tsai 
and Huang 2011). Higher precipitation variations between 
wet and dry seasons have been predicted in Representative 
Concentration Pathway (RCP) scenarios in the Fifth Assess-
ment Report (AR5) of the IPCC. It has been predicted that 
these water resource problems may increase. Hydrological 
impacts should therefore be estimated using RCP scenarios 
to anticipate future water resource problems.
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The hydrological impacts of climate change are com-
monly evaluated by forcing a hydrological model with cli-
mate projections derived from a general circulation model 
(GCM) under different emission scenarios with downscal-
ing methods and weather generation models. Uncertainty 
is associated with each stage of the hydrological evalua-
tion process for the impacts of climate change (Gosling 
and Arnell 2011; Thompson et al. 2014). Previous studies 
have suggested several principles for reducing uncertainty, 
including (1) using multiple climate models; (2) using mul-
tiple downscaling methods; (3) using multiple hydrological 
models, projection methods, and operational applications; 
(4) increasing intercommunication; (5) assessing impacts 
using different spatial scales; (6) and applying bias correc-
tion for model data (Carter 2001; Nawaz and Adeloye 2006; 
Prudhomme and Davies 2009; Gosling and Arnell 2011). If 
only a single GCM or a few GCMs are used to assess the 
impacts of climate change, the uncertainty becomes higher. 
The climate change impact result should be indicated using 
a range (or probability) instead of a single GCM. Most re-
searchers consider multiple GCMs and scenarios, as well as 
multiple model ensembles (MME) to reduce the uncertainty 
(Diallo et al. 2012; Knutti and Sedláček 2013).

The spatial resolution of typical GCMs (approximately 
150 - 300 km) from the IPCC data centre is too coarse for a 
watershed study in Taiwan. Hence, a downscaling method is 
necessary for climate change impact assessment. Generally, 
the technical and computational demand of the regional cir-
culation model is higher than statistical downscaling. Using 
several scenarios and GCMs with statistical downscaling is 
suggested to quickly obtain high-resolution projection data. 
A bias correction statistical downscaling method was used in 
this study. Most variables that GCMs project (e.g., precipita-
tion and temperature) are in monthly scale. Thus, a weather 

generator is needed to produce daily data for a long time 
series to apply hydrological impact assessments (Mavroma-
tis and Hansen 2001). A statistical downscaling method and 
weather generator technique are used to provide rainfall and 
temperature inputs for hydrological models to assess stream-
flow impacts under different GCMs and scenarios.

There are many types of hydrological models, includ-
ing global models, lumped or semi-distributed models, and 
physical-based models. To reduce the uncertainty of the 
hydrological evaluation process, a physical hydrological 
model with few parameters is suggested. The Generalized 
Watershed Loading Function (GWLF), a lumped conceptu-
al water balance model, is a physical process model (Evans 
et al. 2002). Moreover, the GWLF has been used worldwide 
for assessing changes in streamflow (Chang 2003; Wu et al. 
2007; Tung et al. 2012; Chiang et al. 2013) and for assess-
ing climate change impacts (Li et al. 2009; Schneiderman 
et al. 2010).

The study framework is shown in Fig. 1. This study 
applied the climate projection data (precipitation and tem-
perature) of 41 GCMs under four RCPs (RCP2.6, RCP4.5, 
RCP6.0, and RCP8.5) from the AR5 of the IPCC data cen-
ter. The climate projections were analyzed for the early 21st 
century (2016 - 2035) and the late 21st century (2081 - 2100) 
with respect to the late 20th century (1986 - 2005). After sta-
tistical downscaling, 5 km grid projected climate data were 
produced. A weather generator was then applied to generate 
daily precipitation and temperature data for GWLF model 
input. Finally, the GWLF was used to assess the streamflow 
change ratios between the late 20th century periods and the 
21st century periods. The variances of simulated streamflow 
change ratios from different GCMs and scenarios were used 
to express the uncertainty of projections. In the later sections 
of this paper, the results for the two catchments are presented 

Fig. 1. Flowchart of this study.
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and discussed, and some major findings are summarized.

