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ABSTRACT

Both land cover spectral information and 3D surface information can be obtained efficiently via remote sensing technolo-
gies. Spectral images provide spectral features whereas lidar point clouds contain 3D spatial features. Therefore, the multi-
sensor data can be integrated to obtain useful information for different applications. This study integrates lidar with different 
spectral features for land cover classification. Because different spectral images have different characteristics, this study 
used hyperspectral images, 4- and 8-band WorldView-2 multispectral images, to distinguish different land covers. The major 
works include features selection, object-based classification, and evaluation. In features selection appropriate features were 
selected according to the land cover characteristics. Object-based classification was implemented using image segmentation 
and supervised classification. Finally, different combinations were evaluated using reference data to provide comprehensive 
analyses. We use ITRES CASI-1500 airborne hyperspectral images, WorldView-2 multispectral images and Optech ALTM 
Pegasus in this study. The experiment compared the results with and without data fusion. The importance of different spectral 
features is also discussed. In summary, different land covers with similar spectral features can be identified using lidar spatial 
features. Spectral image integration with lidar data may improve land cover classification accuracy.
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1. INTRODUCTION

Land cover maps are important infrastructure features 
in environmental studies. Because land cover changes rap-
idly, reliable land cover maps must be developed effectively 
and precisely. Remote sensing technologies can efficiently 
obtain the spectral and shape properties of ground objects. 
Because this information is suitable for large area land cov-
er classification, remote sensing technologies can be used 
to investigate circumstances and changes in land surface for 
land management.

Spectral image and lidar point cloud data are commonly 
used in land cover classification. For spectral images differ-
ent land covers can be separated using an image classification 
technique that analyzes the spectral information to obtain the 
land cover. The spectral resolution significantly affects the 
results. For lidar point clouds different land covers can be 
distinguished by shape and intensity information. Different 

land covers can be classified by simultaneously considering 
both spectral and shape information. Therefore, lidar point 
clouds and its complementary counterpart, spectral images, 
are usually integrated in land cover classification (Chen et al. 
2009, 2012; Debes et al. 2014; Liao et al. 2015).

The main focus in optical sensor development is to 
improve spatial and spectral resolutions by developing hy-
perspectral sensors with high spatial resolution. Improved 
spatial and spectral resolutions are beneficial for interpreting 
types of land cover and are used to improve the potential 
of image interpretation and classification. Because satellite 
images cover larger area and are usually selected for land 
cover classification, most of the very high resolution satel-
lites (e.g., IKONOS, QuickBird, OrbView-3) acquire 4 spec-
tral bands (blue, green, red, and near infra-red channels) to 
compose a multispectral image. Some of the high resolution 
satellites, such as WorldView-2, can acquire more than 8 
spectral bands (coastal, blue, green, yellow, red, red edge, 
nir1, and nir2) to improve the image interpretation capability.  
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Landsat-8 also increases the multispectral and thermal im-
ages from 7 to 10 different bands. Several studies have indi-
cated that the 8 bands of multispectral WorldView-2 images 
can improve classification accuracy in urban areas (Long-
botham et al. 2012) as well as forested areas (Immitzer et 
al. 2012). Hyperspectral imagery additionally provides more 
detailed spectral information than discrete multispectral im-
agery and has high potential to identify vegetation species 
using spectral information (Clark et al. 2005; Govender et al. 
2008). The challenge of using multispectral images for image 
classification is the extraction of useful features (also called 
spectral signatures) from limited discrete spectral bands. By 
contrast, the challenges of using hyperspectral images for 
image classification are related to the high dimensionality of 
the hyperspectral data and the limited availability of training 
samples (Bioucas-Dias et al. 2013). Both multispectral and 
hyperspectral images are limited in their representation of 
surface information rather than internal properties.

Different techniques have been developed to fuse li-
dar and imagery in land cover classification (Gamba 2014). 
This fusion can be classified into three categories based on 
strategy: pixel data fusion, feature level fusion, and multi-
approach fusion (Pohl and Van Genderen 1998). Pixel data 
fusion is a low level data fusion that directly combines two 
datasets [i.e., lidar digital surface modeling (DSM) and 
orthoimage] via world coordinates; feature level fusion 
integrates image-derived features (e.g., Normalized Differ-
ence Vegetation Index, NDVI) and lidar-derived features 
(e.g. penetrating rate) to gain more useful information; and 
multi-approach fusion combines different processing meth-
ods (e.g., unsupervised and supervised classifications) for 
precise classification.

