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ABSTRACT

Machine learning can yield timely forecasts of rainfall and flood hazard vari-
ables. Such an application of machine learning in disaster mitigation is a key topic in 
hydroinformatics. In this study, a modified fuzzy inference model—featuring revised 
implication and defuzzification processes—was used to perform probabilistic ty-
phoon rainfall forecasting. The revised implication process exerted a higher weight of 
the rainfall variable than other typhoon variables on forecasting. The defuzzification 
process was modified into a resampling process to generate a predicted probability 
distribution. The modified fuzzy inference model was applied to real-time probabilis-
tic typhoon rainfall forecasting with lead times of 1 to 3 hours. Predicted confidence 
intervals with respect to actual typhoon rainfall data validated the capability of the 
probabilistic forecasting method, although the predicted confidence intervals are wid-
er than the perfect interval in view of a quantitative measure of the reliability diagram. 
In addition, the probabilistic forecasts could be condensed into deterministic forecasts 
using the median of the predicted confidence interval. The deterministic forecasts 
also had satisfactory performance in typhoon rainfall forecasting.
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1. INTRODUCTION

Machine learning methods are extensively applied to 
hydrologic forecasting in hydroinformatics. Hydrologic 
forecasting provides timely hazard information to mitigate 
the impacts of natural disasters. Various machine learning 
methods have been applied to real-time hydrologic forecast-
ing to forecast variables related to rainfall and flood. For 
example, artificial neural networks have been used to fore-
cast flood (Dawson and Wilby 1998; Chang and Chen 2001; 
Chang et al. 2007; Jhong et al. 2018), adjust radar rainfall 
(Teschl et al. 2007; Chen et al. 2011), and predict reser-
voir inflow (Lin and Wu 2011; Sattari et al. 2012; Moeeni 
and Bonakdari 2017). Various methods based on fuzzy 
set theory have been applied to rainfall forecasting (Yu et 
al. 2004, 2005; Asklany et al. 2011) and flood forecasting 
(Yu and Chen 2005; Chen et al. 2013a, 2019). Grey system 
theory has been adopted to develop forecasting models that 
forecast rainfall (Yu et al. 2000), runoff (Yu et al. 2001), 
and flood stages (Chen 2015a). Support vector machines, 
popular in recent hydroinformatics research, have been 

widely used to develop real-time forecasting models that 
forecast flood stage and discharge (Bray and Han 2004; Yu 
et al. 2006; Chen and Yu 2007b; Han et al. 2007; Lin et 
al. 2013b). Support vector machines have also been applied 
to downscale hydrologic variables (Kim et al. 2018) and to 
project daily rainfall under climate change scenarios (Chen 
et al. 2010; Yang et al. 2011). In addition, a support vector 
machine was adopted as a data mining scheme to extract in-
formative rainfall and flood data during flash floods (Chen 
2015b). Recently, the self-organizing map and the long 
short-term memory has been successfully applied in hydro-
logic forecasting. For example, Chang et al. (2020) applied 
self-organizing maps of projected typhoon tracks to predict 
flood hydrographs prior to typhoon landfall. Chang et al. 
(2021) trained various self-organizing maps for clustering 
high-dimensional flood inundation maps. Kao et al. (2020, 
2021) applied long short-term memory for multi-step-ahead 
flood and inundation forecasting.

The aforementioned studies demonstrate the prolific 
applications of machine learning methods in a variety of 
hydrologic forecasts. However, forecasting extreme cases 
such as typhoon rainfall is still a challenge in hydrologic 
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forecasting. Typhoons that accompany torrential rainfall 
often cause severe disasters such as landslide, debris flow, 
and floods. Typhoon rainfall forecasting that indicates fu-
ture rainfall potentials is an important countermeasure in 
the mitigation of typhoon disasters caused by heavy rain-
fall. The method for forecasting typhoon rainfall can be cat-
egorized into the physical and statistical approaches. The 
physical approach uses the numerical weather prediction 
model developed on the basis of physical principles to fore-
cast typhoon rainfall (e.g., Wu and Lin 2017; Luitel et al. 
2018; Moses and Ramotonto 2018; Wu et al. 2018; Hsiao 
et al. 2020). The statistical approach includes the applica-
tion of machine learning methods to forecast typhoon rain-
fall. Lin and Wu (2009) proposed a hybrid neural network 
model—combining a self-organizing map with a multilayer 
perceptron network—to forecast typhoon rainfall. Lin et al. 
(2013a) adopted support vector machines with a multiob-
jective genetic algorithm to develop a typhoon rainfall fore-
casting model for forecasting hourly typhoon rainfall in real 
time. Chen (2013) applied multiclass support vector clas-
sification to estimate the temporal rainfall distribution of a 
typhoon upon the issuance of a typhoon warning. Although 
research has been promising, an advance in real-time ty-
phoon rainfall forecasting is the development of probabi-
listic forecasting methods for forecasting typhoon rainfall.