2. STuDy AreA AnD DATA

This study discusses two catchments for assessing the 
impacts of climate change on streamflow. One catchment 
located in Northern Taiwan is the Dahan River, which is a 
subcatchment of the Danshui River. The other river, the La-
onong River, is located in Southern Taiwan a subcatchment 
of the Gaoping River (Fig. 2). These two rivers are crucial 
water resources that supply drinking water to New Taipei 
City and Kaohsiung City, respectively.

The Dahan River with a length of 135 km is the major 
tributary of the Danshui River, the third longest river in Tai-
wan. The Dahan River catchment area is 1163 km2 and the 
streamflow is the main inflow to the Shimen Reservoir. The 
reservoir serves flood storage, power generation, water sup-
ply, and irrigation functions. The average annual precipita-
tion is 2430 mm and 70% of this precipitation falls from May 
to October. The monthly average precipitation in the period 
from September to the following January is less than 100 mm,  
whereas the monthly average precipitation in the period 
from May to August is greater than 290 mm. The mean an-
nual temperature in the catchment is approximately 15.7°C. 
The average annual discharge is 30.22 cms in the upstream 
watershed of Dahan River (Water Resources Agency).

The Laonong River is the largest river catchment in 
Taiwan with an area of 2038 km2 and a length of 133 km. 
This catchment is located in a subtropical area and as such, 
there is a significant difference in rainfall between the wet 
and dry seasons. The average annual rainfall is 3344.9 mm 
and 91% of the annual rainfall occurs during the wet sea-
son (from May to October). Only 9% of the annual rainfall 

occurs in the dry season (from November to April of the 
next year). The average annual discharge is 51.56 cms in the 
upstream watershed of Laonong River (Water Resources 
Agency). The mean annual temperature is 24.5°C. The an-
nual evaporation is between 1000 and 2000 mm.

The locations of rain gauges and flow observation sta-
tions as well as the land cover of the Dahan River and La-
onong River catchments are shown in Fig. 2. The land cover 
map was provided by the National Land Surveying and 
Mapping Center (2006). The Dahan River catchment is com-
prised of 92.4% forest, 2.8% agricultural land, 2.2% water 
conservancy land, 0.6% grassland, and 2.1% land for other 
uses. The Laonong River catchment is comprised of 83% 
forest, 5.6% agricultural land, 2.34% water conservancy 
land, 3.1% grassland, and 5.9% land for other uses. Table 1  
lists the temperature gauge stations, precipitation stations, 
and streamflow stations that supplied information to verify 
the hydrological model. There is no temperature gauge sta-
tion upstream of the catchments. This study assumed that 
the surface temperatures decrease linearly with elevation, 
also known as the lapse rate. Typically, a lapse rate of 6.0 or 
6.5 °C km-1 has been used to estimate surface temperature in 
various previous studies (e.g., Maurer et al. 2002; Roe and 
O’Neal 2009). A lapse rate of 6.5°C km-1 was applied to the 
two temperature gauge stations (Taipei and Kaohsiung) to 
estimate the upstream temperatures in the two catchments.

3. MeThoDS
3.1 Statistical Downscaling Method

Because GCMs have difficulty in simulating region-
al climates, GCM outputs are downscaled to obtain finer 
spatial resolutions for local impact studies. Downscaling 

Fig. 2. Dahan River and Laonong River catchments locations and landuse.
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methods can be categorized into two types. The first is the 
dynamic downscaling method, which involves a regional cli-
mate model driven by GCM outputs that can provide high-
resolution simulations, which in turn can simulate extreme 
events. The second type is statistical downscaling, which 
aims to discover statistical relationships between large-scale 
predictors (e.g., pressure fields) and local climate variables 
(e.g., precipitation and temperature). These relationships are 
applied to global climate model experiment outputs to sim-
ulate future local climate characteristics (Von Storch and 
Zwiers 1984). These methods are widely applied to climate 
change studies because of their low computational require-
ments. The statistical downscaling process can be applied 
to several GCMs and several different emission scenarios 
relatively quickly and inexpensively (Benestad 2002).

