Comparative Geochemistry of ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po: A Case Study in the Hung-Tsai Trough off Southwestern Taiwan

Ching-Ling Wei^{*}, Lin-Hwa Chou, Jing-Ru Tsai, Liang-Saw Wen, and Su-Cheng Pai

Institute of Oceanography, National Taiwan University, Taipei, Taiwan, ROC

Received 12 September 2007, accepted 9 January 2008

ABSTRACT

Detailed profiles of dissolved and particulate ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po activities at three stations in the Hung-Tsai Trough off southwestern Taiwan were determined. The total ²³⁴Th activity is $20 \sim 25\%$ deficient from its secular equilibrium in the entire water column. Except for an evident excess of ²¹⁰Po at some depths in the mixed layer and in the pycnocline layer, total ²¹⁰Po activity is also lower than total ²¹⁰Pb activity. As a result of atmospheric deposition, ²¹⁰Pb is about 25% in excess of its parent, ²²⁶Ra, throughout the water column of the Hung-Tsai Trough. The ratios of the distribution coefficients of ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po show that the order of particle affinity is Po > Th ~ Pb in the mixed layer and bottom layer, whereas the order changes, due to particle regeneration, into Th > Pb > Po in the pycnocline layer of the Hung-Tsai Trough.

Mass balance equations incorporating horizontal advection are established to estimate the scavenging and removal rates of ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po. The vertical fluxes of ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po within the euphotic layer for the Hung-Tsai Trough are 6760, 630, and 400 dpm m⁻² d⁻¹, respectively. The residence times of the three radionuclides in the euphotic zone are remarkably close to one another (within 2 weeks). By using ²³⁴Th and ²¹⁰Po as proxies of particulate organic carbon and nitrogen, export flux from the euphotic layer of the Hung-Tsai is 40 mmol C m⁻² d⁻¹ based on the ²³⁴Th approach and 64 mmol C m⁻² d⁻¹ based on the ²¹⁰Po approach.

Key words: Hung-Tsai Trough, ²³⁸U-²³⁴Th, ²²⁶Ra-²¹⁰Pb, ²¹⁰Pb-²¹⁰Po, Export production Citation: Wei, C. L., L. H. Chou, J. R. Tsai, L. S. Wen, and S. C. Pai, 2009: Comparative geochemistry of ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po: A case study in the Hung-Tsai Trough off southwestern Taiwan. Terr. Atmos. Ocean. Sci., 20, 411-423, doi: 10.3319/TAO.2008.01.09.01(Oc)

1. INTRODUCTION

The conveyance of particle-reactive elements from the upper water column to sediments significantly relies on the settling of particulate matter. The three most particle-reactive radionulides of ²³⁸U-series, ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po have been extensively used as powerful tracers for the study of particle dynamics in the ocean. With a proper mass balance setup based on the fact that the radioactive disequilibrium between long-lived parent and short-lived daughter radionuclides reflects the vertical fluxes out of the system, export fluxes can then be quantitatively estimated.

Produced constantly from ²³⁸U in seawater, ²³⁴Th ($t_{1/2}$ = 24.1 d) is adsorbed quickly to particle surface and removed from the water column. The ²³⁸U-²³⁴Th disequilibrium has been widely used as a powerful tracer for particulate organic carbon and provides estimates of export production (see re-

view of Buesseler et al. 2006). Although both ²¹⁰Po ($t_{1/2} = 138.4$ days) and ²¹⁰Pb ($t_{1/2} = 22.2$ yrs) are particle-reactive, the geochemical mechanisms that are responsible for their fate in marine environments are different. Previous measurements of ²¹⁰Po and ²¹⁰Pb in the ocean show that biological uptake may be more important than inorganic adsorption for ²¹⁰Po scavenging whereas ²¹⁰Pb tend to be adsorbed by inorganic particles.

There are very few previous studies that report ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po data determined from the same seawater sample. Tanaka and Tsunogai (1983) measured ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po activities in the same seawater samples and in settling particles collected from Funka Bay, Japan. Sarin et al. (1994) reported three vertical profiles of dissolved activities of ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po in the northeastern Arabian Sea. Harada and Tsunogai (1986) reported ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po activities in settling particles collected by sediment traps deployed in the Northeast Pacific and Antarctica. Wei and

^{*} Corresponding author

E-mail: weic@ntu.edu.tw

Murray (1991, 1994) compared geochemical behavior of ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po in the Black Sea. Shimmield et al. (1995) simultaneously measured the three radionuclides from the same seawater samples collected in the upper 500 m in the marginal ice zone in Antarctica. Kim and Church (2001) presented dissolved and particulate ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po data simultaneously determined on the same samples collected from the Bermuda Time-series Stations (BATS). As part of JGOFS EqPac program, Murray et al. (2005) reported a complete ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po data set measured from the seawater samples collected in the upper water column and settling particles collected by floating traps in the Equatorial Pacific.

Off the southwestern tip of Taiwan, the Hung-Tsai Trough (Fig. 1) is a submarine canyon bathymetrically characterized by a narrow upper canyon with steep walls and a broad lower canyon with a flat floor (Yu and Chiang 1995). The Hung-Tsai Trough shows the hydrographic characteristics of the South China Sea (Fig. 2), which originated from the intrusion of Kuroshio Current through Bashi Channel (Shaw 1989). In the past few years, the region has been chosen as a training site for graduate students and has been visited regularly once or twice a year, so detailed oceanographic data, such as sb-ADCP, hydrographic and chemical parameters are available as auxiliary information to delineate geochemical processes.

Fig. 1. Bathymetric map of the Hung-Tsai Trough and locations of sampling stations of OR1-784.

A detailed sampling of seawater for ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po determinations at three stations located along the axis of the Hung-Tsai Trough was carried out. The goals of this study are to use the collected data to (1) use the Hung-Tsai Trough as a test site to evaluate the feasibility of incorporating ADCP-derived current to the scavenging/removal model; (2) compare the geochemical behavior of ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po; and (3) to estimate the export flux of particulate organic carbon and nitrogen using ²³⁴Th and ²¹⁰Po as proxies in the Hung-Tsai Trough.

2. MATERIALS AND METHODS

Seawater samples were collected at the three stations shown in Fig. 1 during 6 ~ 8 March 2006 (cruise #784), onboard R/V Ocean Researcher I. A CTD/20 L Go-Flo system was used to collect large volumes of seawater for ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po determinations. At each sampling depth, 40-L seawater was collected and divided into one 20-L and two 10-L subsamples. The 20-L sample was used to determine ²³⁴Th and the two 10-L samples were used to determine ²¹⁰Pb and ²¹⁰Po, respectively. Seawater was immediately pressure-filtered by compressed air through a pre-weighed 142 mm Nuclepore filter (0.45 µm) mounted in a Plexiglas filter holder.

