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ABSTRACT

Estimates of extreme water level return periods in river systems are crucial for 
hydraulic engineering design and planning. Recorded historical water level data of 
Taiwan’s rivers are not long enough for traditional frequency analyses when predict-
ing extreme water levels for different return periods. In this study, the integration of 
a one-dimensional flash flood routing hydrodynamic model with the Monte Carlo 
simulation was used to predict extreme water levels in the Danshuei River system 
of northern Taiwan. The numerical model was calibrated and verified with observed 
water levels using four typhoon events. The results indicated a reasonable agreement 
between the model simulation and observation data. Seven parameters, including the 
astronomical tide and surge height at the mouth of the Danshuei River and the river 
discharge at five gauge stations, were adopted to calculate the joint probability and 
generate stochastic scenarios via the Monte Carlo simulation. The validated hydro-
dynamic model driven by the stochastic scenarios was then used to simulate extreme 
water levels for further frequency analysis. The design water level was estimated 
using different probability distributions in the frequency analysis at five stations. 
The design high-water levels for a 200-year return period at Guandu Bridge, Taipei 
Bridge, Hsin-Hai Bridge, Da-Zhi Bridge, and Chung-Cheng Bridge were 2.90, 5.13, 
6.38, 6.05, and 9.94 m, respectively. The estimated design water levels plus the free-
board are proposed and recommended for further engineering design and planning.
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1. INTRODUCTION

There are total 132 river systems in Taiwan including 
24 main rivers, 29 secondary rivers, and 79 ordinary riv-
ers. The longest river is the Choshui River in Southern Tai-
wan. The river length is 186 km and channel slope reaches 
1:46. Taiwan’s rivers have the characteristics of short with 
steep slope and meandering. When heavy rainfall falls in the 
catchment area during typhoon events, the rivers are prone to 
overtopping resulting in flooding at midstream/downstream 
reaches. Extreme events cause heavy rainfall to be the main 
reason of flooding that is one of the worst natural hazards in 
Taiwan (Hsu et al. 2003; Hsieh et al. 2006). Typhoon Nari 
hit Taiwan in 16 - 21 September 2001 is one of an example 
to describe the extreme event. This typhoon brought torren-
tial rainfall in mountainous areas where more than 1200 mm 
of rain fell over a two-day period, causing overbank flow in 

many rivers. At least 94 people were killed and 10 others 
were listed as missing due to the strong typhoon. The Taipei 
Metro was severely damaged as a result of flooding, so it 
stopped for at least six months.

Extreme water levels in tidal rivers can cause over-
banking and levee breaking, which results in economic and 
human life losses and social impacts. The water level in this 
type of transitional area is affected by upstream river flow, 
downstream tidal levels, and the operation of existing con-
trollable structures (Zhong et al. 2016). Tidal rivers have 
negative impacts on surrounding areas where residents live, 
but these rivers also contribute several benefits. The astro-
nomical tide at the mouth of tidal rivers obstructs fluvial 
flows flowing towards downstream reaches. The water level 
increases due to the interaction between tides and floods in 
tidal rivers (LeBlond 1978; Godin 1985). Moreover, it is 
vital to assess extreme water level frequency for flood risks 
and future flood defense designs.

There are two major approaches when determining  
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extreme water levels depending on the availability of the ob-
served water level data at a site. The first approach is a nu-
merical simulation method. It can be used when there is not 
an adequate observational record for flooded water levels. A 
hydrodynamic model provides the link between the known 
statistics of the generating forces and the desired statistics of 
the water levels. These simulation methods, such as the joint 
probability method (Pugh and Vassie 1979; Tawn and Vassie 
1989) and the Monte Carlo simulation (Svensson et al. 2013; 
Zhong et al. 2013), can be used to accurately predict extreme 
water levels. The second approach is a frequency analysis 
of annual maximum water levels that results from the com-
bination of several forcing factors (Gumbel 1985; Sindhu 
and Unnikrishnan 2012). This approach can be used when 
reasonably long observation data (greater than 60 years) are 
available (Huang et al. 2008; Xu and Huang 2008). Xu and 
Huang (2011) used a 91-year data set at the Wusong station 
near Shanghai to calculate the 100-year annual maximum 
water level by means of general extreme value (GEV) model 
to plan coastal hazard mitigation in Yangtze Estuary. A 59-
year data set was also applied to examine the influence of 
a shorter data set on estimating 60-year annual maximum 
water level. The results revealed that model prediction using 
the 59-year data set resulted in underestimating the observed 
60-year annual maximum water level.