Most statistical downscaling methods can be divided 
into three types, weather typing (Hughes and Guttorp 1994), 
weather generator (Richardson 1981; Semenov and Brooks 
1999), and regression methods (Von Storch and Zwiers 
1984; Wood et al. 2002; Chu et al. 2008). The bias cor-
rection spatial disaggregation method (BCSD) (Hay and 
Clark 2003; Wood et al. 2004; Fowler et al. 2007; Maurer 
2007; Maurer and Hidalgo 2008; Maraun et al. 2010) is ap-
plied in this study to refine temperature and precipitation 
data resolutions. BCSD has the advantage of preserving the 
simulated regional climate variability in GCMs for statisti-
cal downscaling. Details for applying BCSD to Taiwan are 
provided in Chen et al. (2014).

GCMs encounter a challenge when simulating regional 
climates using fine meshes. Although GCMs can capture cli-
mate signals from large-scale circulation, systematic biases 
can still be found in the GCM outputs. Bias correction for 
GCMs is required to make the simulation more reasonable. 
In general, the observed monthly high-resolution rainfall is 
interpolated to the scale of a given GCM in bias correction. 
The observed monthly high-resolution rainfall and climate 
model simulation outputs were first converted and upscale 
interpolated into 2° × 2° resolution in this study to compare 
models, as shown in Fig. 3.

High-resolution (0.25° × 0.25°) observed precipitation 
data derived using Asia Precipitation Highly-Resolved Ob-
servational Data (APHRODITE) (Yatagai et al. 2012) were 

used for the 1951 - 2007 period. The APHRODITE domain 
for downscaling was set as 60 - 150°E and 15°S - 55°N. 
The observed global temperature dataset provided by the 
Climate Research Unit, University of East Angelia (Mitch-
ell and Jones 2005) was also used. The spatial resolution 
was 0.5° × 0.5°, and the 1901 - 2002 period was chosen for 
downscaling.

Second, the cumulative distribution function (CDF) for 
long-term observation data for each grid cell was applied to 
correct the CDF simulation model. The simulated monthly 
precipitation and temperature with a spatial resolution of 
2° × 2° were corrected using the relationship between the 
two CDFs. Note that the long-term trend was removed in 
advance for the temperature field during CDF calculation. 
Cross-validation was conducted in the model bias correction 
process. The correction coefficient was then defined using 
the ratio between the monthly mean corrected model outputs 
and the observation data climatology for each 2° × 2° grid 
point. Subsequently, correction coefficient fields with high 
spatial resolution were generated using the inverse distance 
weighting method, which is a type of spatial interpolation 
method. Finally, the downscaling results were obtained by 
multiplying the observation data climatology for a given 
month by the high-resolution correction coefficient field. 
The downscaling procedure was repeated twice in this study, 
gradually from 0.25° × 0.25° (first stage) to 0.05° × 0.05° 
(second stage) grid points to obtain a finer spatial variation 
map of the Taiwan area.

The BCSD was used to produce 5 km resolution cli-
matic projections (precipitation and temperature) in two 
projection periods for all RCP scenarios and GCMs, which 
are listed in Table 2. There are 20 GCMs containing four 
RCP scenarios among all projections.

3.2 Weather Generation

Most hydrology simulation models require daily 
weather data as the input data, so the monthly data of the 
GCMs projection must be refined to daily data. Weather 
generators are applied extensively to produce daily weather 
data in climate change scenarios to evaluate agricultural and 
hydrological risks (Mavromatis and Hansen 2001). Weather 

Catchment Kinds of observation Station name record length

Dahan River

Temperature Taipei 1965 - 2013

Precipitation Ba-Ling 1937 - 2013

Streamflow Gao-Yi 1957 - 2013

Laonong River

Temperature Kao-Hsiung 1950 - 2013

Precipitation Liu-Gui 1982 - 2013

Streamflow Liu-Gui 1982 - 2009

Table 1. Information of observation stations.
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generators use meteorological data statistical characteristics 
similar to those of weather station observations (Richard-
son and Wright 1984; Tung and Haith 1995; Semenov and 
Brooks 1999; Wilks and Wilby 1999) to simulate time-se-
ries daily weather data. Markov chains are used to evalu-
ate the precipitation process (to determine whether a day 
is rainy or dry), in which the total rainy day precipitation is 
determined by randomly choosing a value generated from 
a suitable statistical distribution, such as an exponential, 
gamma, or Weibull distribution. Large amounts of series 
data are produced using random seeds, and the data have the 
same statistical characteristics as the source data do. This 
enables validating the statistical model. This study adopted 
the temperature and precipitation model proposed by Tung 
and Haith (1995), which uses daily weather data as input, 
and calculated daily temperature and precipitation based on 
monthly precipitation projections at 5 km × 5 km resolution 
after statistical downscaling.

