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ABSTRACT

Canopy height model (CHM) and leave area index (LAI) are essential forest structure attributes that are estimated to 
understand the ecological states and processes occurring in forest ecosystems. Airborne light detection and ranging (LiDAR) 
systems have proven efficient in producing both CHM and LAI maps for heterogeneous forests at the regional scale. The 
unique advantage of airborne LiDAR over optical and radar sensors is its vegetation penetration capability. Although the 
LiDAR penetration capability decreases in dense, complex forests, full-waveform LiDAR systems are currently available to 
provide critical point observations under the forest canopy. This research developed and tested methods to map CHM and LAI 
in heterogeneous forests using airborne waveform LiDAR datasets acquired using two different LiDAR systems and flight 
altitudes. Since using waveform data significantly increases the laser penetration rate, the test results strongly recommend 
using waveform data for the estimation of both CHM and LAI. These experiments also revealed that the flight data collec-
tion altitude will not affect LAI estimation. Through the analysis of CHMs and LAI data variations derived from 4 different 
datasets, CHM estimation may be good to 0.8 m and LAI estimation may be as precise as 0.5.
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1. InTRoDUCTIon

Quantitative characterization of vertical and horizon-
tal forest structure at landscape scales plays an important 
role in multiple-use forest management. Among the forest 
structure attributes, canopy height model (CHM) and leave 
area index (LAI) are two of the most important parameters. 
The CHM and LAI parameters represent the forest vertical 
structure and composition respectively, and provide essen-
tial information for understanding the ecological states and 
processes in forest ecosystems (Lefsky et al. 2002).

The quantitative procedure of forest structure relies on 
field measurements and data processing. Although ground 
measurements are accurate and have been applied for de-
cades, they are far from enough to map the structural param-
eters of a large area. Many remotely sensed images, from 
both aircraft and spacecraft, have been used successfully to 
retrieve forest structural parameters (Roberts et al. 2007). 

Although remote sensing techniques are highly suitable for 
a wide range of observations (Lillesand et al. 2004; Li et al. 
2010; Kumar et al. 2013), mapping forest structure has been 
challenging for early remote sensing systems with existing 
optical and radar sensors due to the limitations of sensing 
vertical information. Optical and radar systems can provide 
canopy surface height information based on multi-angle 
data, but observations for the forest canopy interior are fre-
quently invalid.

Light detection and ranging (LiDAR) systems are ac-
tive sensors capable of collecting three-dimensional spatial 
information. LiDAR is currently attracting much attention 
from the forestry community as a rapid and efficient tool for 
obtaining forest inventories (Nelson et al. 1988; Lefsky et 
al. 1999; Zimble et al. 2003; Solberg et al. 2006; Hyyppä et 
al. 2008; Hopkinson and Chasmer 2009). Ground-based (or 
terrestrial) LiDAR can be used to measure forest structure 
in detail, but these measurements are at local scales (Yao 
et al. 2011). Equipped with accurate position and attitude 
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sensors, airborne or space borne LiDAR systems are able to 
collect forest structure measurements at regional or global 
scales. However, space borne LiDAR cannot provide de-
tailed enough spatial resolution information due to the large 
incident laser beam footprint from space. Airborne LiDAR 
systems deliver spatial datasets in sub-meter level resolu-
tion that provide detail and accurate measurements of target 
areas. The unique advantage of airborne LiDAR over opti-
cal and radar sensors is its vegetation penetration capability 
(Baltsavias 1999). This penetration characteristic especially 
enables the collection of terrain elevation under a forest 
canopy, so that it improves the accuracy of the derived digi-
tal elevation model (DEM) (Wang 2012). Forest structure 
and biomass studies benefit greatly from airborne LiDAR 
systems (Nelson et al. 1988; Vargas et al. 2002; Popescu et 
al. 2011). Those factors allow airborne LiDAR systems to 
produce both useful CHM and LAI maps of heterogeneous 
forests at the regional scale, which may reveal forest age, 
local topographic condition, or local growing environment 
characteristics (Baldocchi et al. 2002).

The LiDAR penetration capability decreases in dense, 
complex forests (Solberg 2010). Consequently, the number 
of ground points maybe largely reduced in a LiDAR dataset 
and the derived DEM can be degraded. Recent advances in 
laser scanning technology have rendered commercial air-
borne full-waveform LiDAR systems, which are capable of 
recording the complete waveform of each returning signal 
(Wagner et al. 2006; Alexander et al. 2010). For the forest 
area dataset one may retrieve about 20% more ground points 
using a refined waveform data echo detector (Wang 2012), 

so that the DEM generation quality can be maintained. This 
is a significant merit of using waveform data.