Krzysztofowicz (2001) discussed the advantages of 
probabilistic forecasting over deterministic forecasting 
in hydrology. In addition to providing economic benefits, 
probabilistic forecasts possess greater veracity, enable risk-
based warnings, and aid decision-making under uncertainty. 
Bliefernicht and Bárdossy (2007) used statistical downscal-
ing techniques to produce probabilistic daily precipitations 
focusing on extreme events. Chen and Yu (2007a) proposed 
a probabilistic forecasting method comprising a determin-
istic forecast derived from support vector regression and a 
probability distribution of forecast error based on the fuzzy 
inference model. They applied the probabilistic forecast-
ing method to real-time flash flood forecasting and attained 
practical probabilistic forecasting results. Villarini et al. 
(2010) used ensemble techniques that combine individual 
output values forecasted by artificial neural networks, and 
they applied the method to peak flood discharge forecast-
ing. Chen (2019) used the probabilistic forecasting method 
and the modified fuzzy inference model to produce proba-
bilistic forecasts of coastal wave heights during a typhoon 
warning period. Chen et al. (2013b) applied a Markov 
chain process to develop a probabilistic drought forecast-
ing model based on the teleconnection of drought indices 
and sea surface temperatures. Araghinejad et al. (2006) de-
veloped a geostatistically based approach featuring a local 
regression method to probabilistically forecast streamflow 
using ocean-atmospheric signals and hydrologic condi-
tions. Nguyen and Chen (2020) applied multiple machine 
learning methods to probabilistically forecast hourly river 

level during the flash flood. Doong et al. (2020) used artifi-
cial neural network to develop an operational probabilistic 
forecasting system to predict the probability of coastal freak 
wave occurrence. Zhou et al. (2020) applied the unscented 
Kalman filter with recurrent neural networks to improve the 
reliability of probabilistic flood forecasting. In the field of 
hydrologic forecasting, although some applications in prob-
abilistic forecasting have been proposed, this study is the 
first to use machine learning methods in the probabilistic 
forecasting of typhoon rainfall.

Among the various machine learning methods, the 
fuzzy inference model was adopted in this study. Although 
the fuzzy inference process can be criticized for being im-
precise, its rule-based logic is simple and understandable. 
The fuzzy inference model can easily translate an observed 
dataset into a fuzzy rule. This is particularly suitable for 
constructing a database of many fuzzy rules for probabi-
listic forecasting. To better generate probabilistic forecasts 
of typhoon rainfall, this study applied a modified fuzzy 
inference model. The modifications of the fuzzy inference 
model included the calculation of resulting membership 
grade in the implication process and the transformation of 
the defuzzification process into a probability distribution. 
Section 2 of this paper provides the methodology of the 
modified fuzzy inference model. Section 3 describes the 
study area and hourly rainfall and typhoon data. Section 4.1 
presents the development of probabilistic typhoon rainfall 
forecasting model, and section 4.2 describes the probabi-
listic forecasting results pertaining to validation events. 
The validation results confirm the ability of the modified 
fuzzy inference model. Moreover, deterministic forecasts 
that can be easily obtained from the median of the predicted 
confidence interval (CI) were proposed and demonstrated 
in section 4.3. Section 5 concludes the paper in that both 
probabilistic and deterministic forecasts exhibited satisfac-
tory forecasting performance.

2. MODIFIED FUZZY INFERENCE MODEL

A fuzzy inference model is a system that uses fuzzy 
logic to emulate how a human expert reasons. The origi-
nal version of the modified fuzzy inference model has been 
proposed in Chen and Yu (2007a) and Chen (2019). The 
modification centers on changing the defuzzification proce-
dure into a resampling process that can generate a probabil-
ity distribution. In this study, the implication process uses 
a hybrid operation to calculate the resulting membership 
grade. The methodology of the modified fuzzy inference 
model is as follows.

