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ABSTRACT

Uncertainty is inherent in modeling studies. However, the quantification of un-
certainties associated with a model is a challenging task. Furthermore, snowmelt esti-
mation is a crucial part of the Soil and Water Assessment Tool (SWAT) model in wa-
tersheds where spring runoff is strongly affected by melting snow. The SWAT model 
for the snow dependent Kunhar basin in Himalayan watershed was calibrated (2001 
- 2005) and validated (2006 - 2009) using Sequential Uncertainty Fitting Algorithm 
(SUFI-2). For the model uncertainty, two indices P-factor and R-factor along with 
frequently used objective functions R2, NSE, PBIAS, were taken into consideration. 
For calibration, multisite daily and monthly simulation results of SUFI-2 revealed 
that percentage of data enveloped by 95% confidence interval was 85% (monthly) to 
87% (daily) at upstream calibration point and 63% (monthly) to 73% (daily) data at 
the downstream calibration point. Model validation by the usage of elevation bands 
indicated better model performance, enveloping 15 - 20% more observed data than the 
validation without elevation bands together with the other statistical standards. Equi-
finality in the model parameters was observed, and it was discovered that the model 
uncertainty lie inside the model parameters. It is recommended that critical model 
parameters correspondence with the watershed characteristics should be checked. The 
calibrated version of the model could be further used for the analysis and impacts of 
climate and land use changes on stream flows, water quality and sediment yield.
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1. INTRODUCTION

The hydrological modeling has emerged as an impor-
tant development of watershed hydrological simulation; 
with improvement and integration of new tools such as re-
mote sensing/ geographic information system (RS/GIS). In 
current years, many such programs have been developed 
such as, System Hydrologic European (SHE) (Beven et al. 
1980) and Soil and Water Assessment Tool (SWAT) (Ar-
nold et al. 1998). Traditionally, the hydrological models 
were calibrated and optimized with effective objective func-
tions (e.g., Nash efficiency coefficient) and then used to as-
sess water resources practices reasonably. But, uncertainty 
within model output is a major issue, predominantly when 
modeling results are used to set policy. The model predic-
tions are not reached at a certain values, and be interpreted 

with a confidence range due to uncertainties associated 
with model input, structure, parameter, and output (Beven 
2001; Van Griensven et al. 2008). The uncertainties in hy-
drological models could arise due to (1) inherent random-
ness of natural processes (e.g., weather, flood, precipitation 
variations in space and time), called natural uncertainty; (2) 
model structural error that reflects the inability of a model 
or design technique to represent precisely the system’s true 
physical behavior, called model uncertainty; (3) model pa-
rameter value error that result from the inability to accu-
rately quantify model parameters and inputs and also caused 
by the inherent inconsistency of model inputs and param-
eters in space and time is called parameter uncertainty; (4) 
data error due to measurement errors, nonhomogeneity and 
inconsistency of data, transcription and data handling er-
rors, inadequate representation of data sample due to space 
and time limitations, is called data uncertainty. Operational 
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uncertainties are associated with manufacture, construction 
deterioration, maintenance and human errors (Karamouz 
et al. 2012; Uniyal et al. 2015). According to Yang et al. 
(2008) model uncertainty is the over-simplification of natu-
ral processes and due to unknown activity in the watershed 
which is not considered by the model.

Snowmelt hydrology is an important component in 
mountainous watersheds where the stream flows are pre-
dominantly generated from melting of snow. Snowmelt-
runoff modeling in a mountainous basin is perceived as 
difficult due to the complexity of simulation. Additionally, 
mountainous areas typically lack sufficient data, which leads 
to computational demand during simulation (Hartman et al. 
1999; Fontaine et al. 2002). There are two basic approaches 
mostly used in snowmelt runoff modeling, i.e., tempera-
ture index approach and energy balance approach. In tem-
perature index approach, snowmelt processes are based on 
temperature taken as major driving force (Tanasienko and 
Chumbaev 2008; Neitsch et al. 2011) while, the energy 
balance approach depends on the amount of energy added 
to the system (Valeo and Ho 2004). In energy balance ap-
proach temperature is not considered as a major driving 
force to explain the snowmelt processes (Marks et al. 1998, 
1999; Zhang et al. 2007). Temperature index approach is 
common, simple and easy to use (Hock 2003) while, the 
energy balance approach is data intensive and sometimes 
cannot be done because of inadequate data or unwarranted 
detail for the work at hand (Debele et al. 2010).

There have been numerous attempts in modelling 
the snowmelt-runoff mechanism using SWAT model but 
none of them studied associated uncertainty (Grusson et 
al. 2015). Meng et al. (2015) developed an energy balance-
based distributed snowmelt runoff model and coupled with 
the SWAT model. They also compared the performances of 
temperature index method an energy balanced methods in 
SWAT model. The performances of energy balance method 
and temperature index method was also compared in SWAT 
model (Debele et al. 2010). Kang and Lee (2014) studied 
the effects of snowmelt and temperature in the North Fork 
American River basin using the snowfall-snowmelt routine 
in SWAT. They concluded that the snowmelt - runoff model 
gives better results in terms of ENS, R2, and RMSE. Wang 
and Melesse (2005) studied the performance of a SWAT 
model on snowmelt-runoff simulation, and concluded that 
SWAT model shows acceptable accuracy in simulating 
mean discharges. Tahir et al. (2011) found that, in the high 
altitude basin, temperature change is one of the most sensi-
tive input parameters in estimating snowmelt runoff. Fon-
taine et al. (2002) modified the original snowfall-snowmelt 
routine in SWAT by incorporating snow accumulation, 
snowmelt, areal snow coverage, and an option to input pre-
cipitation and temperature as a function of elevation bands.