Data fusion for lidar and imagery can be classified into 
two categories based on datasets: fusion of lidar and multi-
spectral images (Bork and Su 2007), lidar and hyperspec-
tra (Dalponte et al. 2008). Lidar technology rapidly obtains 
high-density 3D point clouds and efficiently provides 3D 
surface information that can assist the identification of land 
cover (Guo et al. 2011) because every ground object has a 
characteristic height. The integration of lidar and spectral 
information is therefore beneficial in land cover classifica-
tion. Rahman et al. (2013) compared the results of support 
vector machine (SVM) and maximum likelihood (ML) clas-
sifiers for 7 classes using airborne lidar and red-green-blue 
(RGB) aerial images. SVM produced better classification 
results than the ML method. In addition, the combination 
of lidar-derived features and multispectral images produced 
better results than classification based on single data. Liao 
et al. (2014) combined features of lidar and hyperspectral 
images using a graph-based feature fusion approach. Ex-
perimental results demonstrated the effectiveness of multi-
sensor data classification.

Image classification development includes pixel-based 
classification that performs image analyses pixel-by-pixel 

and object-based classification that combines similar pixels 
into objects through image segmentation. The advantages 
of object-based classification have been proven from previ-
ous studies (Myint et al. 2011; Duro et al. 2012). Through 
image segmentation the related image pixels are combined 
into image objects that provide the objects’ attributes and 
shape to identify different land covers (Ke et al. 2010). 
Object-based classification is therefore more flexible than 
traditional pixel-based classification (Blaschke 2010).

Several studies have indicated that lidar and spectral im-
age fusion may improve land cover classification accuracy 
(Bork and Su 2007; Geerling et al. 2007; Zhou 2013). How-
ever, most studies focused on multispectral or hyperspectral 
images and comparisons between lidar with different spectral 
images are sparse. This study uses object-based classification 
that considers both spatial and spectral features to distinguish 
different land covers. The scope of this study includes: (1) 
compare the accuracies of classification for lidar fusion with 
different spectral images (i.e., traditional 4-band multispec-
tral, advanced 8-band multispectral, and hyperspectral im-
ages); and (2) analyze the importance of different lidar and 
spectral features in object-based classification.

This research compares the results from object-based 
classification by integrating lidar with different spectral im-
ages including 4-band multispectral WorldView-2 images, 
8-band multispectral WorldView-2 images, and 72-band 
ITRES CASI1500 hyperspectral images. This study adopt-
ed the feature-level fusion approach. The proposed scheme 
includes feature selection, image segmentation and image 
classification. Lidar data and spectral images were first co-
registered in the same coordinate system. Twelve different 
land type covers were then predefined as target classes for 
classification. After the iterative segmentation we used the 
extracted objects to calculate the different features for clas-
sification. A supervised nearest neighbor (NN) method with 
different features was adopted to classify different land cov-
ers. The confusion matrix was generated by ground truth 
information and verified by comparing lidar and different 
spectral image classifications.

2. STUDY AREA AND DATASET

The test area (Fig. 1) is located at the junction of Chiayi 
and Kaohsiung Counties in Taiwan, a mountainous area 
near Tseng-Wen Watershed with different types of veg-
etation, rivers, villages, and developed farmland. The test 
data includes lidar, multispectral and hyperspectral images 
(Table 1). The spatial resolutions of lidar, hyperspectral, 
and WorldView-2 multispectral images are 1, 1, and 2 m,  
respectively. The size of the targets for classification was 
larger than 2 m so that all of the targets could be identified 
using a spectral image with 2m spatial resolution. Gao and 
Mas (2008) indicated that the impact of similar resolutions 
is limited in object-based classification. To minimize the 
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impact of different resolutions this study used object-based 
image classification to merge the individual pixels into re-
gions for classification. All of the comparisons from differ-
ent spectral images are based on object-based classification.

2.1 Lidar

Lidar data were collected by Optech ALTM Pegasus. 
Lidar was interpolated onto a 1 m raster grid to integrate 
lidar and spectral images. The lidar features include nor-
malized DSM (nDSM), roughness, intensity, echo ratio and 
other features. In lidar data processing point clouds are clas-
sified as ground points and non-ground points for digital 
terrain modeling (DTM) and DSM. DSM can be used for 
image ortho-rectification. The nDSM can be calculated by 
subtracting DSM from DTM.

2.2 Multispectral Image

Multispectral images were collected by the World-
View-2 satellite, consisting of 8 bands of discrete spectral 
data from 400 - 1050 nm with 2 m spatial resolution. The 
spectral bands include coastal, blue, green, yellow, red, 
red edge, nir1, and nir2. We selected blue, green, red, and 
nir1 to represent the traditional 4-band images to compare 

the results from 8 and 4 bands. The multispectral images 
pre-processing includes radiometric and geometric correc-
tions. The radiometric correction converted the gray value 
to reflectance (Updike and Comp 2010) using metadata of 
WorldView-2 image. The geometric correction was per-
formed using the rational function model (RFM) (Chen et 
al. 2007) with ground control points and lidar DSM.