2.1 Defining the Membership Function and Fuzzifying 
Variables

The first step in performing fuzzy inference is defining 
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the fuzzy membership function. A fuzzy membership func-
tion can determine the level of membership of an element in 
a set to a target. The level of membership, which is termed 
membership grade, is defined within the unit interval [0, 1]. 
An example of triangular membership function can be found 
in Fig. 1. A membership grade of 0 means that an element 
does not belong to that target. A membership grade of 0.8, 
for example, indicates that an element belongs to that target 
to a high degree. The Gaussian membership function, wide-
ly used to fuzzify the variables, was adopted. Specifically,

( ) ( )expx x m
2 2

2

n
v

= - -R

T
SS

V

X
WW (1)

where the parameter v  is the extent of the membership 
function; (x - m) is the difference between an input value 
x and the center of the membership function m; and μ(x) 
is the membership grade. In this study, the parameter v  is 
the only parameter to be calibrated. The degree of similarity 
between x and m can be represented by a membership grade 
that ranges from 0 to 1. When x is close to m, the degree of 
similarity is large, and the membership grade is close to 1; 
when x is not close to m, the membership grade and similar-
ity decay exponentially to zero.

2.2 Formulating the Fuzzy Rule and Constructing the 
Fuzzy Rule Database

A fuzzy rule is formulated as an “IF-THEN” statement, 
where the “IF” component is the antecedent (or premise) 
of the fuzzy rule, and the “THEN” component is the con-
sequence (or conclusion) of the rule. A fuzzy rule can be 
expressed as
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where x1, x2, …, xm are input variables; y1, y2, …, yn are out-
put variables; and A1, A2, …, Am and B1, B2, …, Bn denote 
fuzzy sets that are defined by membership functions.

If the antecedent part of the rule is true to a certain 
degree, which is the membership grade defined by the mem-
bership function, then the consequence part is true to that 
same degree. The fuzzy rule can be formulated as either a 
linguistic statement or a direct numerical relation between 
input and output data. This study directly used environmen-
tal observations to formulate fuzzy rules. That is, each col-
lected dataset was used to create the direct numerical rela-
tion in the form of a fuzzy rule. These generated fuzzy rules, 
which were assembled and stored in a fuzzy rule database, 
characterize the fuzzified relationship between the input and 
output data.

2.3 Calculating Similarity by Fuzzy Implication

The fuzzy implication process calculates the similarity 
between input data and the fuzzy rules (i.e., the fuzzified 
observations stored in the database). For each fuzzy rule, 
the implication process generates a truncated fuzzy subset 
(shown in Fig. 1 as the blue trapezoid for example) of the 
output variable in the consequence part according to a re-
sulting membership grade in the antecedent part. The result-
ing membership grade essentially depicts the similarity be-
tween input data and observations in the database. The left 
part of Fig. 1 illustrates the fuzzy implication process with 
two input variables in the antecedent part and one output 
variable in the consequence part of the fuzzy rule. In Fig. 1, 
two membership grades of two input variables are obtained 
according to the membership functions in the fuzzy rule. 
Typically, a fuzzy intersection operation is used to select 
the minimum membership grade for the output variable. 
However, this study applied the average operation to obtain 
the average membership grade to truncate the output fuzzy 
set. The average membership grade is a more appropriate 
measure of similarity than the minimum membership grade. 
This is because the selection of the minimum membership 
grade is necessarily dominated by the least similarity value.

2.4 Aggregating Similarity Values to Create a 
Similarity Database

Aggregation is a process for integrating the truncated 
fuzzy subset of each fuzzy rule from the implication proce-
dure into a single aggregated fuzzy set. Aggregation is con-
ducted using the fuzzy union operation (see the middle part 
in Fig. 1). The input of the aggregation process is a group 
of truncated fuzzy sets (for example, the two trapezoids in  
Fig. 1), and the output is a single, combined fuzzy set. The 
aggregation procedure in the modified fuzzy inference mod-
el represents the creation of a similarity database through 
the accumulation of the similarity values of each fuzzy rule. 
In this database, the following resampling procedure is per-
formed to sample out the favored data.