In Pakistan the northern part of the country, with het-
erogeneity of elevation and diverse forests and glacier dy-

namics present challenges as well as potential research op-
portunities to understand mountain hydrological processes. 
Mangla Dam is the first controlled structure on the River 
Jhelum and most of the annual Jhelum River influx stored at 
Mangla reservoir is derived from the mixed runoff generated 
from rainfall and snowmelt in the Himalayan and Pir Panjal 
ranges. The stored water of Mangla Reservoir is then deliv-
ered to the downstream irrigated agricultural lands through 
a network of barrages, canals and small watercourses. Near-
ly 60% of the whole catchment is covered by seasonal snow 
cover during the winter months (October-March). Keep-
ing in view the relative importance of snow cover for river 
flow within the study area, the snowmelt runoff modeling 
at daily and monthly time scale was done using physically-
based semi-distributed hydrological SWAT model. Also the 
quantification of SWAT model uncertainty for Kunhar wa-
tershed was performed. To the best of our knowledge, this 
study is performed first time on SWAT model uncertainty 
associated in snowmelt-runoff modeling.

2. MATERIALS AND METHODS
2.1 Study Area

SWAT model was tested on Kunhar basin with outlet 
points Naran and Gari-Habibullah covering the catchment 
area of 2442 km2 at Gari-Habibullah. The contribution of 
this basin to the total annual flow of Jhelum River is 11% 
on an average (De Scally 1994). The major portion of this 
catchment is covered by snow and glaciers during the winter 
season. The river Jhelum originates from Verinag Spring 
situated in between Himalaya mountain ranges and Pir Pan-
jal ranges in Jammu and Kashmir. Large tributaries of Jhe-
lum River are Neelum River and Kunhar River (Fig. 1). The 
flow of Jhelum River enters Mangla reservoir in the Mirpur 
district. Kunhar watershed has two peak flow events; one 
occurs in June and the other in July-September. The higher 
June inflow is attributed to the increased quantity of snow-
melt (due to temperature rise) while the July-September 
peak is a combination of rainfall and snowmelt. The high 
elevation Naran and Astore stations receive more snow 
than rainfall. The runoff from these sub-basins is controlled 
by temperature variations and is increased during summer 
due to increase in temperature (Archer and Fowler 2008). 
The information in Table 1 shows the annual temperature 
variations along with location of weather stations and flow 
gauges.

2.2 SWAT Model and Snow Package

The SWAT is a comprehensive, process based semi 
distributed hydrological model (Arnold et al. 1998, 2012). It 
subdivides the whole watershed into sub-watersheds based 
on topography and then identifies Hydrological Response 
Units (HRUs) within each sub-watershed, based on land 
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Fig. 1. Location of the study area and the meteorological stations selected.

Station Latitude Longitude Elevation
Annual Temperature (C°)

Max Min Mean

Astore 35.2 74.5 2168 15.1 4.1 9.9

Balakot 34.6 73.4 995.5 25.1 12.2 18.9

Muzaffarabad 34.4 73.5 702 27.6 13.6 20.6

Narran 34.9 73.7 2363 12 2.5 7.2

Annual Flow (m3 s-1)

Naran (Stream Gauge) 34.9 73.7 233 6.1 47

G-Habibullah (Stream Gauge) 34.4 73.4 455 19 103

Table 1. List of Weather and Stream Gauging Stations.
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use, soil and slope. The HRUs are non-spatially distributed 
assuming there is no interaction and dependency (Neitsch 
et al. 2011). The HRUs are used to compute a water bal-
ance based on snow, soil, shallow aquifer, and deep aquifer. 
Water balance computation is performed at the HRU level 
of spatial discretization, and contributions of each HRU are 
then aggregated at subbasins level. The water yield is then 
routed toward the reach and outlet of watershed.

The snow module of SWAT consists of snowfall, 
snowpack, and snowmelt processes and it provides snow 
output in term of snowmelt. The snowpack increases with 
additional snowfall, but decreases with snowmelt or subli-
mation. The mass balance of the snowpack is computed as:

SNO SNO R E SNOi i day sub mlt1 i i i
= + - --  (1)

Where SNOi is the snow water content of snowpack on day 
i (mm H2O), SNOi - 1 is the snow water content of snowpack 
on the previous day (mm H2O), Rdayi

 is the amount of pre-
cipitation in terms of snowfall on day i (mm H2O), Esubi

 is 
the amount of snow sublimation on day i (mm H2O), and 
SNOmlti

 is the amount of snowmelt on day i (mm of H2O).
The snowfall temperature (SFTMP) is the threshold 

parameter which defined the precipitation as snowfall or 
rainfall. If mean daily air temperature is lower than SFTMP, 
the precipitation is considered as snowfall and is added to 
snowpack. The snowpack will not melt until the snowpack 
temperature exceeds the snowmelt base temperature (SMT-
MP) threshold value. The snowpack temperature of the cur-
rent day is calculated as:

T T TIMP T TIMP1snow snow snow av snowi i i1
$ $= - +

- ^ h  (2)

where Tsnowi
 is the snowpack temperature on the current day 

i (°C), Tsnowi 1-
 is the snowpack temperature on the previous 

day i - 1 (°C), TIMPsnow is the snow temperature lag factor, 
Tavi  is the mean air temperature on the current day i (°C).