This study estimated the CHM and LAI of a heteroge-
neous forest using airborne waveform LiDAR datasets. It 
is commonly expected that DEM and DSM (digital surface 
model) are regular products after LiDAR data are processed. 
The CHM derivation is then obtained directly by taking the 
difference between DSM and DEM. Solberg (2010) indicat-
ed that the canopy penetration and corresponding LAI could 
be derived from the laser penetration rate, i.e., from the 
fraction of echoes located on and below the canopy. Many 
researchers considered that the laser penetration variables 
are strongly related to the field-measured gap fraction and 
LAI. Alternative LiDAR penetration variables are derived 
in this study and compared for their suitability in mapping 
LAI. Three LiDAR datasets acquired with Leica ALS60 and 
Riegl Q680i systems at the same area and in the same sea-
son were tested. We also tested how much the LAI calcula-
tion can be improved using LiDAR waveform data (Ma et 
al. 2015; Nie et al. 2016).

2. STUDy SITe AnD DATA
2.1 Study Site and In-Situ Data Collection

The study site is located in Najenshan, an ecological 
reserve area in southern Taiwan (Fig. 1a). The elevation of 
this area ranges from 10 - 460 m. This area remains a natu-
ral tropical heterogeneous rainforest, which is the only low-
attitude primeval forest in Taiwan. Two test areas, A and 
B, as shown in Fig. 1a, were selected for data analysis. The 

(a)

(b) (c) (d)

Fig. 1. (a) Aerial image of the test area; (b) the enlarged image of test area A; (c) a ground view in test area A; (d) a ground view of test area B. 
(Color online only)
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forests in these two areas are named forest A and B respec-
tively. Forest A is windward side with the average forest 
canopy height less than 10 m (Fig. 1b). Forest B is leeward 
side with many trees higher than 15 m (Fig. 1c).

An LAI 2000 Canopy Analyzer was utilized to obtain 
the in-situ LAI data. The LAI 2000 is designed to estimate 
LAI indirectly from radiation measurements above and be-
low the canopy, based on the relationship between the leaf 
area and canopy transmittance (Stenberg et al. 1994). For 
instrument calibration two LAI 2000 measurements taken 
under the canopy and on an open-sky area should be operat-
ed simultaneously. A calibrated LAI can then be calculated 
by taking the ratio of brightness from the two places. The 
open sky area measurements were taken from a grass filed 
(Fig. 1b) in the test area.

In order to match the in-situ LAI measurements with 
LiDAR derived LAI variables, the ground survey positions 
should be determined. Although GPS positioning is an ideal 
technique for accurate positioning, GPS signals are mostly 
blocked when LAI measurements are taken under a canopy. 
We set two control points on the grass field with GPS and 
determined the measurement locations by traversing with a 
total station. Due to the limitation in performing a ground 
survey under the dense test area B forest, we collected mea-
surements only in test area A. There were 10 LAI measure-
ments acquired.

2.2 Airborne LiDAR Data

Three airborne LiDAR datasets were applied for the 
test. The first two datasets were acquired with Leica LAS60 
at flight heights of 1000 and 2500 m, respectively. The third 
dataset was collected using Riegl LMS-Q680i at a flight 
height of 1000 m. Table 1 shows the scanning specifications 
for the three datasets.

Each dataset includes originally delivered point clouds 
and waveform data. The refined point clouds were also ex-
tracted from waveform data using the wavelet-based echo 
detector (Wang 2012). Since the Riegl system records 
waveform data directly without performing echo detection, 
the delivered point cloud data from Riegl software are actu-
ally derived from waveform data. We therefore treated the 
Riegl delivered data as waveform point cloud. In summary, 
four point-cloud datasets were involved in the test, which 
are listed as follows:
Lei-Orig-L: The original point-cloud dataset delivered by 
Leica system of low-altitude scanning.
Lei-Wave-L: The refined point-cloud dataset derived from 
Leica waveform data of low-altitude scanning.
Lei-Wave-H: The refined point-cloud dataset derived from 
Leica waveform data of high-altitude scanning.
Rie-Wave-L: The refined point-cloud dataset derived from 
Riegl waveform data of low-altitude scanning.