2.3 Hyperspectral Image

Hyperspectral images in this study were collected by 
ITRES CASI 1500 with 72 image bands and a spectral wave-
length range from 362.8 - 1051.3 nm. The hyper-spectral 
image pre-processing included radiometric and geometric 
corrections. The ATCOR4 method was applied for radiation 
correction to obtain the same ground surface reflectivity 
from every strip. This method considers a variety of factors 
including incident angle, terrain effects, and atmospheric ef-
fects, resulting in an overall decrease in effects from these 
sources (Hong et al. 2013). Furthermore, hyperspectral im-
ages have a large number of bands; therefore, to avoid di-
mensionality in the limited training area, the minimum noise 
fraction transformation (MNF) method was used to reduce 
the number of hyper-spectral image dimensions. The first 7 
MNF bands were selected for classification.

(a) (b) (c)

Fig. 1. Test data (a) Lidar intensity, (b) WorldView-2 (G, R, NIR1), (c) CASI (B, G, R). (Color online only)

Lidar Multispectral image Hyperspectral image

Sensor Optech ALTM Pegasus WorldView-2 ITRES CASI 1500

Date 23 - 24 July 2013 4 August 2013 24 July 2013

Spectral information 1064 nm 400 - 1050 nm 362.8 - 1051.3 nm

Number of band 1 8 72

Spatial information 1 m grid 2 m orthoimage 1m orthoimage

Features DTM, DSM, nDSM, Roughness, Echo ratio, Intensity, Texture Spectral band, NDVI, Texture MNF, NDVI, Texture

Table 1. Summary of test data.
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2.4 Targets of Classification

According to the test area characteristics and recogniz-
able features, the study area was divided into vegetation in-
cluding forest, grass and various types of crops, and non-veg-
etation areas including bare ground, rivers and various types 
of man-made structures (Fig. 2). We identified 12 land cover 
types and selected several training areas for each. The mean 
spectral responses (Fig. 3) were produced based on whole 
training datasets. Different colors indicate different land cov-
ers. The 8-band and hyper-spectral image trends are similar 
due to the same wavelength coverage (400 - 1050 nm), but 
the hyper-spectral image spectral responses are more detailed 
than 8-band images. The 8-band image separability is better 
than that of traditional 4-band images, a clear advantage. For 
4-band multispectral images the separability among vegeta-
tion types (e.g., areca and broadleaf) is low. The mean 8-band 
multispectral image spectral responses are better than those 
for 4-band images. The separabilities at the red-edge, NIR1 
and NIR2 are superior to that of other bands. Overall, the 
hyper-spectral images show better spectral responses in dis-
criminating different land covers. The training and evaluation 
data (Fig. 4) were carefully selected by field work and 0.5 m 
aerial orthoimaging. For the areas that could be assessed we 
determined 53 check regions using field work. We also used 
0.5 m aerial orthoimages to identify the well-defined targets 
as check regions to have well-distributed check regions. We 
summarized the areas used for training and verification of 
each class (Table 2).

3. PROPOSED SCHEME

The framework (Fig. 5) consists of three major parts: 
(1) data combination; (2) object-based classification; and 
(3) evaluation. We combined lidar with different spectral 
images to understand the performance of different spectral 
bands (section 3.1) and explored different combinations for 
object-based land cover classification (section 3.2). The ma-
jor steps in the proposed scheme include spatial and spectral 
feature extractions, image segmentation, and classification. 
We evaluated the proposed models using reference data and 
provide comprehensive analyses (section 3.3).

3.1. Data Combination

This study analyzed the performance of different 
spectral data integrated with lidar data. The integration is 
based on using the same mapping coordinates for lidar and 
spectral orthoimages, which provide 3D shape information 
and color information to separate different objects, respec-
tively. The combinations include: (1) lidar integrated with 
traditional 4-band (blue, green, red, infrared) multispectral 
images; (2) lidar integrated with advanced 8-band (coastal, 
blue, green, yellow, red, red edge, nir1, nir2) multispectral 
images; and (3) lidar integrated with hyper-spectral images. 
Although the multispectral and hyper-spectral image wave-
lengths overlap between 400 - 1050 nm, the band width of 
a hyper-spectral image is only 10 nm, smaller than that of a 
multispectral image Therefore, the classification capability 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2. Targets of classification, (a) areca,(b) bamboo, (c) broadleaf, (d) crop, (e) fruit, (f) grass, (g) tea, (h) building, (i) pavement, (j) bare ground 
(soil), (k) water, (l) rock. (Color online only)
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(a) (b) (c)

Fig. 3. Comparison of spectral responses for different spectral images (a) 4 bands, (b) 8 bands, (c) hyperspectral image. (Color online only)

(a) (b)

Fig. 4. Distribution of training and check regions (yellow: training area; blue: check area); (a) overview, (b) zoom-in. (Color online only)