2.5 Resampling to Construct a Probability Distribution

After creating the similarity database, an input dataset 
can be made to correspond to each fuzzy rule (fuzzified ob-
servations) with a similarity value. When an input dataset is 
considered, the model output is more and less likely to be 
the output variable in a fuzzy rule of high and low similar-
ity, respectively. To cover the possibility of all outcomes 
(in order to form a probability distribution), it is rational to 
use a resampling scheme to obtain the possible output data 
from the similarity database (see the right part in Fig. 1). 
Naturally, the output variable in a fuzzy rule of higher simi-
larity has a higher probability to be sampled out relative to 
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that of lower similarity. The probability to be sampled can 
be determined with respect to the similarity values and is 
expressed as

pi
ii

l
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1n

n
=

=/
 (3)

where pi denotes the probability to be sampled, μi is the 
similarity value in line with the i-th fuzzy rule, and l is the 
number of fuzzy rules. Each dataset (fuzzy rules) in the 
similarity database has its own probability pi to be sampled 
out. These data and their corresponding probabilities can 
form a possibility distribution. The resampling scheme is, in 
concept, the same as Monte Carlo simulation. By using a re-
peated resampling process, the desired number of the values 
regarding the output variable can be obtained, and the prob-
ability distribution of the output variable can be constructed. 
Subsequently, the confidence interval (CI) with different 
confidence levels can be defined from the constructed prob-
ability distribution.

3. STUDY AREA AND DATA

Taiwan is an island in the northwest Pacific. The Trop-
ic of Cancer lies across the middle of Taiwan, making the 
climate tropical in the south and subtropical in the north. 
With its particular geographic location, Taiwan is often af-
fected by typhoons—on average, four yearly. The typhoon 
that generates on the northwest Pacific Ocean often moves 
directly toward the east coast of Taiwan, resulting in heavy 
rainfall. Hualien, the biggest city in the east coast, was cho-
sen as the study area (Fig. 2). Long-term hourly precipitation 
data were available from the Hualien Meteorological Station 
operated by the Central Weather Bureau (CWB) of Taiwan.

When a typhoon approaches Taiwan, the CWB of Tai-

wan issues typhoon warnings, and related meteorological 
data will be archived in the CWB typhoon database. Ty-
phoon data such as central pressure, maximum sustained 
wind speed, storm radius (with wind speed of 17.2 m s-1), 
and latitude and longitude are available from the CWB ty-
phoon database. Formally, the CWB issues typhoon warn-
ings every three hours. But in practice, the typhoon warning 
was issued every hour when a typhoon substantially influ-
ences Taiwan. In circumstances when hourly data are not 
available from CWB, a linear interpolation scheme was 
used in this study to obtain hourly typhoon data. Therefore, 
this study compiled hourly rainfall and typhoon data during 
the typhoon warning period issued by CWB. Table 1 lists 
the collected events from 2006 to 2019 and their rainfall and 
typhoon characteristics during the typhoon warning period, 
including the date, name of the typhoon, number of data 
points, minimum central pressure, maximum storm radius, 
peak intensity of the maximum sustained wind speed, mov-
ing tracks, and total rainfall depth. Figure 3 displays the 10 
types of typhoon tracks categorized by the CWB. The ty-
phoon rainfall amount of collected events during the warn-
ing periods ranged from 30.5 to 513.6 mm. Hourly data of 
typhoon center position (longitude and latitude) were also 
compiled. Therefore, the position of a typhoon relative to 
Hualien Meteorological Station (121.61°E, 23.98°N) can be 
determined using a polar coordinate system, with the origin 
set at Hualien. The position of typhoon is thus identified by 
two variables: distance and angle. The distance is the great-
circle distance on the surface of the Earth. The angle facing 
the east is 0°, with positive values in the counterclockwise 
direction and negative values in the clockwise direction. In 
total, 45 typhoon events with complete rainfall and typhoon 
data were identified. The first 36 events were used as cali-
bration events to construct the fuzzy rule database, and the 
remaining nine events were used as validation events to ex-
amine the proposed modified fuzzy inference model.

Fig. 1. Modified fuzzy inference model.
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4. RESULTS AND DISCUSSION
4.1 Model Development