When the snowpack temperature reaches a higher than 
SMTMP, the snowpack start melting. The amount of snow-
melt is estimated on the basis of following relationship. The 
snowmelt rate is based on two boundaries, i.e., the rate is 
maximum on 21st June and minimum on 21st December.
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Where SNOmlti
 is the amount of snowmelt on day i (mm 

H2O), bmlti
 is the melt factor for day i (mm H2O °C- 1 d-1) as 

defined in Eq. (4), SNOcov i
 is the fraction of HRU area cov-

ered by snow as defined in Eq. (5), Tmax i
 is the maximum air 

temperature (°C) on current day, bmlt, max is the melt factor for 
21st June (mm H2O °C- 1 d-1), bmlt, min is the melt factor for 21st 
December (mm H2O °C- 1 d-1), SNOCOVMX is the threshold 
depth of snow at 100% coverage (mm H2O), and cov1 and 
cov2 are coefficients that define the shape of the curve. The 
more description of equations can be found in Neitsch et al. 
(2011) and Arnold et al. (2012).

2.3 Model Data Input

The input data files necessary for SWAT modeling and 
analysis in this study consist of geospatial data and temporal 
data. The geospatial data includes topography (DEM), lan-
duse and soil maps while the temporal data consist of climate 
and streamflow data. The data were collected from different 
sources/agencies (Table 2). A 30 m × 30 m digital elevation 
model (DEM) with vertical accuracy of ±20 m at 95% con-
fidence was obtained from USGS National Elevation Data-
set (Gesch et al. 2002; Gesch 2007) as shown in Fig. 2a. 
The DEM was used to delineate the sub-basins and drainage 
network. The slope classification map was also prepared us-
ing the DEM data. The landuse data at a spatial resolution 
of 300 m was obtained from European Space Agency (ESA) 
database (Fig. 2b). Landuse classification was done into 
eight major classes: irrigated croplands (14.06%), urban 
areas (10.80%), forests deciduous (0.58%), forests ever-
green (6.38%), forest mixed (33.14%), rangeland (2.88%), 
grasslands (19.4%), and water bodies (12.75%) (Table 3). 
These landuse classes were used to define the correspond-
ing landuse type in the SWAT model. The soil map was 
obtained from the global IPCC soil classes (5 km resolution) 
of United Nation Food and Agriculture Organization (FAO) 
regional scale soil database. In the study area 4 soil classes 
were extracted (Fig. 2c) having the physical attributes of 
available water capacity, texture, saturated conductivity, 
bulk density, organic carbon and soil albedo.

The daily weather data including precipitation, maxi-
mum and minimum air temperature, solar radiation, and 
relative humidity of four climate stations (Balakot, Muzaf-
farabad, Naran, and Astore) as shown in Fig. 1 were ob-
tained from Pakistan Meteorological Department (PMD) 
from 1971 to 2009. The daily stream flow data from 1961 
to 2009 were obtained from Water and Power Development 
Authority (WAPDA) of two stream gauging stations Naran 
and Gari-Habibullah.
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2.4 SWAT Model Setup

ArcSWAT 2012 with an interface with ArcGIS was 
used to delineate subwatersheds, HRUs and to setup the 
model in this study. Based on topography, the watershed 
is subdivided into 20 subwatersheds (Fig. 3) with drainage 
areas extending from 9.41 - 326.8 km2. Upon the overlap-
ping of land use, soil and slope maps these 20 subwater-
sheds were subdivided in 421 HRUs. The HRUs are defined 
as homogeneous spatial units, characterized by similar geo-
morphologic and hydrological properties. Number of HRUs 
must be adequate to reason for the different hydrologic con-
ditions in the watershed, and limited enough to reduce the 
data input requirements and improve modeling efficiency 
(Qiu and Wang 2014). For defining HRUs, areal thresholds 
for landuse, soil and slope maps were set to 4, 6, and 8%, 
respectively. Any class value less than the threshold was 
reassigned to predominant land use, soil or slope class in 
that subwatersheds. Soil Conservation Service (SCS) curve 
number method (Arnold et al. 1998) was utilized to calculate 
surface runoff. Muskingum method was used for the estima-
tion of channel routing. Penman-Monteith method coupled 
with Simplified Pant Growth Model was used for the cal-
culation of Potential evapotranspiration (PET). The snow 
package along with elevation band method was applied in 
SWAT. The elevation band method is helpful in consider-
ation of orographic effects on precipitation and temperature 
in mountainous areas. SWAT allow maximum 10 elevation 
bands for each subbasin. In this study, five elevation bands 
were applied within 20 subbasins (Fig. 3). Snow cover and 
snowmelt simulations were done separately for each eleva-
tion band. The SWAT band selection was done based upon 
Fontaine et al. (2002) and Pradhanang et al. (2011) studies, 
in which they concluded that using three or five elevation 
bands improved simulation. The bands were setup in all the 
snow dominated subbasins keeping equal vertical distance 
from the mean elevation of the centroid of the subbasins. 
The missing values on daily precipitation, temperatures, 
along with solar radiation, wind speed, and relative humid-
ity has been simulated by the weather generator, incorpo-
rated in the SWAT model package (Neitsch et al. 2011).