Vegetation Non-vegetation

Training (m2) Validation (m2) Total (m2) Training (m2) Validation (m2) Total (m2)

Areca 3000 2804 5804 Building 910 1017 1927

Bamboo 3396 6737 10133 Pavement 751 1152 1903

Broadleaf 3091 6830 9921 Bare ground 1655 1068 2723

Crop 990 2241 3231 Water 1342 3808 5149

Fruit 1767 998 2764 Rock 2396 1755 4151

Grass 2650 1713 4363

Tea 1894 751 2645

Total 16788 22074 38862 Total 7053 8800 15854

Table 2. Summary of training and validation regions.
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of hyper-spectral imagery is better than that of multispectral 
imagery. We quantified the difference between multispectral 
and hyperspectral images in lidar-assisted classification.

3.2. Object-Based Classification

In reality the ground surface objects are composed of 
a number of pixels. In object-based classification the seg-
mentation aggregates the pixels into an object according to 
the similarity between pixels. Object-based classification 
considers the properties of the object (i.e., shape, spatial, 
and spectral features) and also the relationship between ob-
jects, similar to image interpretation from a human perspec-
tive. The major components of object-based classification 
include feature exaction, segmentation and classification.

We calculated different features extracted from dif-
ferent spectral images, lidar and objects (Fig. 6) to identify 
different land cover types. Lidar features separate different 
land cover types using a surface feature. The standard de-
viation in DSM can be treated as surface roughness and the 
echo ratio parameterizes multiple returns to represent pen-
etration in the vertical direction to identify vegetation and 
non-vegetation (Höfle et al. 2012). The intensity represents 
a relative measure for each lidar signal to distinguish pave-
ment from other objects using reflection characteristics. In 
addition, the DSM textures were applied to separate smooth 
and rough objects. Spectral features indicate the signature 
of different land covers from their spectral responses. The 
segmented object was also used to calculate shape (i.e., area 
and length-to-width ratio) and texture features (Haralick et 
al. 1973). The area feature was used to merge small area 
objects into the nearest object and the length-to-width ratio 
was used to detect thin objects like rivers and roads.

One advantage of object-based classification is the re-
lationship between objects is applied in post-classification. 
The use of the area feature is based on the relationship be-
tween objects. Theoretically, the same species, likes bam-
boo, will grow together and cover a certain area. If the area 
of an object (vegetation type 1) is very small and surrounded 
by other objects (vegetation type 2), then this object (veg-

etation type 1) will be merged into the surrounding objects 
(vegetation type 2). The concept of this process is similar to 
the mean filter, which reduces the pepper-and-salt effect in 
post-classification. All extracted features were summarized 
(Table 3).

The aim of segmentation is to merge pixels with sim-
ilar attributes into a region. We used rasterized lidar and 
spectral orthoimages as the input layers for segmentation 
and combined elevation attributes from lidar data and radio-
metric attributes from orthoimages in the segmentation. The 
segmentation considers both attribute and shape factors. 
Pixels with similar height and spectral attributes are merged 
into a region. The attribute is the pixel value of the input 
layer whereas the shape factor is the shape of the segmented 
object. The segment concept is based on the heterogeneity 
index [Eq. (1)] (Baatz and Schäpe 2000). The heterogeneity 
combines the attribute [Eq. (2)] and shape [Eq. (3)] factors 
(Baatz and Schäpe 2000). The segmentation is a bottom up 
method that starts from a pixel. Each pixel is treated as a 
small object and neighborhood pixels are added to calculate 
the heterogeneity index. If the heterogeneity index meets 
the predefined criterion, these pixels are merged together. 
The advantages of this strategy are: (1) different layers have 
different weights; (2) the segmentation considers the attri-
bute (pixel value) and also the shape of objects.

h w h w hattribute attribute shape shape# #= +  (1)

h wattribute i i
i

c

1
v=

=
/  (2)

h w h w h
h l b
h l n

shape smooothness smoothness compactness compactness

smoothness

compactness

# #= +
=
=

 (3)

where h is heterogeneity index; hattribute and hshape are at-
tribute and shape indices; wattribute and wshape are weights,  
wattribute + wshape = 1; wi is weight for layer i; σi is the standard 
deviation of layer i; hsmoothness and hcompactness are smoothness 

Fig. 5. The proposed scheme.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 6. Illustration of different features (a) optical image, (b) nDSM, (c) roughness, (d) intensity, (e) echo ratio, (f) lidar texture (entropy), (g) lidar 
texture (homogeneity), (h) MNF, (i) NDVI, (j) image texture (entropy), (k) image texture (homogeneity). (Color online only)

Data Feature type Feature Description

Lidar

Terrain 
feature

nDSM 
nDSM = DSM - DTM

nDSM is object height above ground surface. It can be used to distinguish above 
ground and ground objects.