This study applied the modified fuzzy inference model 
to perform typhoon rainfall forecasting. Typhoon data used 
as model input variables are the central pressure (P), maxi-
mum sustained wind speed (V), storm radius (S), great-circle 
distance (D), and angle (A). Although the rainfall is not very 
sensitive to the pressure and radius, including more typhoon 
information in the fuzzy inference model is preferred. The 
rainfall variable used in the model is the cumulative rainfall 
(R). That is, the predictand in this study is the accumulated 
rainfall from the beginning of the first typhoon warning is-
sued by CWB. The cumulative rainfall (R) at the preceding 
time is also used as an input to enhance forecasting perfor-
mance. At each forecasting hour, the forecasting lead times 
were 1 to 3 hours. Namely, the proposed typhoon rainfall 
forecasting model generates future 1- to 3-hour probabilis-
tic forecasts of cumulative rainfall at every hour during the 
typhoon warning period. The architecture of the probabilis-
tic typhoon rainfall forecasting model can be formulated in 
terms of a fuzzy rule as follows.
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where FP, FV, FS, FD, FA, and FR, respectively, represent the 
defined fuzzy sets of the variables of pressure (P), speed 
(V), radius (S), distance (D), angle (A), and rainfall (R) at 
time t. ( )R t 1+W , ( )R t 2+W , and ( )R t 3+W  denote the 1- to 
3-hour probabilistic forecasts generated by the modified 
fuzzy inference model. Alternatively, the typhoon rainfall 
forecasting model can be formulated in terms of functions 
as follows.

( ) [ ( ), ( ), ( ), ( ), ( ), ( )]R t f P t V t S t D t A t R t1 1+ =W  (5)

( ) [ ( ), ( ), ( ), ( ), ( ), ( )]R t f P t V t S t D t A t R t2 2+ =W  (6)

( ) [ ( ), ( ), ( ), ( ), ( ), ( )]R t f P t V t S t D t A t R t3 3+ =W  (7)

where f1, f2, and f3 are the mechanisms of the modified fuzzy 
inference model that infer the probabilistic forecasts of lead 
times of 1, 2, and 3 hours, respectively.

The defuzzification of variables requires determining 
the parameter of the membership function in Eq. (1). Be-
cause the parameter v  of the Gaussian function represents 
the spread of the membership function, the standard devia-
tion of the calibration data has been recommended as the 

parameter value (Chen and Yu 2007a). The standard de-
viations of the pressure (P), speed (V), radius (S), distance 
(D), angle (A), and rainfall (R) are, respectively, 23.2 hPa, 
10.4 m s-1, 59.8 km, 191.9 km, 99.3°, and 111.3 mm. This 
study directly used standard deviations as parameter values, 
except for the rainfall variable. The rainfall variable used in 
the model is the cumulative rainfall, where the values are 
very small in the beginning and can be very large (in the 
hundreds) at the end of an event. Specifically, the standard 
deviation of rainfall variable is 111.3 mm, which is a very 
large value for rainfall. Using such a large parameter in the 
membership function makes membership grades too big for 
most rainfall data. Therefore, this study applied a simple 
grid search method to optimize the parameter of the mem-
bership function for rainfall to be 20 mm.

The implication process of the modified fuzzy infer-
ence model in this study adopted the average operation to 
obtain the resulting membership grade (similarity). Experi-
ence from the analytical process revealed that to forecast fu-
ture rainfall, the same variable (rainfall) should be weighted 
higher than other input variables to attain better forecasting 
performance. Therefore, a hybrid operation is used to calcu-
late the resulting membership grade μ. Specifically, first, a 
membership grade μ1 is determined as the minimum mem-
bership grade for the variables of pressure (P), speed (V), ra-
dius (S), distance (D), and angle (A) and denoted μP, μV, μS, 
μD, and μA, respectively. Subsequently, a membership grade 
μ2 is calculated for rainfall (R). The averaging of μ1 and μ2 
yields the resulting membership grade μ. Specifically,

[ , , , , ]min P V S D A1n n n n n n=  (8)

[ , ]average 1 2n n n=  (9)

When the input and output variables in Eq. (4) and their 
corresponding parameters are determined, calibration data 
can be used to construct the fuzzy database. Then, the 
probabilistic typhoon rainfall forecasting was performed 
with respect to validation events. At each time t during the 
typhoon warning period, future probabilistic forecasts with 
lead times of 1 to 3 hours could be obtained by the modified 
fuzzy inference model. The resampling procedure was ap-
plied to sample out 10000 rainfall forecasts from the fuzzy 
database. The Weibull plotting position formula was used to 
make these 10000 forecasts into the predictive probability 
distribution, from which different percentages of the CI can 
be directly derived. The probabilistic typhoon rainfall fore-
casting results are as follows.