According to the investigations by literature (Huang 
et al. 2008; Xu and Huang 2008), the frequency analysis 
is suitable for long observation data that were greater than 
60 years. However, it is difficult to find long-term datasets 
greater than 60 years from gauge stations at Taiwanese river. 
Therefore, a traditional frequency analysis is not appropri-
ate for gauge stations in Taiwan. The alternative numerical 
simulation method is suitable for analyzing extreme water 
levels. This method can be used to simulate extreme wa-
ter levels using a hydrodynamic model driven by discharge 
upriver and tidal levels at the river mouth. The hydrody-
namic model provides a link between a generating forcing 
with a return period and the expected extreme water levels. 
Mantz and Wakeling (1979) and Samuels and Burt (2002) 
used a very limited number of sampling scenarios, but they 
adopted accurate Monte Carlo simulations to produce a very 
large number of stochastic sampling scenarios. A simplified 
one-dimensional hydrodynamic model of the lower Rhine 
delta was applied to simulate extreme water levels. Zhong 
et al. (2013) established a joint probability analysis on as-
tronomical tides, wind-induced storm surge, the Rhine flow 
and the Meuse flow at the river boundaries to produce a 
joint probability distribution. A one-dimensional hydrody-
namic model was then applied to estimate high water-level 
frequencies in the estuary delta. The sampled Monte Carlo 
simulation method was used to generate a large number of 
stochastic scenarios as inputs for the one-dimensional hy-
drodynamic model.

The uncertainty of the evaluation procedure includes 

the determination of the influencing parameters, the data 
collection for the parameters, the establishment of param-
eter probability distribution, the cumulative probability 
of the parameters determined by the frequency analysis 
method, the application of the joint probability approach 
and Monte Carlo simulation to generate the scenarios, the 
scenario simulations using numerical model, and then the 
exceedance probability analysis.

The objective of this study is to integrate a one-di-
mensional flash flood routing hydrodynamic model with 
a Monte Carlo simulation to estimate extreme water lev-
els in the Danshuei River system of northern Taiwan. The 
hydrodynamic model was first calibrated and verified with 
measured water levels using several typhoon events. The 
validated model was then applied to calculate water levels 
in the river system. Different water level scenarios at the 
downstream boundary and discharges at upstream boundar-
ies were yielded from the Monte Carlo simulation to drive 
the hydrodynamic model. The desired extreme water levels 
with return periods of 50, 100, and 200 years are proposed 
in this study. The current flood protection standard for the 
Danshuei River system is a 200-year return period. This 
study uses uncertainty analysis and adds extreme events 
to the historical data to estimate the design water levels of 
the various river reaches under different return periods. The 
results of this research can provide a reference for govern-
ment agencies to evaluate the design height of dike along 
the Danshuei River system.

2. MATERIALS AND METHODS
2.1 Governing Equations of the Hydrodynamic Model

The one-dimensional hydrodynamic model can be 
used to simulate during typhoon events, therefore the model 
is also called flash flood routing model. The hydrodynamic 
model consists of one-dimensional continuity and momen-
tum equations which are based on a dynamic wave theory 
(i.e., Saint-Venant equations). The governing equations can 
be expressed as:

t
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where A represents the flow cross section area, Y denotes 
the water depth, Q marks the flow discharge, g is the gravi-
tational acceleration, q1 is the lateral inflow per unit channel 
length, q2 is the lateral outgoing overflow per unit channel 
length, S0 is the channel bottom slope, Sf is the friction slope 
that denotes energy loss per unit weight of fluid per unit 
length of channel, V1 is the longitudinal velocity component 



Integrating Hydrodynamic Model and Monte Carlo Simulation 591

of the lateral inflow, t is time parameter, and x is the spatial 
direction consistent with the flow direction. In governing 
Eqs. (1) and (2), there are only two variables, Q and Y, to be 
solved by numerical method.

In this study, the four-point implicit finite difference 
method (Preissman 1961; Amein and Fang 1970) was used 
to solve for variables discharge (Q) and water depth (Y). The 
approach to treat the main stream and tributary at the conflu-
ence is that the water level must be equal (i.e., 1 2 3h h h= = ,  
where h  is water level) and discharge must be balanced 
(i.e., Q1 + Q2 = Q3) (see Fig. 1b). The detailed algorithms 
of the solution can be found in Fu et al. (2016) and Horvat 
et al. (2017).

2.2 Frequency Analysis Methods

A number of researchers have used frequency analy-
ses to investigate extreme water levels (Gelder and Neykov 
1998; Walton 2000; Sobey 2005). For example, the Federal 
Emergency Management Agency (FEMA) recommends the 
application of the GEV model to estimate extreme value 
of annual maxima for further planning coastal flood in-
surance along the west coast of the USA near the Pacific 
Ocean (FEMA 2005). Three distribution models including 
Gumbel, Weibull, and Frechet distributions are built into a 
model to form the three-parameter GEV model. A number 
of researchers have mentioned the application of GEV dis-
tributions that are represented by a shape factor parameter 
(Morrison and Smith 2002; De Michele and Salvadori 2005; 
Xu and Huang 2011). However, other types of probability 
distributions for frequency analyses can be justified to select 
the best distribution for extreme values. In this study, differ-
ent types of distributions including the Gumbel, Weibull, 
Frechet, normal, lognormal, and log-Pearson 3 distributions 
were used to analyze extreme values.