Regarding climate change applications, this study 
mainly used the temperature and precipitation outputs from 
GCMs under current and future climate conditions. The 
monthly average temperature and precipitation were cor-

rected on the basis of projections to obtain the default condi-
tions for future climate scenarios. Temperature corrections 
were based on temperature differences. Precipitation cor-
rections were based on precipitation ratios. The corrected 
future monthly average temperature was the historical value 
plus the temperature difference. The corrected monthly av-
erage precipitation was the historical precipitation multi-
plied by the precipitation ratio.

3.3 hydrological Model

Many studies combined GCMs and hydrological mod-
els to assess water resource, streamflow, or ecosystem ef-
fects on catchment scales (Li et al. 2009; Tung et al. 2012; 
Chiang et al. 2013; Niraula et al. 2013). The GWLF, a phys-
ic-based model, was chosen as the hydrological model for 
assessing streamflow impacts in this study. The GWLF can 
be applied to a variety of catchments situated in regions with 
very different climates. The GWLF parameters are based 
on the physical properties of the catchment; therefore, the 
uncertainty of this model is less than that of other complex 
models. The parameters are adjusted according to land use, 

Fig. 3. The flowchart for statistical downscaling (Chen et al. 2014).
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soil texture, and future climate change. The GWLF uses 
land use data, soil data, and daily weather data to calculate 
the water balance. The GWLF allows multiple land uses 
within an area, but the model considers other parameters for 
each area to be uniform (Niraula et al. 2013). The monthly 
streamflow simulation is based on the daily water balance 
aggregated to monthly values (Haith and Shoenaker 1987; 
Haith et al. 1992).

The GWLF model is a combined distributed/lumped 
parameter, continuous watershed model (Evans et al. 2002) 
that simulates the hydrological cycle, surface runoff, and 
groundwater discharge. The surface runoff is estimated us-
ing the Soil Conservation Service curve number method 
(SCS-CN). The groundwater discharge is estimated by as-
suming a shallow saturated zone as a linear reservoir. The 
streamflow is simulated based on the following water bal-
ance equation:

SF SR GWt t t= +  (1)
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where SFt (cm) is the final streamflow on day t, SRt (cm) 
is the amount of surface runoff on day t, GWt (cm) is the 
amount of groundwater discharge on day t; Rt (cm) is the 
amount of rainfall on day t, .W CN2540 25 4t t= - , CNt is a 
curve number and a function of the land uses, and St (cm) is 
the storage of the shallow saturated zone. Detailed GWLF 
descriptions are provided in Haith and Shoenaker (1987) 
and Haith et al. (1992).

The projected impacts of climate change on streamflow 
were analysed using three steps (Chiew et al. 1995; Andréas-
son et al. 2004; Charlton et al. 2006). The GWLF model was 
first verified against historical data. Second, the GWLF was 
run for a reference period (the late 20th century period), for 
the early and late 21st century to assess the potential impacts 
of these changes on streamflow. Finally, the relative change 
between two projection periods in streamflow was calculat-
ed. All GCMs for each climate scenario were used to analyse 
streamflow impacts. Table 3 shows the number of GCM and 
the CO2 concentration for each climate scenario.