Roughness
( ) ( ) ( )STD DSM Z Z n 12= - -/

Roughness implies the height complexity in a region. It can be used to distinguish the 
smoothness and complexity of an object.

Lidar feature

Intensity Intensity is the return energy of laser pulse.

Echo ratio
%ER n n

n n 100
last

first

single

intermediate #= +
+

A laser pulse may penetrate a vegetation area and produce multiple returns. The Echo 
ratio calculates the percentage of first and intermediate returns in a region. A higher 
echo ratio has higher possibility for vegetation area.

Texture 
feature

GLCM
( , ) ( , )lnEntropy P i j P i j#= -^ h6 @" ,/

( , ) ( )Homogeneity p i j i j1 2= + -6 @" ,/

Lidar texture represents the arrangement and frequency of lidar points in a region. The 
entropy and homogeneity indicates the information and smoothness of surface.

Spectral 
image

Spectral 
feature MNF

MNF is used to reduce data redundancy and correlation between bands in hyperspec-
tral images. MNF also transforms original spectral space into new components to 
maximize the amount of information (or variance). It can reduce the hyperspectral 
image data dimensions.

Spectral 
feature ( )

( )NDVI NIR RED
NIR RED= +

-
Normalized vegetation index determine the greenness of land cover.

Texture 
feature

GLCM
( , ) ( , )lnEntropy P i j P i j#= -^ h6 @" ,/

( , ) ( )Homogeneity p i j i j1 2= + -6 @" ,/

Texture of spectral image represents the arrangement and frequency of pixels. The en-
tropy and homogeneity indicates the information and smoothness of spectral response.

Object
Shape feature Area The size of an object.

Shape feature Length-to-width ratio = (λ1) / (λ2) Length-to-width ratio is used to separate long-and-thin (e.g., road, river) object and 
other object (e.g., bare ground).

Table 3. Summary of features.
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and compactness indices, respectively, for shape; l is perim-
eter; b is smaller length of size; and n is area.

After segmentation an object-based classification 
rather than pixel-based classification was performed. Each 
separated region after segmentation was a candidate object 
for classification. An object-based classification consider-
ing the characteristics of elevation, spectral, texture, rough-
ness, and shape information was performed to separate dif-
ferent land cover types. We used a supervised NN classifier 
in object-based classification. We first manually selected 
training objects and performed separability analysis to en-
sure the quality of the training set. The training object at-
tributes were then used in classification. The unknown ob-
jects were classified based on the closest training data in 
the feature space. The NN algorithm uses the mean vectors 
from the training area to represent each class and searches 
for the nearest object in the feature space. This algorithm is 
relatively less complex than that of other algorithms. This 
study applied many features in the classifications. For this 
complex combination of object features the NN method is 
more effective because it requires less setup time for the 
decision-rule (Laliberte et al. 2006) and was therefore used 
in this study.

3.3. Evaluation

The evaluations were carried out in three steps. We first 
considered the importance of different features and applied 
individual features and combined features in classification. 
The overall accuracy was selected to evaluate the perfor-
mance of different features and analyze the importance of 
features. We next compared the classification results using 
lidar and different spectral images. The performance of dif-
ferent spectral images was qualified in the lidar and spectral 
image fusion. Third we compared the accuracy of different 
land covers in different combinations to determine the accu-
racy of each land cover when different features were avail-
able. To discuss the identification of different land covers 
from different spectral features we used the accuracy index 
[Eq. (4)] (Pouliot et al. 2002) to evaluate the overall perfor-
mance for each class. The accuracy index subtracts the omis-
sion and commission errors from the correct classification:

%AI n O C n 100#= - +^ h6 @" ,  (4)

where n is number of correct classifications; O is number of 
omission errors; and C is the number of commission errors.

4. RESULTS
4.1. Feature Analysis

In feature analysis we used features from lidar and 
hyperspectral imagery to analyze the classification perfor-