2.5 Model Sensitivity Analysis, Calibration, and  
Validation

The SWAT model was simulated for time period 2001 
to 2009 in which first four years were set as a warm-up peri-
od in order to establish appropriate initial parameter values 
for the 20 subbasins. The calibration of hydrological param-
eters along with snow parameters was performed using mul-
tisite daily, and monthly stream flow data during 2001 to 
2005. The model validation was setup at a daily and month-
ly time scale with and without elevation bands for 2006 to 
2009. First, the sensitivity analysis of the snow and hydro-
logical parameters was performed using Latin-hypercube-
one-factor-at-a-time (LH-OAT) method (Van Griensven et 
al. 2006) in SWAT-CUP (Abbaspour et al. 2015). The aim 
of this process was to identify the parameters that consider-
ably affect the stream flow (Winchell et al. 2010). Among 
the top ranked sensitive parameters, the parameters effect-
ing the stream flow were selected for the automatic calibra-
tion. The auto-calibration technique was undertaken using 
SWAT-CUP and its Sequential Uncertainty Fitting SUFI-2 
algorithm (Abbaspour 2011) for calibration of parameters. 
The SWAT-CUP is an external software tool which pro-
vides the advantage to SWAT users to do multiple itera-
tions by using various algorithms until the best fit results 
obtained (Arnold et al. 2012). The SUFI-2 algorithm was 
selected because it is a semi-automatic parameter optimiza-
tion algorithm allowing users to perform good calibration 
iteratively in a limited number of iterations. Moreover, this 
method recently has been increasingly used due to having a 
high computational efficiency (Rostamian et al. 2008; Yang 
et al. 2008; Abbaspour et al. 2015; Narsimlu et al. 2015).

2.6 Model Performance Evaluation
2.6.1 Model Statistical Evaluation Criteria

Several researchers have proposed standard statisti-
cal model evaluation criteria. Santhi et al. (2001) suggested 
that model calibration results are acceptable if the value of 
coefficient of determination (R2) is greater than 0.60 and 
Nash-Sutcliffe model efficiency (NSE) is greater than 0.50. 

Data Type Source Resolution/Scale Description/Period of Record

Topography USGS National Elevation Dataset 30 × 30 m DEM (Elevation)

Landuse data European Space Agency (ESA) Global Land 
Cover http://ionia1.esrin.esa.int/ 300 × 300 m Classified land use such as forest, agriculture, crops, water etc.

Soil data FAO-UNESCO global soil map http://www.fao.
org/nr/land/soils/ 5 km Classified soil and physical properties as sand silt clay bulk 

density etc.

Climatic data Pakistan Metrological Department (PMD) Daily Precipitation, Temperature, Solar radiation, Wind Speed
Balakot, Naran, Muzaffarabad, Astore stations (1971 - 2009)

Hydrological data Water and Power Development Authority 
(WAPDA) Daily Kunhar River discharge at daily time step.

Naran and Gari-Habibullah Stations (1961 - 2009)

Table 2. Major Data set used for SWAT model.

http://ionia1.esrin.esa.int/
http://www.fao.org/nr/land/soils/
http://www.fao.org/nr/land/soils/
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(a) (b)

(c) (d)

Fig. 2. (a) DEM, (b) land use, (c) soil types, and (d) slope map of Kunhar basin.

S.No Description Area (km2) % Area SWAT landuse Code

1 Irrigated croplands 341.43 14.06 AGRR

2 Urban areas 262.31 10.80 URLD

3 Forests deciduous 14.12 0.58 FRSD

4 Forests evergreen 154.98 6.38 FRSE

5 Rangeland 69.89 2.88 RNGB

6 Forest mixed 804.26 33.14 FRST

7 Grasslands 470.80 19.40 RNGE

8 Water Bodies 309.36 12.75 WATR

Total - 2427.20 100 -

Table 3. Landuse Map Attributes for Kunhar Watershed.
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R2 and NSE have been used by many researchers as a mea-
sures for the performance evaluation of SWAT (Santhi et al. 
2001; Rahman et al. 2013; Troin and Caya 2014; Rahayun-
ingtyas et al. 2014). Another factor followed in this study 
was Percent Bias (PBIAS) (Moriasi et al. 2007). The opti-
mal value of PBIAS is 0.0, with low-magnitude values in-
dicating accurate model simulation. Positive values indicate 
model underestimation, and negative values indicate model 
overestimation (Gupta et al. 1999). R2, NSE, and PBIAS are 
calculated by following equations.
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Where Oi = observed value; O  = mean observed value; Si = 
simulated value; and S  = mean simulated value (Santhi et 
al. 2001).