The standard error (SE) and the correlation coefficient 
(CC) were used as indicators when evaluating the perfor-
mance of each extreme value distribution (McKay et al. 
1979). The most adaptive distribution (i.e., the lowest SE 
and the highest CC) will be selected for further applications. 
The expressions for the SE and the CC are given as follows:
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where xi represents the observed value, xiW  represents the es-
timated value, x  represents the mean of the sampling data, 

xU  represents the mean of the estimated data, and n repre-
sents the number of data.

2.3 Monte Carlo Simulation

Monte Carlo methods are a broad class of computa-
tional algorithms that rely on repeated random sampling 
to obtain numerical results. The essential idea is the use of 
randomness to solve problems that might be deterministic in 
principle. Monte Carlo simulations have been widely used in 
engineering for sensitivity analyses and quantitative proba-
bilistic analyses in process design (Kroese et al. 2014). For 
example, they are applied in coastal flood damage estimates 
and coastal hydrodynamic modeling (De Moel et al. 2012; 
Camacho and Martin 2013; Lopeman et al. 2015; Höllt et al. 
2015), flood propagation modeling (Van Bijnen et al. 2012; 
Zhou and Guo 2014; Dimitriadis et al. 2016), rainfall hyeto-
graph design (Kottegoda et al. 2014), hydrological uncer-
tainty analysis (Liu et al. 2018), and water quality modeling 
(Martin and Ayesa 2010; Nakan and Haidary 2010; Jiang et 
al. 2013; Antanasijević et al. 2014).

The joint probability distribution may be identified 
based on the marginal distributions (the probability distribu-
tions of random variables) and their correlation. In the case 
that the random variables are independent to each other, 
their joint probability distribution function (PDF) is simply 
the multiplication of their PDF of random variables. In this 
step, the conditional distribution of random variables can 
be identified from the joint probability and marginal distri-
butions. Based on this information, the Monte Carlo simu-
lation can be implemented in the next step (Hawkes et al. 
2002; Wang 2016).

In this study, the random variables are astronomical 
tides, surge heights, and river discharges at five upstream 
boundaries. A joint probability analysis of astronomical 
tides, surge heights, and river discharges at five upstream 
boundaries is established to produce a joint probability dis-
tribution of potential flood events. Then, importance sam-
pling with the Monte Carlo simulation method is used to 
help generate a large number of stochastic scenarios as the 
inputs for the one-dimensional flash flood routing hydrody-
namic model. A set of 6000 scenarios is generated from the 
Monte Carlo simulations to compute extreme water levels 
in a river system.

2.4 Indices of the Hydrodynamic Simulation  
Performance

To evaluate the performance of the one-dimensional 
flash flood routing hydrodynamic model, three criteria were 
used to compare the simulated results and the measured data: 
the mean absolute error (MAE), the root mean square error 
(RMSE), and the Nash-Sutcliffe coefficient (NS). The error 
indices can be defined by Eqs. (5), (6), and (7), respectively:
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where Hmes represents the measured water level, Hsim repre-
sents the simulated water level, Hmes , and N represents the 
number of time measurements.

3. INVESTIGATION AREA AND DATA  
DESCRIPTION

3.1 Description of Study Site

The Danshuei River system covering three major tribu-
taries, the Dahan River, the Xindian River, and the Keelung 
River is located in northern Taiwan (Fig. 1a). The watershed 
of the Danshuei River system occupies a population of over 

six million people (Liu et al. 2001). To prevent flooding 
in the Danshuei River system, the Erchung flood diversion 
channel, constructed near the confluence of the Dahan River 
and the Xindian River in 1984, was used to divert flood flow 
during typhoon events. The watershed area of the Danshuei 
River system is 2726 km2, with a mean annual precipita-
tion of 3001 mm. The total channel length is 327.6 km and 
the channel slope ranges from 1:37 to 1:6700. The dry sea-
son is from December to May, while the wet season is from 
June to November. Annual precipitation in the Dahan River, 
the Xindian River, and Keelung River is 2430, 3300, and  
4000 mm, respectively. The peak discharge of a 200-year 
flood reaches 25000 m3 s-1 (Water Resources Agency 2015). 
The major forcing mechanisms of flood flows are astronom-
ical tides at the river mouth and river discharges at the up-
river boundary. Semi-diurnal tides are represented by prin-
cipal tidal constituents, with a mean tidal range of 2.21 m 
and a spring tidal range of 3.1 m. The downstream reaches 
of all three tributaries are affected by tides (Hsu et al. 1999; 
Liu et al. 2004).