Filtered seawater was transferred into a cubitainer, acidified with approximately 20 ml of concentrated HCl and spiked with 35 dpm ²³⁰Th yield tracer as well as 60 mg Fe carrier. Without interrupting the aeration, 12 N NaOH was added to raise the pH to 8. The Fe(OH)₃ precipitates, with

Fig. 2. T-S diagram of the three sampling stations in the Hung-Tsai Trough. Representative T-S curves of the South China Sea (SCS) and the West Philippine Sea (WPS) were taken from Station F of OR1-#575 (20 15'N, 118 39.6'E) and Station BV of OR1-#833 (20 24.48'N, 127 16.2'E), respectively.

adsorbed thorium, were collected by siphoning and centrifuging, and then dissolved in concentrated HCl to make the samples 9 N HCl. These samples were then passed through an anion exchange column (AG1X-8) preconditioned by 9N HCl to separate uranium from thorium. Thorium samples were purified by passing the sample through three anion exchange columns pre-conditioned with 8 N HNO₃. The sample was evaporated down to one drop and was ready for extraction. Th-234 and the yield tracer, ²³⁰Th, were extracted into a 0.4 M TTA (thenoyltrifluoroacetone)-benzene solution and stippled on a stainless-steel disc. Preconcentration and separation of uranium and thorium from the filtered seawater samples were completed in three days after samples were collected.

The particulate samples collected on the Nuclepore filters were dried in a desiccator and weighed to estimate the concentration of total suspended matter. The filter was then decomposed and digested following the procedures of Anderson and Fleer (1982). In short, the filters were decomposed in the laboratory by soaking in ~10 ml of concentrated NH₄OH. The samples were gently heated to evaporate the NH₄OH then fluxed in HClO₄/HF to thoroughly digest organic and inorganic materials. After digestion, the samples were purified and mounted on stainless-steel discs following the same procedures as for dissolved ²³⁴Th samples.

The activities of ²³⁴Th were counted by a low background (< 0.15 cpm) anticoincidence counter (Riso GM25-5) via its -emitting daughter ²³⁴Pa. Chemical yield of thorium was estimated by counting spiked ²³⁰Th using silicon surface-barrier detectors (EG&G Ortec 576). The counting efficiencies of the detectors were calibrated against NIST trace-able ²³⁰Th (Isotope Products Laboratory 387-67-3) standard plates. Activities of ²³⁴Th reported here were corrected back to the sampling time after the ingrowth of ²³⁴Th from ²³⁸U was subtracted.

The filtrate from the ²¹⁰Po sample was acidified with about 10 ml concentrated HCl and spiked with 2.2 dpm of ²⁰⁹Po and 30 mg of Fe carrier. Given 2 days isotopic equilibration time, concentrated NH₄OH was then added to raise the pH~8 to precipitate Fe(OH)₃. The Fe(OH)₃ precipitate was collected by decanting and centrifuging and dissolved in HCl, digested with HNO₃, and ²¹⁰Po and ²⁰⁹Po were spontaneously plated onto silver plates following Flynn (1968). The particulate samples collected on the Nuclepore filters were dried in a desiccator and weighed to estimate the concentration of total suspended matter. The filter was than decomposed and digested following the procedures of Anderson and Fleer (1982). The same procedures as for dissolved samples were carried out to plate ²¹⁰Po and ²⁰⁹Po onto silver plates.

The 10-L seawater samples for ²¹⁰Pb determination were stored for at least 1 year to let ²¹⁰Po grow in from ²¹⁰Pb; then the same procedures for dissolved and particulate ²¹⁰Po were followed. The silver discs were counted by alpha spec-

trometry (EG&G Ortec 576).

Collected by separate hydrocasts, about 5 L of seawater for particulate organic carbon and total nitrogen was filtered through a pre-combusted (450 C) Whatman 25 mm GF/F filter, wrapped in aluminum foil and stored at -4 C. In the laboratory, the filter was acid-fumed to remove carbonates and then wrapped firmly into tin boats and loaded into the autosampler of Fisons elemental analyzer (NA1500). Calibration curve was obtained by running acetanilide (C₈H₉NO) standard. The overall procedural errors estimated from duplicates are better than 2% for both carbon and nitrogen determinations.

3. RESULTS AND DISCUSSION

Table 1 gives depth, ²³⁸U activities calculated from Ku et al. (1977), concentrations of total suspended matter measured from subsamples for ²³⁴Th (TSM_{Th}), ²¹⁰Pb (TSM_{Pb}), and ²¹⁰Po (TSM_{Po}), dissolved and particulate ²³⁴Th (DTh and PTh), ²¹⁰Pb (DPb and PPb), and ²¹⁰Po (DPo and PPo) activities, and concentrations of particulate organic carbon (POC) and particulate nitrogen (PN) at the three sampling stations in the Hung-Tsai Trough. Uncertainties of all radioisotope data listed were estimated according to the propagation of counting error (1). Note: hydrographic and nutrients data are not listed but are available upon request.

3.1 Hydrography and Vertical Distributions of ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po

Measured by PAR sensor attached to CTD/Rosette system, the euphotic depth at all three stations was 80 m. The T-S diagram of the three stations is shown in Fig. 2, in which the typical T-S curves of the South China Sea (SCS) and the Western Philippine Sea (WPS) were also shown. Representative T-S curves of the SCS and the WPS were taken from Station F of OR1-#575 (20 15'N, 118 39.6'E) and Station BV of OR1-#833 (20 24.48'N, 127 16.2'E), respectively. It can be seen that the hydrographic characteristics of the study area is similar to that of the water in the South China Sea . The vertical profiles of potential density at the three sampling stations are shown in Fig. 3. The pycnocline layer, in the depth range of 50 to 200 m, shoals from the lower canyon to the upper canyon. The pronounced oscillation of the pycnocline as a result of semi-diurnal tide in the region has been observed (Liang et al. 1985).

Composite vertical profiles of the dissolved and particulate activities of the three radionuclides at the three sampling stations are shown in Fig. 4. It can be seen that the data shows as being somewhat scattering. The degree of scatterings was significantly reduced if the activities were plotted against density (Fig. 5), indicating the effect of vertical movement of water through the sampling period caused by tidal forcing. Consequently, in order to minimize