2.6.2 Uncertainty Prediction Criteria

The performance of the calibrated models should be 
evaluated before use. The model predicted results doesn’t 
reached to a certain value due to uncertainties associated 
with model input, model structure, parameters, and output. 
The results are represented with a confidence range (Gupta 
et al. 1999; Beven 2001). So in this study, the strength of 
a calibration and uncertainty analysis is quantified by us-
ing two additional statistical uncertainty prediction criteria 
referred as the P-factor and R-factor. The P-factor is de-
fined as the percentage of measured data enveloped by the 
95PPU (95% prediction uncertainity), while the R-factor is 
the average thickness of the 95PPU envelop divided by the 
standard deviation of the measured data. Theoretically, the 
values for the P-factor and R-factor range between 0 and 
100%, and between 0 and infinity, respectively. The value 
of P-factor equal to 1 (100%) and that of R-factor is close 

Fig. 3. Distribution of elevation bands in 20 sub-watersheds.
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to zero indicate that the simulated results exactly matching 
with the observed values (Abbaspour 2011). The P-factor 
and R-factor are computed as follows.

P factor N
nyti- =  (9)

R factor dx
xv

- =  (10)

Where nyti is the number of measured values enveloped by 
the 95PPU, dx  is the mean of the x variables, xv  is the stan-
dard deviation of the measured variable x, N the total num-
ber of measured values.

3. RESULTS AND DISCUSSION
3.1 Model Performance and Calibration

The sensitivity analysis identified fifteen most influen-
tial parameters in which ten were hydrological parameters 
while the five were snow parameters. The selected sensitive 
parameters with description are given as follow: Soil Con-
servation Service (SCS) curve number II (CN2), tempera-
ture lapse rate (TLAPS), base-flow alpha factor (ALPHA_
BF), available water capacity of the soil layer (SOL_AWC), 
Snowpack temperature lag factor (TIMP), snowmelt base 
temperature (SMTMP), maximum melt factor (SMFMX), 
threshold depth of water in the shallow aquifer (GWQMN), 

minimum melt factor (SMFMN), manning “n” for overland 
flow (CH_N2), average slope length (SLSUBBSN), average 
slope steepness (HRU_SLP), groundwater delay (GW_DE-
LAY), plant uptake compensation factor (EPCO), surface 
lag coefficient (SURLAG). The sensitivity ranking of these 
parameters from the order of high to low along with corre-
sponding range is given in Table 4.

It was observed that among the top ten sensitive pa-
rameters, there are five snow parameters. Temperature lapse 
rate (TLAPS) ranks second most sensitive parameter, for 
the reason that it is related directly with the snow or glacier 
melt. TIMP is also among the sensitive parameters because 
it considers the snowmelt for the preceding day and it indi-
cates the impact of daily temperature variations on the daily 
snowpack temperature. SMTMP is the threshold tempera-
ture above which the snowmelt process starts and ranked as 
third most sensitive parameter among snow parameters. It 
controls the peaks and shape of the simulated hydrograph. 
SMFMX and TIMP are two interrelated parameters and 
control the snowmelt estimation. During the modifications 
of parameter values, it was observed that TIMP parameter 
has great impact on the model efficiency as compared to 
SMFMX parameter. So the TIMP is the second most sensi-
tive parameter while SMFMX is on 4th position among the 
snow parameters.

The other most dominant hydrological parameters are 
CN2 and ALPHA_BF. CN2 is rainfall runoff conversion 
coefficient and controls the runoff generation. It depends 
on soil type, land use type, and slope. It varies from HRU to 

Parameter Definition Initial Range
Final Range

Min Max

CN2.mgt 1 Moisture condition II curve number -0.3/+0.3 -0.2 0.2

TLAPS.sub 2 Temperature lapse rate (°C km-1) -10/+10 -7.51 -7.49

ALPHA_BF.gw 2 Base-flow recession constant 0/1 0.09 0.26

SOL_AWC.sol 1 Available water capacity -0.2/+0.2 -0.03 0.27

TIMP.bsn 2 Snowpack temperature lag factor 0/1 0.55 0.74

SMTMP.bsn 2 Snowmelt base temperature -5/+5 -1.2 1.34

SMFMX.bsn 2 Maximum melt factor 0/10 0.9 3.18

GWQMN.bsn 2 Threshold depth of water in the shallow aquifer 0/1 0.15 0.23

SMFMN.bns 2 Minimum melt factor 0/10 5.60 7.80

CH_N2.rte 2 Manning ’s n value for main channel -0.2/+0.2 0.16 0.22

SLSUBBSN.hru 1 Average slope length 0/0.2 -0.06 0.09

HRU_SLP.hru 1 Average slope steepness 0/0.2 -0.10 -0.04

GW_DELAY.gw 2 Delay time for aquifer recharge 30/450 125 151

EPCO.hru 2 Plant uptake compensation factor 0.01/1 0.80 0.84

SURLAG.bsn 2 Surface runoff lag coefficient 1/24 7.4 8.10

Table 4. Model Parameters and Corresponding Ranges.

Note:  1: parameter multiplied by 1 + r, where r is a number between initial range; 2: parameter replaced by 
the new value from the range.



Uncertainty Evaluation of SWAT Mode for Snowmelt Runoff 273

HRU, reach to reach and sub-basin to sub-basin. ALPHA_
BF and GWQMN which are ground water parameters, con-
trol the interchange between the stream flow and the ground 
water evaporation in the unsaturated zone (Smedema and 
Rycroft 1983). Moreover, by modifying the SLSUBBSN, 
HRU_SLP, and OV_N parameters, the lag effect on simu-
lated flows were reduced and reshaped the simulated hy-
drographs.