3.2 Hydrodynamic Model Configuration

In this study, the measured cross-sectional profiles at 

(a)

(b)

Fig. 1. (a) Map of the Danshuei River system in northern Taiwan and paths of the four typhoon events and (b) Layout of the Danshuei River system 
for the model simulation.
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approximately 0.5 km intervals along the river system were 
used to set up the model transects for model simulation. 
There are 310 model transects covering 11 river reaches in 
the computational domain (shown in Table 1). The down-
stream boundary is specified at the Danshuei River mouth. 
The upstream boundaries are located at Fu-Zhou Bridge, 
Quan-Zean Bridge, Xiu-Lang Bridge, Bao Bridge, and 
Jie-Shou Bridge (Fig. 1a). The upstream and downstream 
boundary conditions of the dynamic flood routing hydrody-
namic model are represented by the hourly discharges and 
hourly tidal levels specified at the mouth of the Danshuei 
River, respectively (Fig. 1a). It means that the flood routing 
hydrodynamic model is run with unsteady flow conditions. 
The measured hourly discharges and hourly tidal level at 
the upstream and downstream boundary conditions during 
the typhoon events were observed and provided by the Wa-
ter Resources Agency, Taiwan. The layout of the Danshuei 
River system for model simulation is illustrated in Fig. 1b.

3.3 Data Collection and Analysis

Observational data, including tidal levels at the mouth 
of the Danshuei River and discharges upstream of the 
Taliaokengchi drainage, Dahan River, Xindian River, Ji-
angme River, and Keelung River, were collected from the 
Water Resource Agency of Taiwan. The data are shown in 
Table 2. Surge heights during typhoon periods were calcu-
lated as the difference between the observed tidal level and 
the astronomical tide. Observational data for astronomical 
tides, surge heights, and discharges were used to analyze 
and yield the probability of each parameter. To investigate 

the potential correlation between measured data, the surge 
heights and discharges were analyzed. The results reveal 
that the coefficients of determination (R2) between surge 
heights and discharges at Fu-Zhou Bridge (Dahan River), 
between surge heights and discharges at Xiu-Lang Bridge 
(Xindian River), and between surge heights and discharges 
at Jie-Shou Bridge (Keelung River) are 0.66, 0.612, and 
0.67, respectively.

4. MODEL CALIBRATION AND VERIFICATION

To make sure the model accuracy for further practi-
cal applications, the observational data are used for model 
calibration and validation on simulating river water levels. 
In the one-dimensional hydrodynamic model, the important 
parameter is friction coefficient (n) that is to be determined 
based on the model calibration and verification procedures. 
The trial and error approach is used to tune the friction 
coefficient in the model. Two typhoons events, Typhoon 
Krosa (2007) and Typhoon Fungwong (2008), were used 
for the model calibration, and two other typhoon events, 
Typhoon Saola (2012) and Typhoon Soulik (2013), were 
used for model verification. The total rainfall in the Dans-
huei River basin for Typhoon Krosa, Typhoon Fungwong, 
Typhoon Saola, and Typhoon Soulik is 1813.5, 933.5, 
2557.5, and 719.0 mm, respectively, and the rainfall in-
tensity for these four typhoons is 22.67, 12.61, 27.8, and 
11.06 mm hr-1. The tracks of these typhoon events are il-
lustrated in Fig. 1a. The Typhoon Nari (2001) was clas-
sified as extreme event which resulted in levee-break and 
overbank flows and caused severe damages in northern  

River reach number 1 2 3 4 5 6

Number of cross section 71 8 3 13 9 22

Manning friction n 0.025 0.033 0.035 0.040 0.033 0.027

River reach number 7 8 9 10 11

Number of cross section 22 10 2 137 13

Manning friction n 0.033 0.033 0.033 0.050 0.023

Table 1. Cross-sectional number of river reaches and Manning coefficients 
(n) used in the computational domain.

Station Data Time Data description

Danhuei River mouth Observed tidal level 1994 - 2015 Hourly tidal level

Quan-Zean Bridge (Taliaokengchi Drainage) Observed river discharge 1994 - 2014 Daily-average discharge

Fu-Zhou Bridge (Dahan River) Observed river discharge 1994 - 2014 Daily-average discharge

Xiu-Lang Bridge (Xindian River) Observed river discharge 1994 - 2014 Daily-average discharge

Bao Bridge (Jingme River) Observed river discharge 1994 - 2014 Daily-average discharge

Jie-Shou Bridge (Keelung River) Observed river discharge 1994 - 2014 Daily-average discharge

Table 2. Data description.
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Taiwan. Because the function to calculate levee-break 
and overbank flows was not considered in the governing  
Eqs. (1) and (2), Typhoon Nari (2001) was not selected as a 
case for model calibration and verification.