4.2 Probabilistic Typhoon Rainfall Forecasting Results

Figure 4 illustrates an example of probabilistic fore-
casting with different CIs. The solid line represents the 
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observed cumulative rainfall during the typhoon warning 
period. The shaded area represents the CI. The blue shaded 
area represents the forecasted 90% CI (i.e., out of the 10000 
forecasts, 9000 forecasts lie within the upper and lower 
bounds of the interval, and 1000 forecasts are outside the 
blue shaded area). Thus, the predicted 99% CI has a wider 
range than the predicted 90% CI. Because the 90% CI can 
well enclose the observations, good forecasting perfor-
mance is indicated; the model yields a high confidence that 
the observation will appear within the predicted interval.

Figures 5 to 7 illustrate the probabilistic forecasts with 
lead times of 1 to 3 hours, respectively. The predicted 90% 
CI widens as lead time increases, indicating that 3-hour 
forecasting has greater uncertainty relative to 1-hour fore-
casting. The 90% CI well encloses the observations, except 
for some cases. An instance of a 3-hour forecast at the end 
of Event 38 is discussed. At the 55th hour of Event 38, the 
observed cumulative rainfall is 174 mm. A sudden increase 
from heavy rainfall yields future rainfall observations of 
202, 220, and 241 mm for the following 3 hours. The rain-
fall increments are as large as 28, 46, and 67 mm. Figure 8 
illustrates the 1- to 3-hour forecasted probability distribu-
tion at the 55th hour of Event 38. For 3-hour forecasting, 
the 90% CI is [139.0, 226.9], not including the future ob-
servation of 241 mm. However, the 95% CI [139.0, 247.1] 
can enclose the observation. The observation of 241 mm 
corresponds to the forecasted probability distribution at a 
cumulative probability value of 0.973. That is, the proposed 
model gives a 2.7% chance that future cumulative rainfall 
will exceed 241 mm after 3 hours. Although the forecasting 
is not exceedingly accurate for this extreme case, the proba-

bilistic forecasting results remind users of the uncertainty in 
extreme cases, thus allowing the decision maker to imple-
ment risk-based countermeasures.

An important measure for assessing the performance 
of probabilistic forecasting is the accurate enclosure of the 
amount of data within the CI. If the predictive probability 
distribution can effectively explain the total uncertainty, 
then the percentage of data included in the CI is equiva-
lent to the probability (confidence level) of the CI. Figure 9  
shows the reliability diagram of the probabilistic forecast-
ing results for all validation events. In Fig. 9, the forecasted 
confidence interval indicates the confidence level of the 
CI, and the observed frequency signifies the percentage of 
observed data included in the CI. A 45-degree line in the 
reliability diagram means perfect forecasts in view of proba-
bilistic forecasting. According to Fig. 9, a larger amount of 
data than expected are enclosed in the CI. For example, in 
1-hour forecasting, a forecasted CI with confidence level of 
60% (forecasted probability of 60%) encloses 90% of the 
observations (observed probability of 90%). This indicates 
that the predictive CIs are wider than perfect intervals. This 
phenomenon can also be seen from Figs. 5 to 7 in that wide 
CIs are forecasted for zero or small rainfalls in the beginning 
of an event and for small events. Moreover, the performance 
of 2- and 3-hour probabilistic forecasting is inferior to that 
of 1-hour forecasting, because the observed probabilities for 
2- and 3-hour forecasting are even larger than that for 1-hour 
forecasting in Fig. 9. Although the proposed probabilistic 
forecasting model is not perfect in view of the reliability dia-
gram, the median of the CI well corresponds to the observed 
rainfall, which is described in the following section.

Fig. 2. Location of study area.
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Event 
No.

Date
(yyyy/mm/dd)

Name of 
Typhoon

No. of 
Data

Minimum 
Pressure (hPa)

Maximum Storm 
Radius (km)

Peak Intensity 
(m s-1)

Moving 
Track

Total Rainfall 
(mm)