During the model sensitivity analysis and calibration, 
the baseline values allocated to each spatially varying pa-
rameter were changed by multiplying the baseline value by 
adding the sampled values to the baseline value shown in 
(Table 4).

The calibrated and model predictive performances for 
Kunhar River on daily and monthly flows are summarized in 
Table 5 for all calibration and uncertainty analysis method. 
The model parameter optimization was performed on the 
bases of five objective functions which are: (1) NSE (2) R2, 
(3) PBIAS, (4) P-factor, and (5) R-factor. The comparison 
between the observed and simulated stream flow indicated 
that there is a good agreement between the observed and 
simulated discharge which was verified by higher values of 
coefficient of determination R2 and NSE. Overall, the per-
formance of the model for both calibration points was good 
for daily (NSE = 0.68 and NSE = 0.74) and monthly (NSE = 
0.73 and NSE = 0.78) time scale (Table 5). The model per-
formance of the daily time scale was weak as compared to 
the monthly. Many researchers have reported SWAT lower 
performance for the simulation of daily stream flows (Van 
Liew and Garbrecht 2003; Saleh and Du 2004; Fernandez et 
al. 2005; Van Liew et al. 2007). PBIAS value varied from 
3.2 - 4.1% for the calibration at Naran and 9.1 - 12.7% at 
monthly time scale. The possible reason may be the weak-
ness of SWAT model in modeling watershed flows which 
are predominately generated from snowmelt (Fontaine et al. 
2002). A close analysis of five years calibration period on 
a daily scale indicated that model underestimated runoff for 
two years at Naran and four years at Gari-Habibullah while 
overestimated runoff for one year at Naran and three years 
at Gari-Habibullah as shown in Fig. 4.

3.2 Model Validation and Influence of Elevations Bands

The results over the validation period showed similar 
performance as the calibration period. Model simulation 
for the validation period captured the overall dynamics of 
the flow with greater accuracy at both calibration points. 
The model validation was performance by two techniques, 
with and without the use of elevation bands. The valida-
tion which was done without inclusion of elevation band 
is named as validation technique-1 (VT-1) while with band 
inclusion is VT-2. Results of SUFI-2 during the validation 
periods at two flow stations are shown in Fig. 5, the shaded 
area contains the uncertainty from different sources.

3.2.1 Validation Technique-1 (VT-1)

The validation technique-1 (VT-1) was performed 
without inclusion of elevation bands. The results of Naran 
gauging station for daily time step (Fig. 5a) showed an ac-
ceptable value of R2 (0.71) and NSE (0.63). However, the 
flows were underestimated (PBIAS = 12.3%) higher than the 
calibration period. The uncertainty at this station increased 
significantly compared to the calibration period. Only 64% 
of the observations were enveloped by corresponding 95% 
confidence interval. The R-factor at this station was 0.70 
(Table 6). For monthly time step, the model performance 
improved in terms of selected objective functions. The val-
ues of R2 and NSE were greater than 0.80, which are higher 
than the daily flows calibration. Moreover, the P-factor en-
veloped 71% observed stream flows with R-factor of 0.90. 
The average tendency of the data improved from 12.3 to 
-2.6% as compared to daily flows calibration.

Gari-Habibullah flow station (Fig. 5c) for daily flows 
validation demonstrated R2 and NSE > 0.65, which are 
acceptable as per Santhi et al. (2001). 95% prediction un-
certainty (95PPU) band captured 72% observed data and 
R-factor equaled 0.89. From monthly time step, the model 
indicated large uncertainty capturing only 63% of observed 
data with R-factor of 0.74. However, PBIAS improved from 
11.03 - 8.6% (Table 6). Overall results pointed out that  

Table 5. Statistical Evaluation of SWAT Model for calibration period.

Naran Gari-Habibullah

Periods R2 NSE PBIAS % P-factor R-factor R2 NSE PBIAS % P-factor R-factor

Daily 2001 - 2005 0.72 0.68 3.2 0.87 1.08 0.8 0.74 9.1 0.73 0.97

2001 0.87 0.72 18.39 _ _ 0.82 0.77 11.55 _ _

2002 0.83 0.56 29.28 _ _ 0.84 0.68 21.83 _ _

2003 0.84 0.82 -11.5 _ _ 0.87 0.86 7.68 _ _

2004 0.65 0.63 -4.78 _ _ 0.73 0.65 11.83 _ _

2005 0.8 0.61 -21.95 _ _ 0.88 0.68 -10.2 _ _

Monthly 2001 - 2005 0.76 0.73 4.1 0.85 0.91 0.82 0.78 12.7 0.63 0.78
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(a)

(b)

(c)

Fig. 4. (a) Observed and Simulated flow at Naran; (b) observed and simulated flow at Gari-Habibullah with shaded area showing 95PPU coverage; 
(c) dotty plots of daily and monthly time series at both gauges.