Figures 2 and 3 present the calibration results for Ty-
phoon Krosa (2007) and Typhoon Fungwong (2008), re-
spectively. Because of the data transmission system prob-
lem, the measured data from 13:00 to 18:00 on 6 October 
2007 for Typhoon Krosa (2007) was lost. However, they 
indicate that the computed water level hydrograph is simi-
lar to the observed water level hydrograph. The mean abso-
lute errors (MAEs) of the events at Taipei Bridge, Hsin-Hai 
Bridge, Da-Zhi Bridge, Chung-Cheng Bridge, Tu-Ti Kung 
Pi, and Ru-Kou Yan (locations are shown in Fig. 1a) during 
Typhoon Krosa are 0.30, 0.30, 0.23, 0.22, 0.23, and 0.33 m, 
respectively. In addition, the mean absolute errors (MAEs) 

of the events at Taipei Bridge, Hsin-Hai Bridge, Da-Zhi 
Bridge, Chung-Cheng Bridge, Tu-Ti Kung Pi, and Ru-Kou 
Yan during Typhoon Fungwong are 0.19, 0.15, 0.24, 0.22, 
0.07, and 0.18 m, respectively. The lowest Nash-Sutcliffe 
coefficient (NS) is 0.76 at the Da-Zhi Bridge during Ty-
phoon Fungwong (Table 3).

Figures 4 and 5 illustrate the verification results for Ty-
phoon Saola (2012) and Typhoon Soulik (2013), respective-
ly. These figures also reveal that the computed water levels 
mimic the observed water levels at different gauge stations. 
The MAEs of the events at Taipei Bridge, Hsin-Hai Bridge, 
Da-Zhi Bridge, Chung-Cheng Bridge, Tu-Ti Kung Pi, and 
Ru-Kou Yan during Typhoon Saola are 0.24, 0.06, 0.21, 0.11, 
0.17, and 0.40 m, respectively. In addition, the MAEs of the 
events at Taipei Bridge, Hsin-Hai Bridge, Da-Zhi Bridge, 
Chung-Cheng Bridge, and Tu-Ti Kung Pi during Typhoon 

(a) (d)

(b) (e)

(c) (f)

Fig. 2. Model calibration results for Typhoon Krosa (2007) at (a) Taipei Bridge, (b) Hsin-Hai Bridge, (c) Da-Zhi Bridge, (d) Chung-Cheng Bridge, 
(e) Tu-Ti-Kung-Pi, and (f) Ru-Kou Yan.
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(a) (d)

(b) (e)

(c) (f)

Fig. 3. Model calibration results for Typhoon Fungwong (2008) at (a) Taipei Bridge, (b) Hsin-Hai Bridge, (c) Da-Zhi Bridge, (d) Chung-Cheng 
Bridge, (e) Tu-Ti-Kung-Pi, and (f) Ru-Kou Yan.

Station
Typhoon Krosa Typhoon Fungwong Typhoon Saola Typhoon Soulik

MAE 
(m)

RMSE 
(m) NS MAE 

(m)
RMSE 

(m) NS MAE 
(m)

RMSE 
(m) NS MAE 

(m)
RMSE 

(m) NS

Taipei Bridge 0.30 0.37 0.92 0.19 0.24 0.80 0.24 0.29 0.96 0.19 0.24 0.94

Hsin-Hai Bridge 0.30 0.42 0.94 0.15 0.21 0.91 0.06 0.08 0.99 0.18 0.21 0.97

Da-Zhi Bridge 0.23 0.28 0.94 0.24 0.33 0.76 0.21 0.26 0.96 0.13 0.16 0.97

Chung-Cheng Bridge 0.22 0.31 0.97 0.22 0.29 0.89 0.11 0.14 0.99 0.17 0.21 0.97

Tu-Ti Kung Pi 0.23 0.28 0.82 0.07 0.10 0.97 0.17 0.22 0.93 0.10 0.12 0.98

Ru-Kou Yan 0.33 0.42 0.93 0.18 0.21 0.88 0.40 0.44 0.92 --- --- ---

Table 3. Statistical errors of the simulations using four typhoon events.
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Soulik are 0.19, 0.18, 0.13, 0.17, and 0.10 m, respectively. 
We found that the NS was higher than 0.90 for both Typhoon 
Saola and Typhoon Soulik (Table 3).

Table 3 presents the MAE, RMSE, and NS values at 
each station for the four typhoon events. It results show a 
reasonable agreement between the model predictions and 
the measured data. The Nash-Sutcliffe coefficient (NS) 
for these four typhoons is above 0.75. Through the model 
calibration and verification procedures, the Manning fric-
tion coefficient (n) is determined and illustrated in Table 1. 
Table 1 indicates that because the upstream bed sediment is 
coarse particles from gravel to coarse sand, a higher Man-
ning friction coefficient is used, and the downstream bed 
sediment is fine particles from fine sand to silt, so a lower 
Manning friction coefficient is used.