at three sampling	stations in	the Hung-Tsai	Trough.					0		4			
C4+4	Depth	²³⁸ U	$\mathrm{TSM}_{\mathrm{Th}}$	TSM _{Pb}	TSM _{Po}	DTh	PTh	DPb	PPb	DPo	PP_0	POC	PN
Station	ш	dpm L ⁻¹		${ m mg}\ { m L}^{-1}$		dpm L ⁻¹	$dpm L^{-1}$	dpm $100L^{-1}$	dpm 100L ⁻¹	dpm 100L ⁻¹	dpm 100L ⁻¹	Λμ	1
W1	0	2.44	0.51	0.42	0.91	ı	0.059 ± 0.005	12.97 ± 0.77	0.63 ± 0.20	8.95 ± 0.57	2.57 ± 0.36	ı	ı
22°03.76'N	5	2.44	0.26	0.51	0.64	1.735 ± 0.043	0.209 ± 0.010	12.89 ± 0.76	0.94 ± 0.22	5.33 ± 0.53	2.96 ± 0.37	ı	I
120°33.96'E	10	2.44	0.28	0.46	0.76	1.514 ± 0.035	0.264 ± 0.010	12.29 ± 0.78	1.12 ± 0.23	6.28 ± 0.43	2.34 ± 0.30	4.31	0.53
	20	2.44	0.20	1.18	0.69	2.201 ± 0.081	0.156 ± 0.007	12.80 ± 0.81	2.00 ± 0.30	4.84 ± 0.49	2.48 ± 0.32	4.53	0.64
	40	2.44	0.29	0.67	0.81	2.147 ± 0.064	0.452 ± 0.039	9.64 ± 0.69	1.75 ± 0.29	11.77 ± 0.85	2.99 ± 0.43	4.81	0.72
	60	2.44	0.53	0.72	0.83	1.650 ± 0.069	0.395 ± 0.018	10.10 ± 0.71	2.80 ± 0.37	6.61 ± 0.58	2.84 ± 0.38	3.61	0.53
	80	2.43	0.68	0.95	1.11	0.896 ± 0.035	0.662 ± 0.031	6.93 ± 0.51	3.37 ± 0.37	6.20 ± 0.43	2.26 ± 0.34	ı	ı
	100	2.43	0.98	96.0	0.97	0.596 ± 0.018	0.946 ± 0.034	6.07 ± 0.44	3.57 ± 0.36	4.49 ± 0.49	2.54 ± 0.38	3.35	0.44
	200	2.45	0.42	0.31	0.47	1.343 ± 0.026	0.420 ± 0.020	11.72 ± 0.60	3.00 ± 0.30	4.52 ± 0.52	1.94 ± 0.29	1.27	0.12
	300	2.44	0.26	0.83	0.54	1.317 ± 0.029	0.412 ± 0.026	10.07 ± 0.63	2.21 ± 0.28	2.83 ± 0.41	2.23 ± 0.32	1.30	0.13
	400	2.44	0.36	0.44	0.87	1.388 ± 0.048	0.451 ± 0.021	17.72 ± 0.90	1.77 ± 0.27	6.03 ± 0.59	2.21 ± 0.39	4.72	0.63
W2	0	2.44	0.27	0.52	0.93	2.154 ± 0.062	0.254 ± 0.016	11.46 ± 0.69	1.15 ± 0.19	5.88 ± 0.54	3.05 ± 0.37	9.50	1.28
22°03.07'N	5	2.44	0.29	0.00	0.00	2.157 ± 0.066	0.199 ± 0.012	ı	ı	ı		4.88	0.71
120°38.10'E	10	2.44	0.25	0.73	0.64	2.535 ± 0.081	0.236 ± 0.021	11.71 ± 0.77	1.26 ± 0.27	8.00 ± 0.53	3.71 ± 0.43	4.59	0.67
	20	2.44	0.29	0.46	0.36	2.163 ± 0.055	0.250 ± 0.015	13.05 ± 0.73	1.30 ± 0.25	5.48 ± 0.28	2.20 ± 0.32	5.04	0.72
	40	2.43	0.85	0.65	0.64	1.754 ± 0.067	0.679 ± 0.033	9.39 ± 0.50	2.02 ± 0.29	4.99 ± 0.47	2.38 ± 0.34	4.27	0.59

Table 1. Depth, calculated ²³⁸U activities from Ku et al. (1977), concentrations of total suspended matter measured from subsamples for ²³⁴Th (TSM_{Th}), ²¹⁰Pb (TSM_{Pb}), and ²¹⁰Po (TSM_{Po}), dissolved, particulate 234 Th (DTh and PTh), ²¹⁰Pb (DPb and PPb), and ²¹⁰Po (TSM_{Po}), dissolved,

(p	
iue	
Itir	
or	
$\underline{\Theta}$	
÷	
le	
ab	
E	

	Depth	²³⁸ U	TSM_{Th}	TSM _{Pb}	TSM _{Po}	DTh	PTh	DPb	PPb	DPo	PPo	POC	N
- Station	Ξ	dpm L ⁻¹		${ m mg}\ { m L}^{-1}$		dpm L ⁻¹	dpm L ⁻¹	dpm 100L ⁻¹	dpm $100L^{-1}$	dpm 100L ⁻¹	dpm 100L ⁻¹	Лц	
	60	2.43	1.04	0.76	0.98	0.761 ± 0.021	0.376 ± 0.022	7.70 ± 0.48	3.48 ± 0.40	4.78 ± 0.20	1.83 ± 0.27	4.14	09.0
	80	2.44	0.56	1.14	1.22	0.945 ± 0.022	0.590 ± 0.033	10.19 ± 0.65	3.13 ± 0.36	3.41 ± 0.31	2.06 ± 0.33	3.73	0.54
	100	2.44	0.45	0.49	0.57	1.419 ± 0.038	0.379 ± 0.021	9.89 ± 0.65	2.07 ± 0.25	3.92 ± 0.25	1.67 ± 0.28	2.62	0.35
	150	2.45	0.27	0.51	0.46	1.778 ± 0.058	0.328 ± 0.019	8.94 ± 0.67	1.97 ± 0.27	9.87 ± 0.73	1.33 ± 0.25	1.72	0.25
	200	2.45	0.32	0.49	0.22	1.113 ± 0.046	0.477 ± 0.029	9.60 ± 0.71	3.12 ± 0.27	6.70 ± 0.62	1.59 ± 0.26	1.48	0.15
	300	2.45	0.45	0.34	0.54	1.306 ± 0.041	0.272 ± 0.017	7.17 ± 0.57	2.38 ± 0.30	7.80 ± 0.51	1.46 ± 0.26	2.53	0.20
W3	0	2.44	0.42	0.58	1.21	1.288 ± 0.051	0.438 ± 0.021	11.34 ± 0.71	2.09 ± 0.31	3.77 ± 0.42	3.82 ± 0.47	8.20	1.12
21°58.07'N	5	2.44	0.27	0.55	0.67	2.378 ± 0.068	0.197 ± 0.016	7.25 ± 0.60	2.70 ± 0.32	9.39 ± 0.69	1.92 ± 0.31	4.13	0.69
120°41.07'E	10	2.44	0.26	0.58	0.63	1.393 ± 0.030	0.298 ± 0.016	10.04 ± 0.70	1.67 ± 0.26	7.53 ± 0.60	2.31 ± 0.34	1.96	0.30
	20	2.44	0.42	0.81	0.75	1.434 ± 0.050	0.753 ± 0.034	9.08 ± 0.51	3.20 ± 0.38	3.87 ± 0.48	2.56 ± 0.31	3.94	09.0
	40	2.44	0.42	0.80	0.89	0.959 ± 0.025	0.746 ± 0.039	5.31 ± 0.46	3.12 ± 0.35	8.03 ± 0.53	2.34 ± 0.35	3.79	0.40
	60	2.44	0.48	0.65	0.78	1.272 ± 0.034	0.598 ± 0.023	7.76 ± 0.61	2.89 ± 0.35	4.64 ± 0.59	2.06 ± 0.40	2.35	0.32
	80	2.45	0.27	0.42	0.71	1.343 ± 0.040	0.820 ± 0.027	9.74 ± 0.71	2.49 ± 0.34	11.18 ± 0.76	1.24 ± 0.24	2.16	0.32
	100	2.45	0.45	0.47	0.44	1.542 ± 0.049	0.525 ± 0.033	7.45 ± 0.73	1.50 ± 0.24	10.42 ± 0.75	1.68 ± 0.29	1.12	0.12
	150	2.45	0.34	0.65	1.04	1.947 ± 0.066	0.382 ± 0.019	6.57 ± 0.53	2.36 ± 0.27	14.61 ± 0.92	2.34 ± 0.38	1.82	0.19
	200	2.45	0.33	0.95	0.46	2.170 ± 0.058	0.406 ± 0.028	10.36 ± 0.72	4.07 ± 0.40	8.17 ± 0.61	2.47 ± 0.33	2.21	0.19
	250	2.44	0.50	0.54	0.72	·	0.425 ± 0.023	8.93 ± 0.66	2.78 ± 0.36	4.17 ± 0.48	2.02 ± 0.27	1.26	0.12