Three statistical indices were used to evaluate the GWLF 
model performance levels in a validation period, namely the 
Nash-Sutcliffe efficiency (NSE) coefficient, the coefficient 
of correlation (R), and the root-mean-square error (RMSE). 
Each performance index is described as follows:
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no. name of GCMs
Scenario

rCP2.6 rCP4.5 rCP6.0 rCP8.5

1 bcc-csm1-1-m* ○ ○ ○ ○

2 bcc-csm1-1* ○ ○ ○ ○

3 CCSM4* ○ ○ ○ ○

4 CESM1-CAM5* ○ ○ ○ ○

5 CSIRO-Mk3-6-0* ○ ○ ○ ○

6 FIO-ESM* ○ ○ ○ ○

7 GFDL-CM3* ○ ○ ○ ○

8 GFDL-ESM2G* ○ ○ ○ ○

9 GISS-E2-H* ○ ○ ○ ○

10 GISS-E2-R* ○ ○ ○ ○

11 HadGEM2-AO* ○ ○ ○ ○

12 HadGEM2-ES* ○ ○ ○ ○

13 IPSL-CM5A-LR* ○ ○ ○ ○

14 IPSL-CM5A-MR* ○ ○ ○ ○

15 MIROC-ESM-CHEM* ○ ○ ○ ○

16 MIROC-ESM* ○ ○ ○ ○

17 MIROC5* ○ ○ ○ ○

18 MRI-CGCM3* ○ ○ ○ ○

19 NorESM1-ME* ○ ○ ○ ○

20 NorESM1-M* ○ ○ ○ ○

21 GFDL-ESM2M ○ ○ ○

22 ACCESS1-0 ○ ○

23 ACCESS1-3 ○ ○

24 BNU-ESM ○ ○ ○

25 CanESM2 ○ ○ ○

26 CESM1-BGC ○ ○

27 CESM1-CAM5-1-FV2 ○ ○

28 CMCC-CESM ○

29 CMCC-CMS ○ ○

30 CMCC-CM ○ ○

31 CNRM-CM5 ○ ○ ○

32 EC-EARTH ○

33 FGOALS-g2 ○ ○ ○

34 GISS-E2-H-CC ○ ○

35 GISS-E2-R-CC ○ ○

36 HadGEM2-CC ○ ○

37 inmcm4 ○ ○

38 IPSL-CM5B-LR ○ ○

39 MPI-ESM-LR ○ ○ ○

40 MPI-ESM-MR ○ ○ ○

41 MRI-ESM1 ○

Table 2. List of Model Name and RCP Scenarios.

Note: ‘*’ means the GCMs projected under four scenarios.
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where Oi is the observed streamflow for month i, Si is the 
simulated stream flow for month i, O  is the mean of ob-
served streamflow, and n is the number of data. The NSE 
value can range from -∞ to 1. The closer the NSE is to 1, 
the more accurate the model is. NSE is sensitive to extreme 
values and might yield suboptimal results when the data set 
contains large outliers (Nash and Sutcliffe 1970).
(2) Coefficient of Correlation
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where S  is the mean of simulated streamflow, and R ranges 
between -1 and 1. An R value close to 1 indicates that the 
variables are positively linearly related. An R value of zero 
means there is no correlation between the observed and sim-
ulated streamflow.
(3) RMSE
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The RMSE represents the sample standard deviation of the 
differences between the observed streamflow and simulated 
streamflow.

3.4 Cumulative Probability of Change ratio of  
Streamflow

The change ratio of streamflow is the difference in 
monthly stream flow between the late 20th century period 
and the 21st century period divided by the streamflow in the 
late 20th century period. The average change ratio of stream-
flow in a spell (which is called RSt) was calculated in differ-
ent GCMs during the two projected periods and was used to 
explain climate change impacts. In this notation, t = 1 means 
“in a wet spell”; other values of t mean “in a dry spell”.

There are 126 RSt results in different spells from all 
GCMs and RCPs. The empirical cumulative distribution 
function (ECDF) is used to show the cumulative probability 
of RSt for each RCP. The following plotting position for-
mula (Weibull 1939) is used for estimating empirical cumu-
lative probability:

p n
i

1= +  (6)

where p is the calculated plotting position; i is the rank of 
the data; and n is the number of data.

The RSt values from different GCMs are ranked in de-
scending order to calculate the percentiles of the data that 

are either less than or greater than a particular data value. 
For instance, the cumulative probability at RSt = 0 is greater 
than 0.5, which indicates that the results of most predictions 
show a decline. Conversely, the cumulative probability at 
RSt = 0 is less than 0.5 which indicates that the results of 
most predictions show an increase.