It is important to check some point-cloud dataset fac-

tors including the total number of laser hits (TNLH), laser 
density (LD), total number of points (TNP), point density 
(PD), total number of ground points (TNGP), and ground 
point density (GPD). Tables 2 and 3 summarize the cor-
responding four point-cloud dataset factors for test areas 
A and B, respectively. To examine the benefits of using 
waveform data one can compare the numbers of Lei-Org-L 
and Lei-Wave-L datasets. Regarding test area A, TNP and 
TNGP are increased by about 16 and 8%, respectively. This 
means that when waveform data are available we can have 
16% more under canopy points and 8% more ground points. 
These increasing rates are much higher for the test area B 
datasets. They are about 30 and 66%. This indicates that 
using waveform data is significantly important for dense 
forest areas in improving the penetration rate. Paying atten-
tion to the high-altitude scanning dataset, one may notice a 
phenomenon that the GPD factors are almost maintained the 
same as low-altitude scanning, even though the correspond-
ing PD factors drop dramatically. This phenomenon may be 
due to the enlarged laser footprint of high-altitude scanning, 
which increases the possibility of vegetation penetration. 
When the GPD factors are maintained we would expect that 
the high-altitude scanning datasets will be as good as low-
altitude scanning for CHM and LAI mapping. One would 
also notice that all of the GPD factors for test area B are 
much smaller than those for test area A. Increasing the pen-
etration rate is, therefore, critical for a very dense forest.

3. MeTHoDoLogy
3.1 CHM estimation

The products delivered by a regular airborne LiDAR 
project would include DEM and DSM. One can get the cor-
responding CHM by subtracting DEM from DSM (Kellner 
and Asner 2009). Figure 2 shows the CHM estimation con-
cept. However, for a dense forest, the DEM quality may be 
degraded due to insufficient detected ground point distribu-
tion. Under this circumstance using waveform LiDAR will 
increase the number of ground points by about 20% (Fig. 3), 
so that the DEM quality can be improved (Wang 2012). The 
differences between DEMs generated from discrete-echo 
and waveform data could be up to a couple meters in some 
dense vegetation areas (Fig. 4). This strongly suggests that 
waveform data should be applied if high quality CHM esti-
mation is required.

3.2 LAI estimation
3.2.1 Procedure

Three major steps are involved in LAI estimation us-
ing LiDAR point-cloud data. The first step is point classifi-
cation filtering. The point cloud should be categorized into 
three groups: ground, non-ground, and outlier (air) points. 
The commercial software, TerraSolid, is used in this study 
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Leica ALS60 Riegl LMS-Q680i

Scanning height 1000 m 2500 m 1000 m

Scanning frequency 99 Hz 210 Hz

Field of view 28° 20° 60°

Wavelength 1064 nm 1550 nm

Table 1. Scanning specifications of the applied datasets.

TnLH LD (ht m-2) TnP PD (pt m-2) TngP gPD (pt m-2)

Lei-Orig-L 547758 7.3 600802 8.0 106975 1.4

Lei-Wave-L 541059 7.2 697642 9.3 115498 1.5

Lei-Wave-H 210043 2.8 270055 3.6 76998 1.0

Rie-Wave-L 491296 6.5 723564 9.6 121432 1.6

Table 2. Characteristics of the point-cloud datasets of test area A.

TnLH LD (ht m-2) TnP PD (pt m-2) TngP gPD (pt m-2)

Lei-Orig-L 875503 12.3 1027138 14.4 22949 0.32

Lei-Wave-L 875502 12.3 1337504 18.8 38209 0.54

Lei-Wave-H 220659 3.1 298804 4.2 22642 0.31

Rie-Wave-L 638663 9.0 1026081 14.4 33904 0.48

Table 3. Characteristics of the point-cloud datasets of test area B.

(a) (b) (c)

Fig. 2. The CHM estimation concept: one can subtract (a) DEM from (b) DSM to get (c) CHM (Kellner and Asner 2009). (Color online only)

(a) (b)

Fig. 3. An example of extracted ground points from LiDAR (a) discrete-echo and (b) waveform data.
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for point classification. The outlier points are considered as 
abnormal measurements and should be removed. The ground 
points group will be used to generate DEM. The second step 
is laser penetration index (LPI) calculation. This calculation 
involves DEM and non-ground points data. The final step is 
tuning the relationship between the calculated LPIs and the 
corresponding LAI in-situ measurements. A linear regression 
model is usually applied for this tuning process. Once the re-
gression equation is determined we can translate all LPIs into 
LAI parameters for all data-covered areas. Figure 5 shows the 
LAI estimation procedure using LiDAR point-cloud data.

3.2.2 Calculation of LPIs

A variety of functions have been proposed in the last 
decade for LiDAR LPI calculation. We applied five dif-
ferent LPI calculation functions. The first three are found 
in the literature (Solberg et al. 2006; Solberg 2008; Zhao 
and Popescu 2009; Hopkinson and Chasmer 2009), and the 
other two were developed in this study.