mance for different features. Seven combinations were se-
lected to identify 12 predefined target classes. This study 
used the commercial software, eCognitionTM 9, to perform 
object-based classification and illustrated the overall and 
kappa accuracies obtained from different features (Table 4  
and Fig. 7). Normalized DSM was selected as the elevation 
attribute because it is able to separate ground and above-
ground objects. We used different radiometric attributes 
in different combinations. The MNF images were used for 
hyperspectral images whereas original images were used 
for multispectral images. We assumed that the importance 
of elevation and radiometric attributes were the same and 
therefore used equal weights for all input features. All 
combinations used the same training area, check areas and 
segmentation parameters (i.e., scale = 20, hattribute = 0.8, and  
hshape = 0.2). The shape features can be obtained directly from 
the segmented objects; therefore, we applied this shape fea-
ture in all combinations (Table 4). Combinations 1 to 3 used 
lidar features only. The more lidar features were involved 
the higher the overall accuracy, but the overall accuracy 
reached only 57.92% when all of the lidar features were ad-
opted due to the number of pre-defined target classes. Lidar 
features were usually used to classify roads, trees, grass, bare 
ground, and buildings (Guo et al. 2011; Zhou 2013; Wang et 
al. 2014). The classification accuracy for these 5 land cov-
ers reached 80% because they have significant differences 
in shape and intensity. For example, the intensity of an as-
phalt road is significantly lower than that for other objects, 
and the penetration rate for trees is significantly higher than 
that for other objects. The nDSM is a useful feature to ef-
fectively separate bare ground from above-ground objects. 
We defined 12 target classes in this study for classification, 
several of which could not be separated using lidar features 
only. For example, crops and grass have similar spatial fea-
tures and therefore additional spectral features were needed 
to identify different land covers in complex areas.

Combinations 4 to 6 represent the classification results 
using spectral features. The spectrally transformed MNF 
(combination 4) was able to provide 75.40% accuracy, 
better than the lidar features results. The NDVI is a useful 
index for separating vegetation from non-vegetation. Com-
bination 5 combined MNF and NDVI in classification, but 
the improvement was not significant because the hyperspec-
tral MNF is able to separate vegetation from non-vegetation 
(Fig. 2c). Combination 6 added texture features to improve 
the classification accuracy. The smoothness and roughness 
of spectral responses are spectrally derived features that 
separate smooth and rough objects.

Combination 7 was the result from using both lidar and 
spectral features, and performed better than the other combi-
nations. Comparing the results from all features and spectral 
only, the improvement was about 6% (i.e., 76.66 - 83.08%), 
but the improvement rate for all features and lidar only was 
about 25% (i.e., 57.92 - 83.08%). Zhou (2013) also found 
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that the combination of lidar and spectral imaging improved 
the land cover classification accuracy. The spectral features 
were more suitable for separating different species (e.g., 
crops vs. grass) whereas lidar features were more suitable 
for distinguishing objects with different shapes (e.g., build-
ing vs. tree). This analysis clearly showed the advantages of 
feature fusion for land cover classification.

This study analyzed the classification results from lidar 
and different spectral images. The analysis of individual li-
dar features are shown as combinations 1 to 3 and the hyper-
spectral features analyses are shown as combinations 4 to 6. 
For lidar features the echo ratio improves the identification 
of tree and non-tree, and the roughness and texture improve 
the classification of smooth (e.g., road) and irregular ob-
jects (e.g., rock). For the hyperspectral features, the spectral 
features from MNF transformation are the most important 
features but NDVI and texture features are limited. We ana-
lyzed the feature contributions using error matrices from 
these 6 combinations and found that: (1) the echo ratio from 
lidar improves the accuracies for crops, fruit, bare ground, 
and buildings because these four classes have signification 

differences in echo ratio; (2) the lidar texture improves the 
accuracies for pavement, bare ground, tea, and grass be-
cause these four classes have signification differences in 
shape; and (3) the spectral texture improves the accuracies 
for areca and fruit cover.

The benefit of lidar texture is in identifying objects with 
smooth and rough surfaces. For example, the road (pave-
ment) surface is usually smoother than rock and bare ground. 
The improvement with additional texture features reaches 
6% overall accuracy. The accuracy of hyperspectral imag-
ing is contributed mainly by MNF images, but the improve-
ment from spectral texture is limited in this study area. The 
shape features (i.e., area and length-to-width) were applied 
in post-processing. The area of objects was used to reduce 
the number of small objects (i.e., area < 50 m2). We merged 
the smaller objects and connected them to other objects. The 
length-to-width ratio was used to separate long, thin (e.g., 
road) objects from other objects (e.g., bare ground).

The segmentation parameters included scale, weight 
of shape and weight of color. Among these parameters the 
scale parameter is more sensitive than others. The scale  

Combinations Input Features
Features for segmentation

OA (%) Kappa
Feature Weight Feature Weight

1 Lidar: nDSM, Intensity nDSM 0.5 Intensity 0.5 45.08 0.363

2 Lidar: nDSM, Intensity, Echo ratio nDSM 0.5 Intensity 0.5 51.19 0.425

3 Lidar: nDSM, Intensity, Echo ratio, Roughness, Texture nDSM 0.5 Intensity 0.5 57.92 0.507

4 Hyperspectral: MNF 7 MNF bands 1/7 75.40 0.714

5 Hyperspectral: MNF, NDVI 7 MNF bands 1/7 75.60 0.715

6 Hyperspectral: MNF, NDVI, Texture 7 MNF bands 1/7 76.66 0.783

7 All 8 features: nDSM, Intensity, Echo ratio, Roughness, 
Texture (Lidar), MNF, NDVI, Texture (MNF) nDSM 0.5 7 MNF bands 0.5*(1/7) 83.08 0.802

Table 4. Features analysis for combinations 1 to 7.