4. reSulTS AnD DISCuSSIon

The GWLF was first verified and then applied to eval-
uate the streamflow impacts under different GCMs and cli-
mate change scenarios. The simulation results are discussed 
in sections 4.2 to 4.5.

4.1 GWlF Verification

The evapotranspiration cover coefficients were re-
quired for GWLF verification and were determined accord-
ing to the land use and soil texture. The results showed that 
the GWLF model could predict the monthly streamflow 
with satisfactory accuracy (Fig. 4 and Table 4). The stream-
flow and weather data for 1980 - 1999 for the Dahan River 
and 1982 - 2008 for the Laonong River were used. Accord-
ing to the three statistical performance indices, the Dahan 
River exhibited better performance values than those for the 
Laonong River. The Dahan and Laonong River correlation 
coefficients were 0.89 and 0.83, respectively. The GWLF 
model could capture the months with high and low stream-
flow (Fig. 4). The simulations of the GWLF could deter-
mine the trends and the directions of changes in streamflow 
caused by climate change, even though the calibration was 
not satisfactory (Niraula et al. 2015). The GWLF was ap-
plied to simulate relative changes of streamflow under cli-
mate change impacts in this study, even though the NSE 
value for the Laonong River was not satisfactory but the 
deviation was still acceptable for climate change impact as-
sessment.

4.2 Impacts of Climate Change on Streamflow in Wet 
and Dry Spells

The impacts of climate change on streamflow in the 
two catchments were evaluated using all GCMs for all 
RCPs. Figure 5 shows the ECDF for the RSt during wet and 
dry spells (the wet spell is from May to October, and the dry 
spell is from November to April of the following year) un-
der climate change in the early 21st century. Figure 5 shows 
that the variation between different RCPs was insignificant. 
Figures 5a and b show the RSt falling between -40% and 
40% during wet and dry spells in the Dahan River. The 
ECDF shows that more than 60% of GCMs projections for 
the RCPs exhibit an increase of 0 - 40% for streamflow in 
wet spells and a decrease of -40 ~ 0% in dry spells. There-
fore, the discharge of the Dahan River increases during the 
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Climate scenario rCP2.6 rCP4.5 rCP6.0 rCP8.5

Number of GCMs 26 38 21 41

Atmospheric CO2 equivalent (parts per million) 490 650 850 > 1370

Table 3. The number of GCMs and CO2 Concentration of the RCP Scenarios.

(a)

(b)

Fig. 4. The simulation and observation streamflow in the verification period (a) Dahan River (1980 - 1999) (b) Laonong River (1982 - 2008).

Index Dahan river laonong river

R 0.89 0.83

NSE 0.84 0.14

RMSE 7.88 15.1

Table 4. GWLF Performance Index during Verifica-
tion Period for Streamflow.
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wet spells and decreases during the dry spells because of 
RCP impacts. However, the variation in streamflow for the 
Laonong River is different. Figures 5c and d show that the 
streamflow increases during wet spells and dry spells in pro-
jections from more than 60% of GCMs. The RSt is roughly 
-20 ~ 30% in wet spells and roughly -60 ~ 150% in dry 
spells for the Laonong River. Therefore, the RSt values in 
dry spells for the Laonong River are different from those of 
the Dahan River in the early 21st century.

The RSt values in RCP8.5 scenarios were selected for 
comparisons of different projection periods (early and late 
21st century). Figures 6a and b show the ECDFs of stream-
flow change ratios during wet and dry spells during the two 
projection periods in the two catchments. Figure 6a shows 
that, in RCP8.5 scenarios for the Dahan River, the RSt value 
at 80% cumulative probability in wet spells becomes higher 
in the late 21st century than that in the early 21st century. 
In addition, the RSt value at 20% exceedance probability 
in dry spells becomes lower in the late 21st century than 
that in the early 21st century. Because the ECDF of RSt in 
wet spells in the late 21st century (RCP8.5-F-Wet) shifts to 
the right side and the ECDF in dry spells (RCP8.5-F-Dry) 
then shifts to the left side. Figure 6b shows that the ECDF 
of RSt decreases in dry spells (RCP8.5-F-Dry) in 70% of 

GCM projections for the Laonong River during the late 21st 
century. The streamflow change trend in wet and dry spells 
in the late 21st century is the same that as found in previ-
ous researches (Yu et al. 2002; Li et al. 2009) that applied 
assumed precipitation scenarios and TAR data to assess 
streamflow impacts in Taiwan. The streamflow impacts are 
more serious in AR5.