1 2006/05/16 Chanchu 48 943 300 45 9 154.5

2 2006/07/12 Bilis 73 978 300 25 2 42.5

3 2006/07/23 Kaemi 37 935 180 48 3 74.5

4 2006/08/07 Bopha 39 988 120 23 4 196.5

5 2007/08/06 Pabuk 36 980 150 28 4 393.5

6 2007/08/08 Wutip 25 992 100 18 3 53.5

7 2007/08/16 Sepat 79 920 250 53 3 351.9

8 2007/10/04 Krosa 79 925 300 51 2 79.7

9 2007/11/26 Mitag 30 965 200 35 * 205.5

10 2008/07/16 Kalmaegi 58 970 120 33 2 212.0

11 2008/07/26 Fung-Wong 73 948 220 43 3 405.5

12 2008/09/11 Sinlaku 127 925 250 51 2 139.0

13 2008/09/21 Hagupit 43 940 280 45 * 40.0

14 2008/09/26 Jangmi 73 925 280 53 2 254.4

15 2009/06/19 Linfa 122 980 150 28 9 74.5

16 2009/07/16 Molave 73 980 100 28 * 64.5

17 2009/08/05 Morakot 208 955 250 40 3 155.6

18 2009/10/03 Parma 171 945 250 43 10 513.6

19 2010/08/31 Lionrock 43 990 100 23 9 71.5

20 2010/09/09 Meranti 26 990 100 23 * 97.5

21 2010/09/17 Fanapi 64 940 200 45 4 242.1

22 2010/10/21 Megi 70 935 250 48 9 87.7

23 2011/05/27 Songda 37 920 220 55 * 60.0

24 2011/08/27 Nanmadol 100 920 180 53 4 358.0

25 2012/06/19 Talim 49 985 150 25 9 30.5

26 2012/06/28 Doksuri 28 995 120 23 * 42.0

27 2012/07/30 Saola 91 960 220 38 2 407.5

28 2012/08/21 Tembin 97 945 180 45 10 144.5

29 2013/08/20 Trami 46 970 180 30 1 34.6

30 2013/09/19 Usagi 63 910 280 55 5 195.0

31 2013/10/04 Fitow 58 960 250 38 1 50.0

32 2014/07/21 Matmo 55 960 200 38 3 324.5

33 2014/09/19 Fung-Wong 73 985 150 25 10 156.0

34 2015/08/06 Soudelor 70 930 300 48 3 199.0

35 2015/08/20 Goni 76 910 220 51 * 233.0

36 2015/09/27 Dujuan 58 925 200 51 2 181.5

37 2016/07/06 Nepartak 72 905 200 58 4 281.0

38 2016/09/12 Meranti 61 900 220 60 7 269.5

39 2016/09/25 Megi 67 940 250 45 3 284.0

40 2017/07/28 Nesat 51 955 180 40 2 94.0

41 2017/07/30 Haitang 22 990 100 20 7 44.5

42 2017/08/20 Hato 43 965 180 33 * 87.0

43 2018/09/14 Mangkhut 34 895 320 60 * 73.0

44 2019/08/23 Bailu 55 975 150 30 4 209.5

45 2019/09/29 Mitag 52 960 180 38 6 51.5

Table 1. Typhoon events and rainfall data.

Note: Asterisk * indicates that the typhoon did not make landfall and its track was not classified.
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Fig. 3. Moving tracks of typhoons classified by CWB.

Fig. 4. Probabilistic typhoon rainfall forecasting for Event 42 with 90 and 99% confidence intervals (CIs).

Fig. 5. Probabilistic typhoon rainfall forecasting with lead time of 1 hour.
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Fig. 6. Probabilistic typhoon rainfall forecasting with lead time of 2 hours.

Fig. 7. Probabilistic typhoon rainfall forecasting with lead time of 3 hours.

Fig. 8. Example of forecasted probability distribution with lead times of 1 to 3 hours, and 95% confidence interval for 3-hour forecasting.
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4.3 Deterministic Forecasting as a Supplementary 
Forecasting Product

Unlike deterministic forecasting, the nature of proba-
bilistic forecasting makes the quantitative assessment of 
forecasting performance difficult. However, the proposed 
probabilistic forecasting method generates numerous pos-
sible forecasts to establish a predicted probability distribu-
tion, allowing it to be easily transformed into a deterministic 
forecasting method. A simple and rational scheme for this 
transformation involves picking the median out of the gen-
erated forecasts to form the deterministic forecast. Figure 10 
shows the deterministic forecasting of the cumulative rain-
fall of Event 38. The deterministic forecasts lay close to the 
middle of the predicted CIs, with reference to the shaded 
area in Figs. 5 to 7. The deterministic forecasts resembled 
the observations with a minor phase lag, especially in 3-hour 
forecasting. The phase lag reveals that the rainfall forecasts 
are dominated by the preceding rainfalls. This is reasonably 
due to enhancing the weight of rainfall variable in the fuzzy 
inference process.