(b)

Th-234 (dpm/L)

the variability caused by oscillation of the water body, the plots of parameters versus potential density instead of depth will preferably be used for later discussion.

3.2 ²³⁸U-²³⁴Th, ²²⁶Ra-²¹⁰Pb, and ²¹⁰Pb-²¹⁰Po Disequilibria

(c)

The activity ratios of total ²³⁴Th to ²³⁸U (TTh/U), total ²¹⁰Pb to ²²⁶Ra (TPb/Ra), and total ²¹⁰Po to total ²¹⁰Pb (TPo/TPb) are shown in Fig. 6. Apart from a few depths in the mixed layer, total ²³⁴Th activity was $10 \sim 40\%$ deficient or 20 to 25% for the whole water column, from its secular equilibrium in the entire water column of the Hung-Tsai Trough. Similar to the previous results obtained in the vicinity (Hung and Wei 1992; Wei et al. 1994) the ²³⁴Th activity is essentially deficient relative to ²³⁸U throughout the whole water column, indicating dynamic scavenging phenomenon in the region.

Po-210 (dpm/100L)

10

15

Pb-210 (dpm/100L)

10

15

Fig. 4. Composite vertical profiles of the dissolved (open symbols) and particulate (filled symbols) (a) ²³Th, (b) ²¹⁰Pb, and (c) ²¹⁰Po at sampling station W1 (circles), W2 (squares), and W3 (triangles).

Fig. 5. -activity plots of the dissolved (open symbols) and particulate (filled symbols) (a) ²³⁴Th, (b) ²¹⁰Pb, and (c) ²¹⁰Po at sampling station W1 (circles), W2 (squares), and W3 (triangles).

(a)

Fig. 6. -activity ratios of (a) total ²³⁴Th to ²³⁸U, (b) total ²¹⁰Pb to ²²⁶Ra, and (c) total ²¹⁰Pb to ²¹⁰Pb at the three sampling stations. Dashed lines represent secular equilibrium of parent-daughter pair.

Essentially, ²¹⁰Pb activity is higher than its parent throughout the whole water column (Fig. 6b). Standing stock of excess ²¹⁰Pb in the water column of the HungTsai Trough increases toward the lower canyon, from 0.35 dpm cm⁻² at the shallowest W3 to 1.03 dpm cm⁻² at the deepest W1. This excess ²¹⁰Pb is much lower than the values found in the Okinawa Trough (~10 dpm cm⁻², Nozaki et al. 1990) and comparable with the Equatorial Pacific Ocean (0.1 ~ 1.6 dpm cm⁻², Murray et al. 2005). Since the excess ²¹⁰Pb signal was still observed at our deepest sampling depth, this value represents the minimum residual amount of deposited ²¹⁰Pb from the atmosphere after particle removal and physical transport. Considering the closeness of the continental source of ²²²Rn at the site, the low excess ²¹⁰Pb in the Hung-Tsai Trough implies a very fast removal rate.

Polonium removal from the ocean is tightly related to biological activity as supported by the correlations of ²¹⁰Po deficiency relative to ²¹⁰Pb with POC concentration (Sarin et al. 1999) and the removal rate constant with chlorophyll concentration (Nozaki et al. 1998). The deviation of TPo from secular equilibrium was relatively larger (lowest TPo/TPb activitiy ratio as low as 0.3) in the surface layer and in the bottom layer (Fig. 6c). However, an evident excess of ²¹⁰Po was observed at some depths in the mixed layer and in the layer of $= 24 \sim 25$. An excess of ²¹⁰Po (TPo/TPb > 1) below the mixed layer was commonly observed in the productive oceans (Bacon et al. 1988; Sarin et al. 1994). Chung and Wu (2005) reported vertical profiles of dissolved and particulate ²¹⁰Pb and ²¹⁰Po at three stations in the northern Luzon Strait. Although only 74 km to the southwest of our study area, excess ²¹⁰Po was not observed in the Luzon Enter Strait, which may be a result of different water masses between the two study sites.

The comparisons of the ratios of 210 Po and 210 Pb in the dissolved (DPo/DPb) and particulate (PPo/PPb) phases

provide some insight into the fractionation of the two radionuclides (Fig. 7). Except at some depths in the euphotic zone and in the intermediate layer, the DPo/DPb ratio is lower than unity (Fig. 7a) and shows similar distribution with TPo/TPb (Fig. 6c). For those layers with excess DPo relative to DPb, polonium is released back to seawater due to particle regeneration, which is commonly observed in different oceanic regimes (Bacon et al. 1976; Murray et al. 2005). It should be noted that settling particles may be entrained and the enhancement of the particle decomposition may occur due to longer residence time in the pycnocline of

= 23.5 ~ 25.5. Unlike the distribution of DPo/DPb ratio, the PPo/PPb ratios (Fig. 7b) are larger than unity (the highest value is 4) only in the surface layer, indicating preferential uptake of ²¹⁰Po by planktons residing in the surface water of the Hung-Tsai Trough. The enrichment of Po in the suspended particles corroborate the findings of Sarin et al. (1999), who found significant correlation between ²¹⁰Po deficiency relative to ²¹⁰Pb with POC concentration in the upper 500 m of the South Atlantic.