4.3 Impacts of Monthly Streamflow

Box plots of the monthly streamflow change ratios 
are shown in Fig. 7. The MME comprises a large number 
of climate model simulations created using many different 
GCMs. Since the MME improves the robustness of climate 
change projections (Diallo et al. 2012; Knutti and Sedláček 
2013), its use in climate change impact assessment is sug-
gested. The MME projection was able to present the trend 
of climate change impacts and was analysed in this section. 
The box plots show the maximum value, minimum value, 
lower quartile (25th percentile), upper quartile (75th percen-
tile), and median (50th percentile); the dots outside the boxes 
are considered as outliers. The box size (i.e., interquartile 
range) could be an index used to represent the variance 
in the monthly streamflow change ratio. Figure 7a shows 

(a) (b)

(c) (d)

Fig. 5. The ECDF of RSt in wet and dry spells during the early 21st century; (a) Wet spell of Dahan River, (b) Dry spell of Dahan River, (c) Wet 
spell of Laonong River, and (d) Dry spell of Laonong River.
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(a)

(b)

Fig. 6. The ECDF of RSt in different spells during two projection periods in RCP8.5 scenarios; (a) Dahan River, (b) Laonong River.
Note: ‘Wet’ means the wet spells, ‘Dry’ means the dry spell, ‘NF’ means during the early 21st century, and ‘F’ means during the late 21st century.

(a) (b)

Fig. 7. The box plot of monthly streamflow change ratio under RCP8.5 scenarios in the early 21st century in two catchments; (a) Dahan River, (b) 
Laonong River.
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that the variability in monthly streamflow change ratios for 
July and August (during a wet spell) are greater than usual 
for the Dahan River under RCP8.5 scenarios, whereas in 
Fig. 7b, greater than usual variability is shown in February 
and March (during a dry spell) for the Laonong River. The 
change ratio of streamflow from the MME is smaller than 
that of all GCMs.

Figure 8 shows the monthly streamflow change ratios 
from the MME projection in the two catchments. The varia-
tion between the two catchments is closer during the period 
from June to November. The streamflow increases in wet 
spells. The variation is significant during the dry spell from 
December to April of the next year. The Dahan River stream-
flow decreases while the Laonong River streamflow increas-
es. This study recommends using the MME predictions for 
climate change assessment because the MME projections 
could decrease the uncertainty. The MME projections of 
streamflow impacts could be applied to plan adaptations.

4.4 The number of GCMs in Various Streamflow 
Change ratio

The RSt results for all GCMs in all RCPs (126 results) 
for the late 21st century were divided into six intervals. The 
numbers of GCM projections for specific RSt values in wet 
and dry spells were counted in all intervals. Table 5 shows 
that the 25 GCMs exhibited a 0 - 30% RSt in the wet spell 
and a -30 ~ -1% RSt in the dry spell. Most of these results 
should be considered and anticipated in plans for the future. 
Taiwan’s decision makers can formulate adaptation strate-
gies according to the predictions addressing 30% increases 
in Dahan River streamflow during wet spells and 30% de-
creases in Dahan River streamflow during dry spells. These 
plans would be used to solve streamflow impacts at the late 
21st century. The Laonong River situation is different, as 
shown in Table 6. Its streamflow change ratio showed that 
more GCM models fell in the 0 - 30% interval during wet 
spells and in the -30 ~ -60% interval during dry spells. The 

Laonong River shows a greater change ratio in the dry spells 
than the Dahan River shows. Therefore, the adaptation mea-
sures to the Laonong River for the dry spells should have 
higher priority.