Statistical indices can be easily applied to determin-
istic forecasting to assess forecasting performance. This 
study used the correlation coefficient (CC) and the mean 
percentage error (MPE) to assess the performance of de-
terministic cumulative rainfall forecasts. The CC is a com-
monly used index for assessing the correlation between 
observations and forecasts. The MPE that calculates the 
relative error is suitable for evaluating performance with 
regard to cumulative rainfall forecasts. The CC and MPE 
are formulated as follows:

( ) ( )
( ) ( )
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where R is the observed cumulative rainfall, m is the mean 
of R, RL  is the deterministic forecast for cumulative rainfall, 
mM  is the mean of RL , and n is the number of data points. The 
cumulative rainfall variable, being an accumulated quantity, 
has very small and very large values. Thus, performance as-
sessment in relation to cumulative rainfall is appropriate 
only if the relative error is used. Table 2 lists performance 
indices of the deterministic forecasting with respect to cu-
mulative rainfall for all validation events. The CCs for 1- to 
3-hour forecasting are above 0.98. The MPE values indicate 
that the deterministic cumulative rainfall forecasts had an 
approximately 30% error relative to observation. The calcu-
lation of MPE does not include observed values of cumula-
tive rainfall less than 10 mm. When the observed rainfall is 
small and in the denominator, the MPE index can be biased.

In addition to cumulative rainfall, the rainfall amount 
at a time step is often of public and hydrologic interest. The 
hourly cumulative rainfall can be easily transformed into 
hourly rainfall by subtracting the preceding cumulative rain-
fall from the current cumulative rainfall. Figure 11 details 
the deterministic forecasts for the hourly rainfall of Event 
38. Although hourly rainfall is somewhat random, the deter-
ministic forecasts could detect the variation in hourly rainfall 
with a minor phase lag. To evaluate forecasting performance 

Fig. 9. Reliability diagram of the probabilistic forecasting results.



Probabilistic Typhoon Rainfall Forecasting 593

Fig. 10. Deterministic forecasting for cumulative rainfall for Event 38.

CC MPE (%)

1-hour forecasting 0.99 23.7

2-hour forecasting 0.98 24.6

3-hour forecasting 0.98 27.6

Table 2. Performance indices for deterministic fore-
casting for cumulative rainfall.

Fig. 11. Deterministic forecasting for hourly rainfall of Event 38.

in the case of hourly rainfall, CC and the mean absolute er-
ror (MAE) are calculated. The MAE is a direct measure of 
error between forecast and observation. Specifically,

r r
nMAE i ii

n
1=
-=
J/

 (12)

where r is the observed hourly rainfall, and rJ  is the deter-
ministic forecast for hourly rainfall. Table 3 lists the CC 
and MPE with respect to hourly rainfall for all validation 
events. The CC is 0.57 for 1-hour forecasting and 0.19 for 
3-hour forecasting. The CCs are not high because rain-
fall is more random in hourly than in cumulative rainfall. 
The MAEs range from 3.3 to 3.8 mm, indicating that the 

error for hourly rainfall is not large. The inferior predict-
ability of hourly rainfall can be related to the phase lag of 
the predicted cumulative rainfall. Reducing the weight of 
the rainfall variable during the fuzzy inference process may 
possibly diminish the phase lag and improve the determin-
istic forecasts. However, the main objective of this study 
is the probabilistic forecasting. Therefore, the emphasis is 
put on the performance of probabilistic forecasts. Overall, 
the deterministic forecasting method that can supplement 
forecasting information exhibited reasonable performance.

5. CONCLUSION

This study proposed a probabilistic typhoon rainfall 
forecasting method using a modified fuzzy inference model 
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with rainfall and typhoon data as input. The implication 
process uses a hybrid operation to calculate the resulting 
membership grade. Specifically, the weight of the rainfall 
variable is increased to improve forecasting performance. 
Defuzzification in the modified fuzzy inference model is a 
resampling process that generates many forecasts to form a 
predicted probability distribution. Therefore, the predicted 
CIs for different percentages can be constructed as proba-
bilistic forecasting products. Validation results using data 
on typhoon rainfall in Hualien, Taiwan—where typhoons 
often bring heavy rainfall—verify the capability of the 
model to predict probabilistic forecasts with lead times of 
1 to 3 hours. Moreover, the probabilistic forecasts can be 
condensed into deterministic forecasts by taking the me-
dian out of the predicted CI. The deterministic forecasting 
results also indicated satisfactory forecasting performance. 
As a probabilistic forecasting method, the modified fuzzy 
inference model has great potential to be used in various 
scholarly fields and practical applications.
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