Domeneghetti et al. (2012) considered the overall un-
certainty affecting river flow measurements and proposed a 
framework for analysis the uncertainty of rating-curve and 
its effects on the calibration of numerical hydraulic models. 
They highlighted the significant role of extrapolation errors 
and the rating-curve uncertainty was responsible for estimat-
ing unrealistic roughness coefficient. In the current study, the 
discharges at the gauge stations were collected from the Wa-
ter Resources Agency, Taiwan. The discharge hydrograph at 
the gauge stations during typhoon events was calculated by 
converting measured water level into discharge by means of 
an existing stage-discharge rating curve. Using the rating-
curve to convert water levels into discharges inevitably in-
troduces an additional source of uncertainty. However, the 
uncertainty of discharges at gauge stations during typhoon 
events has beyond the scope of this study. In the future work, 
we will focus on investigating the effect of rating-curve un-
certainty on hydraulic model calibration.

5. RESULTS AND DISCUSSION
5.1 Selecting the Best Distribution Function for the 

Statistical Parameters

Based on the analysis of potential correlation between 
data described in section 2.4, seven parameters, including 
the astronomical tide and surge height at the mouth of the 
Danshuei River and the river discharges at the Quan-Zean 
Bridge, Fu-Zhou Bridge, Xiu-Lang Bridge, Bao Bridge, and 
Jie-Shou Bridge, are selected for the frequency analysis. The 
annual maximum for each parameter was adopted to estab-
lish the probability density function. The cumulative prob-
ability function of each parameter was then determined.

There are several methods used for the hydraulic en-
gineering and hydrology to calculate the parameters in 
frequency analysis, such as L-moment, Maximum-Likeli-
hood Estimation (MLE), and Markov Chain Monte Carlo 
(MCMC) (Hosking and Wallis 1997; Park et al. 2001; Su 
et al. 2009; Eastoe and Tawn 2010). FEMA (2005) rec-
ommended the method, Maximum-Likelihood Estimation 

(MLE), for coastal extreme water level studies because MLE 
provides a consistent approach to parameter estimation and 
presents less bias than other methods. Therefore, the MLE 
is adopted to estimate optimal distribution parameters for 
different frequency analysis models in this study.

The predicted and observed cumulative probability 
function for each parameter is illustrated in Fig. 6. It shows 
the predicted cumulative probabilities using different fre-
quency analysis methods, including the Gumbel, Weibull, 
Frechet, normal, lognormal, and log-Pearson 3 distributions. 
Two indices [i.e., the standard error (SE) and the correlation 
coefficient (CC)] were used to determine the optimal fre-
quency analysis for each parameter. Table 4 shows statis-
tics for the comparison between the predicted and observed 
cumulative probabilities for different frequency analysis 
methods. It indicates that the river discharges at the Xiu-
Lang Bridge and Bao Bridge are very high (Figs. 6e and f), 
causing the SE to be extremely high at these two stations.

The lowest SE and highest CC were selected as the 
best frequency analysis method. We found that the optimal 
frequency analysis methods were the lognormal distribution 
for surge height, the Weibull distribution for astronomi-
cal tide, the Weibull distribution for river discharge at the 
Quan-Zean Bridge (Taliaokengchi drainage), the lognormal 
distribution for river discharge at the Fu-Zhou Bridge (Dah-
an River), the log-Pearson 3 distribution for river discharge 
at the Xiu-Lang Bridge (Xindian River), the Weibull distri-
bution for river discharge at Bao Bridge (Jingme River), and 
the Weibull distribution for river discharge at the Jie-Shou 
Bridge (Keelung River).

Zhong et al. (2013) found that the characteristics of 
high astronomical tide levels at the Hook of Holland could 
be captured in a normal distribution. The Gaussian copula 
function presented a dependent structure between the Rhine 
discharge and the Meuse discharge, where the marginal dis-
tributions fit a lognormal distribution for Rhine discharge 
and a Gamma distribution for Meuse discharge. The best fit 
for the frequency analysis method is based on the character-
istics of each parameter. In this study, different frequency 
analysis methods including the Gumbel, Weibull, Frechet, 
normal, lognormal, and log-Pearson 3 distributions is used 
to obtain the optimal cumulative probability functions for 
each parameter. We found that the distribution models for 
the frequency analysis of astronomical tide and river dis-
charge used in Zhong et al. (2013) were quite different from 
the distribution models adopted in our study.