3.3 Partitioning of ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po

The partitioning of one element between dissolved and particulate phases reflects the reactivity of the element to particle surfaces. Conventionally, the distribution coefficient, K_d , has been used as an index of the degree of reactivity. The distribution coefficients of the radionuclides are calculated as

$$K_{d} = \frac{A_{part}}{A_{diss}} \frac{1}{TSM} \times 10^{6}$$
(1)

where A_{Diss} and A_{Part} are dissolved and particulate activities, respectively, of the radionuclides of interest. Unlike

Fig. 7. -activity ratios of (a) dissolved ²¹⁰Po to dissolved ²¹⁰Pb and (b) particulate ²¹⁰Po to particulate ²¹⁰Pb at the three sampling stations. Dashed lines represent secular equilibrium.

the observation of the negative K_d-TSM correlations from many studies (e.g., Honeyman et al. 1988; Wei and Murray 1994), the K_d-TSM correlations of ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po obtained from the Hung-Tsai Trough are not as obvious because of the narrow range of TSM concentration. However, as shown in Fig. 8, the K_d of ²³⁴Th [K_d(Th)] and ²¹⁰Pb [K_d(Pb)] correlate with the organic fraction of suspended particles, whereas the correlation is not as significant for ²¹⁰Po [K_d(Po)]. The result implies that, in addition to the particle concentration effect (Honeyman et al. 1988), the composition of particulate matter also plays an important

Fig. 8. Correlation of distribution coefficient of ²³⁴Th (open circles), ²¹⁰Pb (filled circles), and ²¹⁰Po (crosses) and organic fraction of total suspended matter.

role in the partitioning of the radionuclides.

To compare the geochemical behavior of ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po, the fractionation factor, which is the ratio of the K_ds of the radionuclide of interest, is calculated. Plotting against density, vertical distributions of the ratio of K_ds of the three radionuclides are shown in Fig. 9. It can be seen that three distinctive layers of the Hung-Tsai Trough can be identified. In the mixed layer where the suspended particles are enriched in organic materials (POC/TSM > 10%, Fig. 9a), K_d(Po) shows the highest values among the three radionuclides (Figs. 9c, d), which is consistent with the common view that polonium is preferentially scavenged by biogenic particles (Shannon et al. 1970). In the pycnocline layer (= $23 \sim 25$), K_d(Th) tends to exceed K_d(Pb) and $K_d(Po)$ to show the fractionation factor < 1 (Figs. 9b, c), as a result of the particle regeneration process when settling down from the euphotic layer (Bacon et al. 1988). Though not as evident as in the mixed layer, K_d(Po) also seems higher than $K_d(Pb)$ and $K_d(Th)$ in the bottom layer of the Hung-Tsai Trough. Considering the relative shallow water column (300 ~ 500 m) of the Hung-Tsai Trough, it is possible that the particles in the bottom layer are residual particles that survived decomposition during descent from the surface and are still enriched in organic content thereby raising the $K_d(Po)$.

3.4 Scavenging and Removal Rates of ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po

For budgeting ²³⁴Th in the Hung-Tsai Trough, two equations, one for dissolved and one for particulate ²³⁴Th, are established as follows.

Fig. 9. (a) versus organic fraction of suspended matter, (b) -fractionation factors of ²¹⁰Pb and ²³⁴Th, (c) ²¹⁰Po to ²³⁴Th, and (d) ²¹⁰Po to ²¹⁰Pb at the three sampling stations.

$$\frac{\partial DTh_{W2}}{\partial t} = \frac{V_{W2}(DTh_{W1} - DTh_{W3})}{\Delta L} + \lambda_{Th}U_{W2} - \lambda_{Th}DTh_{W2} - J_{Th}$$
(2)

$$\frac{\partial PTh_{W2}}{\partial t} = J_{Th} + \frac{V_{W2}(PTh_{W1} - PTh_{W3})}{\Delta L} - \lambda_{Th}PTh_{W2} - R_{Th}$$
(3)

where

- U_{W2} = average ²³⁸U activity in the mixed layer of station W2 ($dpm m^{-3}$);
- $DTh_i = dissolved^{234}Th$ activity in the mixed layer of station i (dpm m⁻³);

- $PTh_i = particulate^{234}Th activity in the mixed layer of station$ $i (dpm m^{-3});$
- V_{W2} = average current velocity in the mixed layer of station W2 (m d^{-1});

- $_{\rm Th} =$
- radioactive decay constant of 234 Th (d⁻¹); net scavenging rate of dissolved 234 Th in the mixed $J_{Th} =$ layer of station W2 (dpm $m^{-3} d^{-1}$);
- net removal rate of particulate ²³⁴Th in the mixed $R_{Th} =$ layer of station W2 (dpm $m^{-3} d^{-1}$).

The residence times of dissolved ($_{DTh}$) and particulate ($_{PTh}$) ²³⁴Th relative to scavenging and removal rates, respectively,

can be calculated by the quotients of activities and changing rates.

$$\tau_{\rm DTh} = \frac{\rm DTh}{\rm J_{\rm Th}} \tag{4}$$

$$\tau_{\rm PTh} = \frac{\rm PTh}{\rm R_{\rm Th}} \tag{5}$$

The mass balance equations for ²¹⁰Po data are shown below and it can be seen that the equations are very similar to that for ²³⁴Th except additional source for particulate ²¹⁰Po from adsorbed ²¹⁰Pb.

$$\frac{\partial DPo_{W2}}{\partial t} = \frac{V_{W2}(DPo_{W1} - DPo_{W3})}{\Delta L} + \lambda_{Po}DPb_{W2} - \lambda_{Po}DPo_{W2} - J_{Po}$$
(6)

$$\frac{\partial PPo_{W2}}{\partial t} = J_{Po} + \frac{V_{W2}(PPo_{W1} - PPo_{W3})}{\Delta L} + \lambda_{Po}(PPb_{W2} - PPo_{W2}) - R_{Po}$$
(7)

The residence times of dissolved ($_{\rm DPo}$) and particulate ($_{\rm PPo}$) 210 Po can be calculated.

$$\tau_{\rm DPo} = \frac{\rm DPo}{\rm J_{Po}} \tag{8}$$

$$\tau_{\rm PPo} = \frac{\rm PPo}{\rm R_{\rm Po}} \tag{9}$$

With the replacement of subscripts to indicate values for ²¹⁰Po, the definitions for the parameters, variables, and constants in Eqs. (6) - (9) are the same as those for ²³⁴Th.