Fig. 7. Comparison of different combinations. (Color online only)
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parameter selection depends on the scale of the phenomenon 
of interest (Kim and Madden 2006; Addink et al. 2007). We 
selected several scales (i.e., 10, 20, 30, and 40) for combina-
tion 7 in segmentation and classification to understand the 
sensitivity of the segment parameters (Fig. 8). The smaller 
scale (i.e., 10) may cause over-segmentation, resulting in an 
overall accuracy less than 80%. By comparison, the larger 
scale parameter (i.e., 40) may cause under-segmentation, 
also resulting in overall accuracy less than 80%. Higher ac-
curacy occurs at scale 20. Therefore, this study adopted this 
parameter for all combinations in accuracy analysis.

4.2. Comparison of Different Spectral Images

We compared the lidar results with different spectral 
images (Table 5 and Fig. 9). The selected features, training 
areas, check areas and classification method were the same 
except for spectral images. The input spectral images includ-
ed hyperspectral images and 4- and 8-band multispectral im-
ages. Four-band multispectral imagery is the most common 
spectral image used. The improvement in results comparing 
4-band (combination 9) to 8-band (combination 8) multispec-
tral images was about 9.05% (i.e., 60.98 - 70.03%), indicat-
ing that the advanced 8-band multispectral images enhanced 
the land cover mapping by including additional coastal, yel-
low, red edge, and nir2 bands. The spectral responses (Fig. 2) 
can be used to explain the improvement in 8-band imagery. 

The seperability of different land covers for 8-band images 
(Fig. 2b) is better than that from 4-band images (Fig. 2a), 
demonstrating the superior accuracy of 8-band images, fur-
ther demonstrated by (Elsharkawy et al. 2012) for 7 types of 
land covers. They used only multispectral images for 7 class-
es and showed an improvement rate of about 2%. Because we 
defined 12 classes in classification the improvement rate was 
higher than that from the previous study; hence, the advanced 
8-band multispectral imagery is more suitable for detailed 
classification.

The 8-band multispectral image and hyperspectral 
image wavelengths are similar and overlapped between  
400 - 1050 nm, but the bandwidth of hyperspectral (i.e.,  
10 nm) is narrower than the bandwidth of multispectral im-
agery (> 100 nm). Because hyperspectral imagery has more 
detailed spectral information the improvement in hyperspec-
tral and 8-band was about 13.05% (i.e., 83.08 - 70.03%). The 
improvement rate with versus without lidar was about 6% 
(section 4.1), clearly indicating that the spectral information 
significantly contributes to land cover classification.

4.3. Land Cover Analysis

To understand the effect of spectral features for dif-
ferent land cover types we used completeness (also called 
producer accuracy, Fig. 10a), correctness (also called user 
accuracy, Fig. 10b), and an accuracy index (Table 6) for 

Fig. 8. The analysis of scale parameters. (Color online only)

Combinations Input Features
Features for segmentation

OA (%) Kappa
Feature Weight Feature Weight

7 Lidar + hyperspectral image: nDSM, Intensity, Echo ratio, 
Roughness, Texture (Lidar), MNF, NDVI, Texture (MNF) nDSM 0.5 7 MNF bands 0.5*(1/7) 83.08 0.802

8 Lidar + 8 bands multispectral image: nDSM, Intensity, Echo ratio, 
Roughness, Texture (Lidar), 8 bands, NDVI, Texture (image) nDSM 0.5 8 bands 0.5*(1/8) 70.03 0.652

9 Lidar + 4 bands multispectral image: nDSM, Intensity, Echo ratio, 
Roughness, Texture (Lidar), 4 bands, NDVI, Texture (image) nDSM 0.5 4 bands 0.5*(1/4) 60.98 0.550

Table 5. Features analysis for combinations 7 to 9.
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(a) (b)

(c) (d)

Fig. 9. Classification results for different combinations (a) lidar and 4 bands image, (b) lidar and 8 bands image, (c) lidar and hyperspectral image, 
(d) distribution of check areas. (Color online only)

(a)

(b)

Fig. 10. Correctness and completeness for different classes, (a) correctness (b) completeness. (Color online only)
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each land cover in different combinations. Correctness mea-
sures the percentage of extracted classes correctly classified, 
whereas completeness measures the percentage of classes in 
the reference data. Statistical analysis indicated that the re-
sults from lidar and hyperspectral images are significantly 
improved compared to the results from those produced from 
lidar and multispectral images. The results indicate the ben-
efit of using narrow spectral rather than broad spectral bands 
in species classification. The use of additional lidar spatial 
features has improved the separability of above ground and 
on ground objects.