5.2 Integrating the Monte Carlo Simulation and the 
Hydrodynamic Model to Calculate Extreme Water 
Levels

The joint probability of these seven parameters was 
used to generate different simulation scenarios. Six thousand 
scenarios based on the sampled Monte Carlo simulation were 
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(a) (e)

(b) (f)
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Fig. 6. Predicted and observed cumulative probability functions for each of the following parameters: (a) surge height at the mouth of the Danshuei 
River, (b) astronomical tide at the mouth of the Danshuei River, (c) river discharge at Quan-Zean Bridge (Taliaokengchi Drainage), (d) river dis-
charge at Fu-Zhou Bridge (Dahan River), (e) river discharge at Xiu-Lang Bridge (Xindian River), (f) river discharge at Bao Bridge (Jingme River), 
and (g) river discharge at Jie-Shou Bridge (Keelung River).
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generated to drive the validated one-dimensional hydrody-
namic model. The generated scenarios include hourly water 
levels at downstream boundary and hourly discharges at up-
stream boundaries for 24 hours. The Manning friction coeffi-
cients (n) in the one-dimensional hydrodynamic model were 
adopted as shown in Table 1. The one-dimensional hydrody-
namic model was executed to yield simulated water levels 
which were further analyzed using frequency analysis.

Figure 7 presents the cumulative probability function 
of the simulated water level for different distribution meth-
ods at different stations in the Danshuei River including 
the Guandu Bridge, Taipei Bridge, Hsin-Hai Bridge, Da-
Zhi Bridge, and Chung-Cheng Bridge. The Guandu Bridge 
is not the water level gauge station therefore there are no 
measured data of water level used for model calibration and 
verification. However the Guandu Bridge is an important 
landmark along the Danshuei River, thus the cumulative 
probability function of the simulated water level is also pre-
sented in Fig. 7a. Taking the Taipei Bridge as example, the 
water level at high tide during low and normal flow condi-
tions is about 1.2 to 1.5 m. When the water level is higher 
than 2 m, it means that the Taipei Bridge is affected by high 
flow. Figure 7b shows that a wide range of water levels are 
above 2 m.

Table 5 shows statistics for the comparison between 
the predicted and observed cumulative probabilities at dif-
ferent stations for different frequency analysis methods. The 
results indicate that the optimal frequency analysis meth-
ods are the log-Pearson 3 distribution at Guandu Bridge, 
the lognormal distribution at Taipei Bridge, the lognormal 
distribution at Hsin-Hai Bridge, the lognormal distribution 
at Da-Zhi Bridge, and the Weibull distribution at Chung-
Cheng Bridge.

Sindhu and Unnikrishnan (2012) estimated the differ-
ent return periods of extreme events at 26 stations along 
the east coast of India based on annual maximum sea lev-
els extracted from simulations using a vertically integrated 
two-dimensional model. The annual maximum sea level fit 
the Gumbel distribution using the r-largest annual maxima 

method. In our study, we found that the Gumbel distribution 
was not the best fit for water levels at the five stations.

5.3 Potential Water Levels for Different Return Periods

The design (extreme) water level is crucial for the de-
sign, construction, and maintenance of flood defense sys-
tems. According to the Taipei flood control system, the de-
sign water level in the Danshuei River system is regarded as 
the water level with an exceedance frequency of 1/200 (i.e., 
a 200-year return period). Based on the cumulative prob-
ability function of water levels from the frequency analysis, 
the design water level for different return periods can be 
yielded. The equation for calculating the water level that 
corresponds to each return period can be given in Eq. (8):

( )T F x1
1= -  (8)

where T represents the return period, and F(x) is the cumula-
tive probability function.

The design water level can be estimated using differ-
ent probability distributions from the frequency analysis for 
different return periods at the five stations based on Eq. (8). 
Figure 8 presents the predicted water level for the different 
return periods at five stations. Table 6 shows the design wa-
ter levels for the different return periods (50, 100, and 200 
years). The table indicates that the design water levels for 
the 200-year return period at Guandu Bridge, Taipei Bridge, 
Hsin-Hai Bridge, Da-Zhi Bridge, and Chung-Cheng Bridge 
are 2.90, 5.13, 6.38, 6.05, and 9.94 m, respectively. It should 
be noted that the design water level should be added to the 
1.5 m freeboard to result in a projected water level (Water 
Resources Agency 2011).

To avoid extremely high water-levels produced from 
these extreme events, the construction of new facilities in 
rivers needs exploration, and the present operational water 
management system requires adaptation in the future.