As for ²¹⁰Pb, somewhat different consideration is given due to the fact that, in addition to the radioactive decay from ²²⁶Ra, the major source of ²¹⁰Pb in the surface ocean is atmospheric deposition. Since there is no evidence regarding the phase of atmospheric ²¹⁰Pb deposition into the ocean, only total ²¹⁰Pb (TPb = DPb + PPb) is considered to establish the equation.

$$\frac{\partial TPb_{W2}}{\partial t} = \frac{I_{Pb}}{400} + \frac{V_{W2}(TPb_{W1} - TPb_{W3})}{\Delta L} + \lambda_{Pb}(Ra_{W2} - TPb_{W2}) - R_{Pb}$$
(10)

where

- $I_{Pb} = atmospheric {}^{210}Pb$ flux in dpm m⁻² d⁻¹;
- $TPb_i = total^{210}Pb$ activity in the mixed layer of station i (dpm m⁻³);
- $Ra_i = {}^{226}Ra$ activity in the mixed layer of station i (dpm m⁻³);
- $_{Pb}$ = radioactive decay constant of ²¹⁰Pb (1 d⁻¹);
- R_{Pb} = net removal rate of ²¹⁰Pb in the mixed layer of station W2 (dpm m⁻³ d⁻¹).

Ra-226 activities were not measured in this study. Correlation equation derived from ²²⁶Ra activities and SiO₂ concentrations of the equatorial Pacific (Ku et al. 1995), the North Pacific (Nozaki et al. 1990), and the South China Sea (Nozaki and Yamamoto 2001), ²²⁶Ra (dpm 100 L⁻¹) = 8.06 + 0.124 SiO₂ (M), was used to estimate ²²⁶Ra activities in the Hung-Tsai Trough. The atmospheric ²¹⁰Pb flux in the study region was assumed to be 2 dpm cm⁻² yr⁻¹ or 54 dpm m⁻² d⁻¹ (Yang 2001).

The residence time of total 210 Pb ($_{Pb}$) is calculated by:

$$\tau_{\rm Pb} = \frac{\rm TPb}{\rm R_{\rm Pb}} \tag{11}$$

To evaluate the significance of temporal change of the activities of the radionuclides, we use the two data sets (unpublished results) collected from the two cruises to station W1 of this study. The two cruises, OR1-#742 ($24 \sim 26$ December 2004) and OR1-#744 (3 \sim 6 March 2005), were separated by 70 days. The temporal changing rates were 6, 0.08, and 0.2 dpm m⁻³ d⁻¹ for ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po, respectively. The temporal change of the radionuclide activities was generally less than 10% of the radioactive decay rate of each radionuclide. Hence, it is acceptable to assume the steady-state condition ($\frac{-\text{Th}}{t}$ Ро Pb 0) for the t t

distribution of these radionuclides in the Hung-Tsai Trough.

As pointed out by Savoye et al. (2006), the most difficult task of accurately estimating the physical transport of 234 Th in the scavenging/removal model is the availability of mean current velocity in the study region. Here we attempt to apply the average current derived from the historical shipboard ADCP data measured in the study area. Following the procedures of Liang et al. (2003), mean current velocity in the Hung-Tsai Trough was estimated by averaging archived shipboard ADCP data (NCOR Data Bank) collected in March during 1991 ~ 2006. The average current in the upper 100 m is 12.4 cm s⁻¹ with a general direction along the axis of the trough, in agreement with the measurement by moored current meter (Liang et al. 1985).

The average radionuclide activity at the three sampling stations and the results of the scavenging model are shown in Table 2. In the table, for the purpose of comparison, various changing rates and residence times calculated from the scavenging model without horizontal transport are listed in italics. Average activity was calculated by dividing the radionuclide inventories in the euphotic layer by 80 m, the euphotic depth measured by the PAR sensor.

The vertical ²³⁴Th flux, 6760 dpm m⁻² d⁻¹, can be calculated by multiplying the removal rate, R_{Th} , by the euphotic depth. At the site, about 55 km to the northwest of the Hung-Tsai Trough, vertical ²³⁴Th fluxes ranging from 363 to 2290 dpm m⁻² d⁻¹ in the upper 450 m were measured by sediment traps (Wei et al. 1994). It is not unreasonable that

			Average act	ivity (dpm m ⁻³)		
Station	DTh	PTh	DPb	PPb	DPo	РРо
W1	1778	364	106	21	75	27
W2	1592	427	94	22	48	22
W3	1314	634	79	28	67	22
		$V = 12.4 \text{ cm s}^{-1}$		$V = 0 \text{ cm s}^{-1}$		
J _{Th} (dpn	$n m^{-3} d^{-1}$)	197.7		24.3		
J _{Po} (dpn	$m^{-3} d^{-1}$)	3.1		0.2		
R _{Th} (dpi	$m m^{-3} d^{-1}$)	84.5		12.0		
R _{Po} (dpi	$m m^{-3} d^{-1}$)	5.0		0.2		
R _{Pb} (dpi	$m m^{-3} d^{-1}$)	7.9		0.7		
τ_{DTh} (da	y)	8.0		66.0		
τ_{PTh} (day)		5.0		36.0		
τ_{DPo} (da	y)	15.0		208.0		
τ_{PPo} (da	y)	4.0		93.0		
τ_{Pb} (day)	15.0		170.0		

Table 2. Average activities of dissolved and particulate ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po in the euphotic layer at three sampling stations and results of scavenging model of the Hung-Tsai Trough.

much higher ²³⁴Th flux was observed in the Hung-Tsai Trough because of the closeness of the sampling site to the landmass. Similarly, the vertical fluxes of ²¹⁰Po and ²¹⁰Pb, 400 and 630 dpm m⁻² d⁻¹, respectively, through the euphotic depth are estimated. It should be noted that the ²¹⁰Pb flux is about an order of magnitude higher than the atmospheric ²¹⁰Pb flux of the region. It should also be noted that the vertical ²¹⁰Pb flux would reduce to 56 dpm m⁻² d⁻¹ if we don't consider horizontal transportation. Whether this reflects the boundary scavenging phenomenon (Bacon et al. 1976) or bias due to an unrealistic scavenging model is unclear and deserves further investigation.

The residence times of the three radionuclides are remarkably comparable to each other. For example, residence times of total ²³⁴Th, ²¹⁰Po, and ²¹⁰Pb, are 13, 19, and 15 days, respectively. The residence times of the radionuclides would increase from weeks to months if the horizontal transports are neglected. Particle settling velocity, $16 \sim 20 \text{ m d}^{-1}$, obtained by the quotient of the euphoitc depth and _{PTh} or _{PPo}, is in a reasonable range for the settling velocity of marine particles.

3.5 Export Fluxes

With the rationale of using ²³⁴Th or ²¹⁰Po as proxies for particulate organic carbon (Murray et al. 2005), export flux in Hung-Tsai Trough is estimated by multiplying the ²³⁴Th

removal flux to the POC/PTh and by multiplying the ²¹⁰Po removal flux to the POC/PPo ratio of suspended particles:

$EP_{Th} = R_{Th}$	80	(POC/PTh)	(12)
--------------------	----	-----------	------

$$EP_{Po} = R_{Po} \quad 80 \quad (POC/PPo) \tag{13}$$

The POC/PTh ratio shows its highest value, up to 37 mol dpm⁻¹, in the surface layer of the Hung-Tsai Trough. The ratio decreases dramatically to $2 \sim 6$ mol dpm⁻¹ in the deep layer. The POC/PTh ratio in the particulate matter of the ocean shows large variability and factors that may attribute to this variability include size, composition, shape, morphology, and the sinking velocity of particles (Bueseller et al. 2006). The organic carbon to ²¹⁰Po ratio in suspended particles (POC/PPo) ranges from 50 to 300 mol dpm⁻¹ with an elevation of the ratio in the mixed and bottom layer. The POC/PPo ratio is 100 ~ 300 mol dpm⁻¹ in the mixed layer, which is comparable with the ratio in trap particles collected in the equatorial Pacific (Murray et al. 2005).