(a)

(b)

(c)

(d)

Fig. 5. (a) Observed and Simulated flow at Naran without elevation bands; (b) observed and Simulated flow at Naran with elevation bands; (c) ob-
served and Simulated flow at Gari-Habibullah without elevation bands; (d) observed and Simulated flow at Gari-Habibullah with elevation bands, 
the shaded area is showing 95PPU coverage.
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model improved performance for monthly time step in terms 
of R2, NSE, and PBIAS.

3.2.2 Validation Technique-2 (VT-2)

In validation technique-2 (VT-2), the model was vali-
dated by the inclusion of elevation bands. Model performance 
measures were higher in the validation (VT-2) as compared 
to VT-1. At Naran gauging station for daily time scale 74% 
of observed data have been captured by corresponding 
95PPU band while R-factor equaled 0.78. Compared with 
the VT-1, P-factor improved from 64 - 74%, with values of 
R2 and NSE > 0.70 (Table 6). This improvement in model 
performance indicates the significance of elevation bands 
for the snowmelt modeling. Monthly flow simulation at this 
station indicated similar model performance as of daily.

At Gari-Habibullah flow station for daily time scale, 
89% of flow data was falling under the 95% confidence 
interval, which was higher than the P-factor in VT-1 and 
signifying less uncertainty. The values of R2 and NSE were 
also higher, as compared to the validation VT-1 (Table 6). 
For monthly flow validation, the P-factor was improved, 
which indicated less degree model output uncertainty. The 
PBIAS also decreased from 8.6 - 6.3%. The simulated flows 
matched the observation flows quite well with the optimum 
objective function values. On an average 10 - 12% more 
data for the daily flow stimulation was captured by 95PPU 
band and 15 - 25% for the monthly flow validation by us-
ing elevation bands. Moreover, some of the extreme flow 
events were also simulated in a better way. For example, at 
Gari-Habibullah flow station (Fig. 5d), the high flows were 
simulated better as compared to the simulation without el-
evation bands.

3.3 Uncertainty Analysis

Uncertainty in SWAT model was estimated through 
the SUFI-2 method. SUFI-2 was started with wide but 
meaningful ranges of sensitive parameters so that the mea-
sured data initially fall within the 95PPU; this uncertainty 
is then reduced by several iterations. The 95PPU was used 
to quantify all types of uncertainties. It combined outcome 
of the uncertainties in the input data, hydrological model, 

and the parameters. These uncertainty sources were not 
estimated independently but ascribed as total model uncer-
tainty in model parameters. Normally, P-factor and R-factor 
were used to assess the uncertainty. P-factor is the percent-
age of observed data enveloped by the 95PPU modeling re-
sult. R-factor is the thickness of the 95PPU envelop. The 
reasonable values for P-factor and R-factor are > 70% and 
around 1, respectively for better result of discharge simula-
tion (Abbaspour 2011). It was assessed that at Naran flow 
station the P-factor and R-factor were 0.87 and 1.08 at daily 
time steps. The P-factor indicated that 87% of the observed 
data were captured by 95PPU. At Gari-Habibullah flow sta-
tion the P-factor and R-factor were observed to be 0.73 and 
0.97. This reduction indicated the higher uncertainties as 
the stream flows moved towards downstream. The 95PPU 
captured 14% less data than the upstream calibration point 
which indicated large uncertainty prediction in driving input 
variables such as rainfall (Table 5).

For monthly time scale simulation at Naran station the 
P-factor was 0.85 and R-factor = 0.91. The 95PPU captured 
2% less data than at the daily time scale. Also the R-factor 
decreased from 1.08 to 0.91. While at Gari-Habibullah the 
P-factor and R-factor were 0.63 and 0.78, respectively. This 
large reduction in P-factor and R-factor at the monthly time 
simulation is indicative of large uncertainties (Table 5). It 
was predicated that the model simulation on monthly time 
scale was good at both stations based upon R2 and NSE, 
while the P-factor and R-factor values indicated that SWAT 
model exhibited a certain degree of uncertainty on monthly 
time step simulation. Close analysis of 95PPU band con-
cealed that some of the low flows were not covered prop-
erly, this may be due to the limitation of SWAT model 
for simulating groundwater flow (Rostamian et al. 2008). 
Many researchers also reported difficulty in achieving good 
SWAT simulations for low flow conditions (Van Liew and 
Garbrecht 2003; Sudheer et al. 2007). This could be attrib-
uted to the inability of the runoff curve number (CN) to 
adequately account for hydrologic abstractions for various 
antecedent soil moisture conditions. Some of the high flow 
events at both gauging stations (Fig. 4b) were also not at-
tributed by 95PPU which indicated the inability of SWAT 
model for extreme flow simulations.