Distribution 
model

Surge height Astronomical 
tide

River discharge 
at Quan-Zean 

Bridge

River discharge 
at Fu-Zhou 

Bridge

River discharge 
at Xiu-Lang 

Bridge

River discharge 
at Bao Bridge

River discharge 
at Jie-Shou 

Bridge
SE 
(m) CC SE 

(m) CC SE  
(m3 s-1) CC SE  

(m3 s-1) CC SE  
(m3 s-1) CC SE  

(m3 s-1) CC SE  
(m3 s-1) CC

Gumbel 0.0346 0.9806 0.0397 0.9754 6.5460 0.9695 95.6662 0.8605 325.3179 0.9761 69.6968 0.9744 109.3666 0.9695

Weibull 0.0323 0.9848 0.0128 0.9975 2.6015 0.9953 71.7064 0.9354 321.7177 0.9849 49.0460 0.9895 43.4613 0.9953

Frechet 0.1339 0.8880 0.2388 0.8410 10.2649 0.9617 96.7808 0.9557 455.4074 0.9613 945.5690 0.8449 171.4874 0.9617

Normal 0.0663 0.9258 0.0138 0.9971 11.2177 0.9041 122.8602 0.7713 548.7033 0.9221 117.6550 0.9195 187.4202 0.9041

Lognormal 0.0262 0.9901 0.0132 0.9974 7.1395 0.9795 61.7958 0.9578 403.8747 0.9718 143.3619 0.9739 119.2626 0.9795

Log-Pearson 3 0.0268 0.9889 0.0129 0.9975 2.7390 0.9952 68.8232 0.9532 200.0291 0.9911 49.0987 0.9866 45.7697 0.9952

Table 4. Statistical errors between the predicted and observed cumulative probability functions.
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(a) (d)

(b) (e)

(c)

Fig. 7. Predicted and observed cumulative probability functions of the water level at (a) Guandu Bridge, (b) Taipei Bridge, (c) Hsin-Hai Bridge, (d) 
Da-Zhi Bridge, and (e) Chung-Cheng Bridge.

Distribution 
model

Guandu Bridge Taipei Bridge Hsin-Hai Bridge Da-Zhi Bridge Chung-Cheng Bridge

SE (m) CC SE (m) CC SE (m) CC SE (m) CC SE (m) CC

Gumbel 0.0293 0.9939 0.1348 0.9796 0.1704 0.9789 0.2715 0.9504 0.3266 0.9800

Weibull 0.0757 0.9583 0.1650 0.9694 0.1757 0.9783 0.2616 0.9542 0.2355 0.9897

Frechet 0.0590 0.9800 0.1431 0.9778 0.3017 0.9494 0.3565 0.9209 1.7252 0.8140

Normal 0.0416 0.9876 0.2771 0.9142 0.3428 0.9148 0.4296 0.8763 0.5832 0.9365

Lognormal 0.0200 0.9972 0.1061 0.9888 0.1432 0.9852 0.2404 0.9627 0.7784 0.9318

Log-Pearson 3 0.0182 0.9976 0.1105 0.9864 0.1603 0.9817 0.2781 0.9494 0.4557 0.9645

Table 5. Statistical errors between the predicted and observed cumulative probability functions at different stations.
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6. CONCLUSIONS

Recorded historical water levels in the Danshuei River 
estuarine system of northern Taiwan are not sufficient to 
perform a traditional frequency analysis directly when pre-
dicting extreme water levels. The numerical simulation ap-
proach can be adopted when there is not an adequate amount 
of recorded historical data. This study presents extreme 
water levels simulated by a stochastic model, which is the 
integration of the Monte Carlo simulation and a one-dimen-
sional flash flood routing hydrodynamic model. The hydro-
dynamic model was calibrated and verified with observa-
tional water levels using data from four typhoon events. The 
results indicated a reasonable agreement between the model 
predictions and recorded observations.

Seven parameters, including the astronomical tide and 
surge height at the mouth of the Danshuei River and river 
discharges at Quan-Zean Bridge, Fu-Zhou Bridge, Xiu-
Lang Bridge, Bao Bridge, and Jie-Shou Bridge, were select-
ed for the frequency analysis. The joint probability of these 
seven parameters was used to produce a large set of sto-
chastic scenarios, which were generated by via importance 
sampling of the Monte Carol simulation. Six thousand sce-
narios were generated to drive the validated hydrodynamic 
model simulations. The design water level was estimated 
using different probability distributions from the frequen-
cy analysis for different return periods at the five stations. 
We found that the design water levels for a 200-year return 
period at Guandu Bridge, Taipei Bridge, Hsin-Hai Bridge, 

Da-Zhi Bridge, and Chung-Cheng Bridge were 2.90, 5.13, 
6.38, 6.05, and 9.94 m, respectively. The estimated design 
water levels plus the freeboard should be proposed and rec-
ommended for engineering design and planning.

In future research, recent typhoon events will be ad-
opted for model calibration and verification to further make 
sure the model capability. The different statistical uncertain-
ties and effects of uncertain boundary conditions must be 
investigated (Domeneghetti et al. 2013). One other issue 
is that the probability of failure for dikes in river systems 
should be further considered to understand flood risks (Rifai 
et al. 2017).
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