The average POC/PTh and POC/PPo of 6 and 150 mol dpm⁻¹, respectively, at the euphotic depth, are used to calculate the export flux from the euphotic layer of the Hung-Tsai Trough. The export flux is 40 mmol m⁻² d⁻¹ estimated from the ²³⁴Th flux and 64 mmol m⁻² d⁻¹ estimated from the ²¹⁰Po flux. Considering the uncertainty of the model, the export fluxes estimated using the two approaches, agree quite well.

The export production deduced from the ²¹⁰Po-²¹⁰Pb system is higher than that estimated from the ²³⁴Th-²³⁸U disequilibria by a factor of 2 (Sarin et al. 1994). Murray et al. (2005) found export based on ²¹⁰Po is higher than that based on ²³⁴Th also by a factor of 2 in the equatorial Pacific. On the contrary, Shimmield et al. (1995) found export production, estimated by the ²¹⁰Po-²¹⁰Pb disequilibrium, is an order of magnitude lower than that estimated from the ²³⁴Th-²³⁸U disequilibrium in the marginal ice zone of Antarctica.

The POC and PN correlate tightly (n = 30, $r^2 = 0.96$) and the C/N ratio of suspended particle in the Hung-Tsai Trough is 6.62, identical to the RKR ratio. Accordingly, by multiplying particulate organic carbon flux with the C/N ratio of suspended particles, nitrogen flux via particle settling is $6 \sim$ 10 mmol N m⁻² d⁻¹ in the Hung-Tsai Trough.

4. CONCLUSIONS

Three stations located at the upper, middle and lower portions of the Hung-Tsai Trough were visited for largevolume seawater sampling. Detailed vertical profiles of dissolved and particulate ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po were used to compare their geochemical behavior and to estimate export flux in the Hung-Tsai Trough. The findings of this study can be summarized as follows:

- (1) ²³⁴Th activity is deficient relative to ²³⁸U essentially throughout the whole water column. ²¹⁰Po is also deficient to its secular equilibrium value except in the layer immediately below the mixed layer. ²¹⁰Pb is in excess of ²²⁶Ra activity in the entire water column.
- (2) By comparing distribution coefficients of ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po in the Hung-Tsai Trough, it is found, among the three radionuclides that the ²¹⁰Po has the highest affinity for particles residing in the surface mixed layer and in the bottom layer.
- (3) The DPo/DPb ratio is lower than unity except at some depths in the euphotic zone and in the pycnocline layer, whereas the PPo/PPb ratios are higher than unity only in the surface layer, indicating preferential uptake of ²¹⁰Po by planktons residing in the surface water and regeneration phenomenon of particles in the intermediate layer of the Hung-Tsai Trough.
- (4) The mass balance equations for ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po need to include horizontal advection to give an accurate estimate of scavenging and removal rates. The scavenging and removal rates for ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po would be underestimated to give much longer residence times of dissolved and particulate ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po if horizontal transports were ignored in the Hung-Tsai Trough.
- (5) The vertical fluxes of ²³⁴Th, ²¹⁰Pb, and ²¹⁰Po through the euphotic depth estimated from the scavenging model are 6760, 630, and 400 dpm m⁻² d⁻¹, respectively. The residence times of the three radionuclides in the euphotic

zone are about 2 weeks.

(6) ²³⁴Th and ²¹⁰Po were used as proxies of particulate organic carbon to estimate export flux in the Hung-Tsai Trough. Export flux from the euphotic layer of the Hung-Tsai is 40 mmol C m⁻² d⁻¹ estimated from the ²³⁴Th flux and 64 mmol C m⁻² d⁻¹ estimated from the ²¹⁰Po flux.

Acknoledgements We thank Ms. W. H. Lee for CTD data processing. We appreciate the constructive comments on the manuscript by Dr. S. Luo and an anomalous reviewer. This research was supported through the grant NSC96-2611-M-002-005 from the National Science Council of the Republic of China.

REFERENCES

- Anderson, R. F. and A. P. Fleer, 1982: Determination of natural actinides and plutonium in marine particulate material. *Anal. Chem.*, **54**, 1142-1147, doi: 10.1021/ac00244a030. [Link]
- Bacon, M. P., D. W. Spencer, and P. G. Brewer, 1976: ²¹⁰Pb/²²⁶Ra and ²¹⁰Po/²¹⁰Pb disequilibria in seawater and suspended particulate matter. *Earth Planet. Sci. Lett.*, **32**, 277-296, doi: 10.1016/0012-821X(76)90068-6. [Link]
- Bacon, M. P., R. A. Belastock, R. A. M. Tecotzky, K. K., Turekian, and D. W. Spencer, 1988: Lead-210 and polonium-210 in ocean water profiles of the continental shelf and slope south of New England. *Cont. Shelf Res.*, 8, 841-853, doi: 10.1016/0278-4343(88)90079-9. [Link]
- Buesseler, K. O., C. R. Benitez-Nelson, S. B. Moran, A. Burd, M. Charette, J. K. Cochran, L. Coppola, N. S. Fisher, S. W. Fowler, W. D. Gardner, L. D. Guo, O. Gustafsson, C. Lamborg, P. Masque, J. C. Miquel, U. Passow, P. H. Santschi, N. Savoye, G. Stewart, T. Trull, 2006: An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of ²³⁴Th as a POC flux proxy. *Mar. Chem.*, **100**, 213-233, doi: 10.1016/ j.marchem.2005.10.013. [Link]
- Chung, Y. and T. Wu, 2005: Large ²¹⁰Po deficiency in the northern South China Sea. *Cont. Shelf Res.*, **25**, 1209-1224, doi: 10.1016/j.csr.2004.12.016. [Link]
- Flynn, W. W., 1968: The determination of low levels of polonium-210 in environmental materials. *Analyt. Chim. Acta.*, 43, 221-227, doi: 10.1016/S0003-2670(00)89210-7. [Link]
- Harada, K. and S. Tsunogai, 1986: Fluxes of ²³⁴Th, ²¹⁰Po and ²¹⁰Pb determined by sediment trap experiments in pelagic oceans. J. Oceanogr. Soc. Jpn., 42, 192-200, doi: 10.1007/ BF02109353. [Link]
- Honeyman, B. D., L. S. Balistrieri, and J. W. Murray, 1988: Oceanic trace metal scavenging: The importance of particle concentration. *Deep-Sea Res.*, **35**, 227-246, doi: 10.1016/0198-0149(88)90038-6. [Link]
- Hung, C. C. and C. L. Wei, 1992: Th-234 scavenging in the water column off southwestern Taiwan. *Terr. Atmos. Ocean. Sci.*, 3, 183-197.