The correctness analyses for crops, bare ground and 
pavement for 4-band multispectral images was less than 
50% because old pavement was similar to the behavior of 
bare ground, and dry crops with low chlorophyll was simi-
lar to bare ground. With the additional spectral bands the 
8-band multispectral imagery improved the accuracy of 
these three classes from 8.68 - 35.71%. The use of yellow 
and red edge bands provided better discrimination between 
dry crops and bare ground. Overall, the correctness improve-
ment from 8-band multispectral images to hyperspectral im-
ages ranged from 0.21 - 42.92%. For vegetation classes the 
improvement in broadleaf, bamboo, grass, and crops were 
better than 10%, but the improvement in areca was -5.01% 
when compared to 8-band images because areca was slight-
ly misclassified as bamboo.

In completeness analysis, the behavior of crop, bare 
ground, and pavement was similar to correctness. With 
the additional spectral bands, the 8-band multispectral im-
agery improved the accuracy of these three classes from  
16.76 - 44.04%. Overall, the improvement of completeness 
for 8-band multispectral and hyperspectral image ranged 
from 6.45 - 33.93%. Because the tea and fruit covers were 
misclassified as grass, the improvement of tea and fruit 
were -6.29 and -11.00%. With the exception of tea and fruit, 

the improvement rates for different land covers were higher 
than 5%.

This study also used an accuracy index to evaluate the 
overall performance for each class (Table 6). Comparing 
the accuracy indices between 4- and 8-band multispectral 
images, bare ground, crops, and areca had accuracy values 
higher than 40%. The additional bands (i.e., coastal, yellow, 
red edge, and nir2) significantly improved the discrimina-
tion for these three classes. With the hyperspectral image 
the accuracies for pavement, crops and broadleaf were im-
proved better than 30%. Moreover, bamboo, grass, bare 
ground, and water showed moderate improvements when 
hyperspectral images were available. Most accuracy indices 
for hyperspectral images were higher than those for multi-
spectral images.

5. CONCLUSIONS

This study proposed an object-based land cover clas-
sification method using a combination of lidar and different 
spectral images. The hyperspectral images, 4- and 8-band 
multispectral WorldView-2 satellite images were compared. 
The major contributions of this study are to (1) establish an 
object-based land cover classification scheme using lidar 
and spectral features; (2) compare classification lidar results 
with those from different spectral images; and (3) evaluate 
the improvement rate for different land covers when differ-
ent features are available. The proposed scheme integrated 
spatial lidar features and spectral features to identify differ-
ent land cover types, subsequently improving the accuracy 
of land cover mapping.

We conclude the following: (1) The integration of 
hyperspectral images and lidar has higher accuracy than 
hyperspectral only and lidar only. The improvement rate 
reached 6% for the data fusion approach. The combination 

Combination 9
Lidar + 4 Bands

Combination 8
Lidar + 8 Bands

Combination 7
Lidar + Hyper

Improvement (4 
to 8 bands)

Improvement (8 
bands to Hyper)

Areca 31.4% 76.0% 77.4% 44.6% 1.4%

Bamboo 31.1% 36.6% 62.8% 5.5% 26.1%

Broadleaf 16.2% 31.1% 62.0% 14.9% 30.9%

Crop -13.5% 33.8% 69.9% 47.2% 36.2%

Fruit 10.7% 26.6% 35.6% 15.9% 9.0%

Grass 23.2% 28.6% 56.9% 5.4% 28.2%

Tea 81.8% 81.7% 77.6% -0.1% -4.1%

Bare ground -24.0% 32.9% 59.9% 57.0% 27.0%

Building 59.2% 70.4% 78.8% 11.3% 8.4%

Pavement -73.8% -98.7% 49.8% -24.9% 148.5%

Rock 41.3% 65.7% 73.3% 24.4% 7.6%

Water 81.8% 76.1% 99.0% -5.6% 22.9%

Table 6. Accuracy indices for combinations 7 to 9.
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of spatial and spectral data is beneficial for land cover iden-
tification. (2) For the comparison of traditional 4-band and 
advanced 8-band multispectral images in data fusion the im-
provement rate of 8-band images reached 9% for 12 classes. 
The additional coastal, yellow, red edge, and nir2 are useful 
for land cover mapping. The additional bands lead to im-
provement in the classification accuracies for areca, crop, 
and bare ground. (3) Lidar features are useful for separating 
man-made objects and vegetation, whereas spectral features 
are useful for separating different vegetation types. In the 
8-band multispectral images comparison with hyperspectral 
images, using narrow spectral (hyperspectral) bands has 
better accuracy than broad spectral bands (WorldView-2) 
in species classification. The improvement rate of hyper-
spectral images reached 13% for 12 classes. Future works 
will focus on examining different classifiers (e.g., SVM) for 
object-based classification.
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