4.5 Comparisons of all GCMs and Selected Models

Most climatic researchers suggest that climate change 
impact assessments should involve analysing all GCMs and 
scenarios to reduce the climate change projection uncertain-
ty. However, the process of impact assessment is so com-
plicated that most hydrologic researchers cannot evaluate 
all projections in all relevant sectors. Therefore, selecting 
a few representative GCMs to assess impacts is necessary. 
Figure 9 presents a comparison between using a few GCMs 
and all GCMs to assess streamflow impacts. In Fig. 9, the 20 
GCMs (see Table 2) with four scenarios were selected for a 
comparison with all GCMs. The Laonong River was used as 
a case study to present the variance in RSt. The results show 
that the projections of all GCMs and the 20 GCMs present 
no significant difference under the four scenarios. Even in 
dry and wet seasons, the results show similar changes in 
streamflow. Because there is no significant difference, the 
user can apply the selected 20 GCMs with four scenarios to 
predict the impact of future changes to Taiwan’s climate.

5. SuMMAry AnD ConCluSIonS

The impacts of climate change on streamflow for 
two catchments in Taiwan were investigated. Statistical 
downscaling data based on the AR5 GCMs projections for 
all scenarios were considered. According to the projected 
streamflow change rates for the early 21st century, approxi-
mately more than 60% of the GCMs projections indicated 
increased (+40%) streamflow during wet spells and de-
creased (-40%) streamflow during dry spells for the Dahan 
River in Northern Taiwan. The GCMs tended to predict an 
increased streamflow change rate for the Laonong River 

Fig. 8. The monthly streamflow change ratio by MME under RCP8.5 scenarios in the early 21st century.
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in Southern Taiwan for both wet and dry spells during the 
early 21st century period. Compared with the Dahan River, a 
larger change rate variance in streamflow was found during 
the dry spell in the Laonong River. By contrast, an increased 
(decreased) streamflow change rate during wet (dry) spells 
was found in both catchments for the late 21st century pe-
riod. These results imply that more flexible strategies for 
reservoir operations and water deployment will be neces-
sary during dry spells in the future.

According to the IPCC (2014) prediction that various 
climate change signals will be more discernible at the late 
21st century, Taiwan’s decision makers require specific and 
clear projections of streamflow for adapting Taiwan’s water 

resource strategies to the impacts of climate change. The 
MME could decrease the projection uncertainty. Therefore, 
it is suggested that the decision makers plan adaptations 
based on the MME projections of streamflow.

The comparisons of all GCMs and the 20 selected 
GCMs for different RCP scenarios revealed no significant 
differences. The selected scenarios and GCMs did not re-
duce the variance for the streamflow change ratio under cli-
mate change.

According to the streamflow statistical variability 
interval calculated for the late 21st century, most GCMs 
show a streamflow increase of 30% during wet spells and 
a 30% decrease during dry spells for the Dahan River. The  

Change ratio interval
Change ratio of streamflow in dry spells (%)

> 60 31 ~ 60 0 ~ 30 -30 ~ -1 -60 ~ -31 < -60

Change ratio of streamflow in 
wet spells (%)

> 60 0 2 1 1 2 0

31 ~ 60 0 1 4 4 5 0

0 ~ 30 0 7 14 25 18 4

-30 ~ -1 0 0 9 22 2 1

-60 ~ -31 0 0 1 1 2 0

< -60 0 0 0 0 0 0

Table 5. The RSt in Different Intervals for Dahan River in the late 21st Century.

Change ratio interval
Change ratio of streamflow in dry spells (%)

> 60 31 ~ 60 0 ~ 30 -30 ~ -1 -60 ~ -31 < -60

Change ratio of streamflow in 
wet spells (%)

> 60 1 0 1 1 0 0

31 ~ 60 6 0 3 4 2 1

0 ~ 30 16 9 10 16 19 4

-30 ~ -1 3 6 7 9 6 1

-60 ~ -31 0 0 0 0 0 1

< -60 0 0 0 0 0 0

Table 6. The RSt in Different Intervals for Laonong River in the late 21st Century.

(a) (b)

Fig. 9. The RSt for 20 GCMs and all GCMs under different RCPs in different spell; (a) Wet spell, (b) Dry spell.
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Laonong River showed a 30% increase during the wet spells 
and a 60% decrease during the dry spells. Water source de-
velopment and conservation measures must be established 
for dry spells in Southern Taiwan.
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