- Kim, G. and T. M. Church, 2001: Seasonal biogeochemical fluxes of ²³⁴Th and ²¹⁰Po in the upper Sargasso Sea: Influence from atmospheric iron deposition. *Global Biogeochem. Cycles*, **15**, 651-661, doi: 10.1029/2000GB001313. [Link]
- Ku, T. L., K. G. Knauss, and G. G. Mathiew, 1977: Uranium in open ocean: Concentration and isotopic composition. *Deep-Sea Res.*, 24, 1005-1017, doi: 10.1016/0146-6291 (77)90571-9. [Link]
- Ku, T. L., S. Luo, M. Kusakabe, and J. K. B. Bishop, 1995:
 ²²⁸Ra-derived nutrient budgets in the upper equatorial Pacific and the role of "new" silicate in limiting productivity. *Deep-Sea Res. II*, **42**, 479-497, doi: 10.1016/0967-0645 (95)00020-Q. [Link]
- Liang, N. K., J. G. Chang, C. H. Su, and K. I. Wang, 1985: Data report of temperature and current measurement in the Hung-Tsai Trough off southern Taiwan, Special Report # 19, Institute of Habor and Marine Technology, Taiwan, 122 pp.
- Liang, W. D., T. Y. Tang, Y. J. Yang, M. T. Ko, and W. S. Chuang, 2003: Upper-ocean currents around Taiwan. *Deep-Sea Res. II*, **50**, 1085-1105, doi: 10.1016/S0967-0645(03) 00011-0. [Link]
- Murray, J. W., B. Paul, J. P. Dunne, and T. Chapin, 2005: ²³⁴Th, ²¹⁰Pb, ²¹⁰Po and stable Pb in the central equatiorial Pacific: Tracers for particle cycling. *Deep-Sea Res. I*, **52**, 2109-2139, doi: 10.1016/j.dsr.2005.06.016. [Link]
- Nozaki, Y., N. Ikuta, and M. Yashima, 1990: Unusually large ²¹⁰Po deficiencies relative to ²¹⁰Pb in the Kuroshio Current of the East China and Philippine seas. *J. Geophys. Res.*, **95**, 5321-5329, doi: 10.1029/JC095iC04p05321. [Link]
- Nozaki, Y., V. Kasemsupaya, and H. Tsubota, 1990: The distribution of ²²⁸Ra and ²²⁶Ra in the surface waters of the northern North Pacific. *Geochem. J.*, **24**, 1-6.
- Nozaki, Y., F. Dobashi, Y. Kato, and Y. Yamamoto, 1998: Distribution of Ra isotopes and the ²¹⁰Pb and ²¹⁰Po balance in surface seawaters of the mid Northern Hemisphere. *Deep-Sea Res. I*, **45**, 1263-1284, doi: 10.1016/S0967-0637(98) 00016-8. [Link]
- Nozaki, Y. and Y. Yamamoto, 2001: Radium 228 based nitrate fluxes in the eastern Indian Ocean and the South China Sea and a silicon-induced "alkalinity pump" hypothesis. *Global Biogeochem. Cycles*, **15**, 555-567, doi: 10.1029/2000 GB001309. [Link]
- Sarin, M. M., S. Krishnaswami, R. Ramesh, and B. L. K.

Somayalulu, 1994: ²³⁸U decay series nuclides in the northeastern Arabian Sea: Scavenging rates and cycling processes. *Cont. Shelf Res.*, **14**, 251-265, doi: 10.1016/0278-4343(94)90015-9. [Link]

- Sarin, M. M., G. Kim, and T. M. Church, 1999: ²¹⁰Po and ²¹⁰Pb in the south-equatorial Atlantic: Distribution and disequilibrium in the upper 500 m. *Deep-Sea Res. II*, **46**, 907-917, doi: 10.1016/S0967-0645(99)00008-9. [Link]
- Savoye, N., C. Benitez-Nelson, A. B. Burd, J. K. Cochran, M. Charette, K. O. Buesseler, G. A. Jackson, M. Roy-Barman, S. Schmidt, and M. Elskens, 2006: ²³⁴Th sorption and export models in the water column: A review. *Mar. Chem.*, **100**, 234-249, doi: 10.1016/j.marchem.2005.10.014. [Link]
- Shannon, L. V., R. D. Cherry, and M. J. Orren, 1970: Polonium-210 and lead-210 in the marine environment. *Geochim. Cosmochim. Acta*, **34**, 701-711, doi: 10.1016/0016-7037(70)90072-4. [Link]
- Shaw, P. T., 1989: The intrusion of water masses into the sea southwest of Taiwan. J. Geophys. Res., 94, 18213-18226, doi: 10.1029/JC094iC12p18213. [Link]
- Shimmield, G. B., G. D. Ritchie, and T. W. Fileman, 1995: The impact of marginal ice zone processes on the distribution of ²¹⁰Pb, ²¹⁰Po and ²³⁴Th and implications for new production in the Bellingshausen Sea, Antarctica. *Deep-Sea Res. II*, 42, 1313-1335, doi: 10.1016/0967-0645(95)00071-W. [Link]
- Tanaka, N. and S. Tsunogai, 1983: Behavior of ⁷Be in Funka Bay, Japan, with reference to those of insoluble nuclides, ²³⁴Th, ²¹⁰Po and ²¹⁰Pb. *Geochem. J.*, **17**, 9-17.
- Wei, C. L. and J. W. Murray, 1991: ²³⁴Th/²³⁸U disequilibria in the Black Sea. *Deep-Sea Res.*, **38**, s855-s873.
- Wei, C. L. and J. W. Murray, 1994: The behavior of scavenged isotopes in marine anoxic environments: ²¹⁰Pb and ²¹⁰Po in the water column of the Black Sea. *Geochim. Cosmochim. Acta*, **58**, 1795-1811, doi: 10.1016/0016-7037(94)90537-1. [Link]
- Wei, C. L., K. L. Jen, and K. Chu, 1994: Sediment trap experiments in the water column off southwestern Taiwan: ²³⁴Th fluxes. *J. Oceanogr.*, **50**, 403-414, doi: 10.1007/BF 02234963. [Link]
- Yang, M. D., 2001: Atmospheric ²¹⁰Pb fluxes in metropolitan Taipei, Taiwan. Master Thesis, National Taiwan University, Taipei, Taiwan, ROC, 108 pp.
- Yu, H. S. and C. S. Chiang, 1995: Morphology and origin of the Hongtsai submarine canyon west of the Hengchun Peninsula, Taiwan. J. Geol. Soc. China, 38, 81-93.