It was observed that the model uncertainties varied at 

Naran Gari-Habibullah

Validation Technique Periods R2 NSE PBIAS % P-factor R-factor R2 NSE PBIAS % P-factor R-factor

Without Elevation Bands
Daily 2006 - 2009 0.71 0.63 12.3 0.64 0.7 0.68 0.66 11.03 0.72 0.89

Monthly 2006 - 2009 0.83 0.81 -2.6 0.71 0.9 0.78 0.77 8.6 0.63 0.74

With Elevation Bands
Daily 2006 - 2009 0.77 0.71 1.2 0.74 0.78 0.75 0.7 8.35 0.89 0.82

Monthly 2006 - 2009 0.85 0.82 -1.1 0.83 1.1 0.82 0.8 6.3 0.88 0.76

Table 6. Statistical Evaluation of SWAT Model for validation period.
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both flow stations. This may be due to inadequate distri-
bution of weather stations inside the catchment. Since it is 
a mountainous watershed with an elevation difference of 
4403 m, and covered with only 4 weather stations of which 
2 station were inside the watershed. This spatial distribution 
variability of climate data is likely to be captured insuffi-
ciently. As only one weather station is located in Naran at 
upstream part of the catchment and the other one station at 
Astore which is 15 km outside the catchment boundary. At 
downstream, only one weather station is also in the catch-
ment while the other one at Muzaffarabad, 8 km outside the 
catchment. This spatial distribution could be the cause of 
error in input weather data within this catchment because 
according to SWAT module, the weather condition in a 
subbasins are determined by the nearest weather station and 
rain gauge station. Thus, the input data may not represent 

the real weather conditions in this study catchment.

3.4 Parameters Equifinality and Identification

The dotty plots (Fig. 6) mapped the model parameter 
(x-axis) and NSE (y-axis) to illustrate the relative sensitiv-
ity of each parameter associted with NSE and also dem-
onstrate the distribution of sampling points (Wagener and 
Kollat 2007). By observing the dotty plot Fig. 6, it was 
evident that the main sources of streamflow uncertanity for 
snowmelt modling were hydrological parameters (CN2.
mgt, ALPHA_BF.gw, SOL_AWC.sol, GWQMN.bsn, and 
CH_N2.rte) and snow parameters (TLAPS.sub, TIMP.bsn, 
SMTMP.bsn, SMFMX.bsn, and SMFMN.bsn). All the pa-
rameters are concentrated within highest values of NSE (0.6 
- 0.8). Among all the parameters, Ground water governing 

Fig. 6. Dotty plots depicting the variability of identifiability of SWAT parameters.
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parameter ALPHA_BF and snowmelt parameter SMFMX 
were the most identifiable parameters for the study water-
shed. The scattered and/or haphazard points on dotty plot 
indicated low sensitivity of parameters while if the points 
do follow a trend, the sensivity is higher. Most of the pa-
rameters were showing similar pattern, generating almost 
similar model performance. This is called parameter equifi-
nality. However, it should be noted that non-identifiability 
of a parameter does not mean that the model is not sensitive 
to these parameters (Shen et al. 2012). The results of dotty 
plots indicated that the sensitivity of SWAT parameters 
did not vary between the different parameter values. Even 
though many of the sensitive parameters were affecting 
the stream flow, but only a few sensitive parameters were 
identifiable. This equifinality is an indication of no unique 
parameter were estimated. This may be the indication that 
uncertainty in model output lies in the parameters, similar 
results were reported by Demaria et al. (2007) and Narsimlu 
et al. (2015). This may occured due to following reasons: 
(1) correlations between parameters, (2) spatial and tempo-
ral scales of model residual, (3) sensitivity or insensitivity 
of parameters (Wagener and Kollat 2007). Consequently, to 
deal with non-identifiable parameters in SWAT calibration, 
one must be careful because it may lead to equifinality of 
the parameter values. Under these circumstances, the user 
must check, if the final calibrated model values correspond 
to watershed characteristics and its underlying processes. 
To obtain more credible results of watershed management, a 
monitoring task must be done for the important parameters.

4. CONCLUSION

This study assessed the performance of SWAT model 
in the high altitude watershed where runoff is a subtle mix-
ture of both rainfall and snowmelt processes. The approach 
starts with the initial range of parameters based on the un-
derstanding of the physics of the watershed. Then after the 
iterations, the value of parameters altered with respect to 
best fit objective function. The model was successfully cali-
brated (2001 - 2005) and validated (2006 - 2009) for the two 
gauging stations at daily and monthly time scale. The sta-
tistical evaluation of model results at daily time scale indi-
cated good results verified by the NSE > 0.72 and R2 > 0.68, 
whereas at monthly time scale both R2 and NSE were high 
significantly. The model validation was performed with and 
without the use of elevation bands. Model results in terms 
of selected objective functions confirmed that model results 
improved significantly when elevation bands were used. 
The SUFI-2 algorithm was used to quantify the associated 
uncertainty. For calibration, P-factor and R-factor computed 
by SUFI-2 indicated good results by enveloping more than 
73% of the observed data at daily time scale. While on a 
monthly time scale more than 63% observed data was en-
veloped by 95% confidence interval, indicating higher un-

certainties. For validation, overall the P-factor enveloped 15 
- 25% more observed data when elevation bands were used. 
During the model parameter identification, the equifinality 
in the parameters was observed, generating almost similar 
model performance for different set of parameters. Greater 
parameter sensitivity does not mean that the parameter is 
also identifiable. The study suggested that the final cali-
brated model should be in correspondence to the watershed 
characteristics and its underlying processes, and implemen-
tation of monitoring task for the important non-identifiable 
model parameters. This study showed that SWAT model 
can produce reliable estimation of the different components 
of the hydrological cycle in high mountain watersheds. The 
calibrated model can be used for further analysis of the ef-
fect of climate and land use changes, as well as to investi-
gate the effect of different management scenarios on stream 
flows, water quality and sediment yield.
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