The first LPI function is proposed by Solberg et al. 
(2006). By counting the number of ground points, this func-
tion simply takes the ratio of the total numbers of ground 
points (Ng) and all points (Ntotal), expressed as:

LPI N
N
total

g
1 =  (1)

The second LPI function was also proposed by Sol-
berg (2008) to take the advantage of LiDAR intensity infor-
mation, and is formulated as the ratio of the summation of 
ground-point intensities (Ig) and all point intensities (I):

LPI I
Ig

2 = /
/

 (2)

The third function is a modified function of the first 
one. In order to avoid LPI under estimation, Zhao and Pope-
scu (2009) suggested counting the total number of emitted 
laser pulses rather than counting all points. This function 
is expressed as the ratio the total numbers of ground points 
(Ng) and emitted laser pulses (Nl):

LPI N
N

l

g
3 =  (3)

Some literatures have suggested that one should only 
count the number of single-return ground points for LPI1 
calculation (Morsdorf et al. 2006; Solberg 2010). Instead of 
taking only the number of single-return ground points (Nsg) 
into account, we suggest adding this number into the first 
function as a modification. Therefore, we propose the fourth 
function as:

LPI N
N N

total

g sg
4 =

+
 (4)

In this function the single-return ground points are actually 
counted twice, i.e., in Ng and Nsg. This can be considered as 
a weighting effect on the single-return ground points, which 
emphasizes the forest canopy sparseness.

When LiDAR waveform data are available continuous 
backscattered energy signals are recorded. Features derived 
from waveform data such as echo width and backscatter 
cross-section have been demonstrated useful in many ap-
plications; for example land cover classification and DEM 
generation. We propose a new LPI function that uses wave-
form data. Based on the study of Wagner et al. (2006), the 
laser backscatter cross-section can be defined as the back-
scattering characteristics of a target, so that one can obtain 
the illustrated area (As) of a return signal as:

A 4s rt
vX=  (5)

where X is the backscatter solid angle, t  is the reflectivity, 
and v  is the laser backscatter cross-section. The t  and v  
values can be derived from waveform data after the radio-
metric calibration (Alexander et al. 2010). With illuminat-
ing Lambertian surfaces assumption the backscatter solid 
angle, X, can be substituted by r :

A 4 4s rt
r v

t
v= =  (6)

According to Eq. (6) we can calculate the illustrated 
area of a ground point (Ag) and the illustrated area of a cano-
py point (Ac). Therefore, the fifth LPI function is formulated 

Fig. 4. Differences between DEMs generated from discrete-echo and 
waveform data. (Color online only)
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as the ratio of the summations of Ag and (Ag + Ac) :

( )LPI A A
A

g c

g
5 = +/

/
 (7)

3.2.3 Regression Model

A linear regression model is applied to tune the rela-
tionship between the calculated LPIs and the correspond-
ing LAI in-situ measurements. For an observation site i, the 
measured LAIi is a linear function of estimated LPIi, i.e.,

LAI LPIi i$a b= +  (8)

The linear regression is applied to find the solution for co-
efficients a  and b  with the condition of best fit. After the 
regression the coefficient of determination, or called R-
squared (R2), is calculated to evaluate how well the data fits 
the statistical model. The adjusted R2 is applied to obtain an 
unbiased estimation of R2 by taking into account the degree 
of freedom (Li et al. 2010).

3.2.4 Search Area Determination for LPI Calculation

A search area in the LiDAR point cloud should be as-
signed to constitute the involved points for LPI calculation. 
Since we are correlating the calculated LPI to the corre-
sponding LAI ground measurements, it is reasonable to set 
the search area the same as the LAI 2000 receiving scope. 
The LAI 2000 uses a fish-eye optical sensor which has 148° 
field-of-view (from zenith 0° to zenith 74° towards each 
horizontal direction), so that the search area can be a circle 
defined with a given radius. In a 3D view the search space is 
a cylinder (Fig. 6a). However, the actual LAI 2000 receiv-
ing scope is subject to the local canopy height and forest 
structure. A proper search radius is still unknown. A proper 
search radius is determined in this study by testing the corre-
lation between the measured LAI values and calculated LPIs 
when setting different search radii from 1 - 15 m (Fig. 6b). 
Figure 6c indicates the LAI-2000 measurement setup. Each 
LAI measurement is obtained by averaging the eight obser-
vations surrounding the center of a test site.

A test was conducted to determine the proper search 
radius for LPI calculation. By changing the search radius 
from 1 - 15 m, the R2 values are estimated by correlating the 
LAI measurements with all derived LPIs from each LiDAR 
dataset corresponding to the search radii. The diagrams in  
Figs. 7a - d show the value changes in R2 versus search ra-
dius for all possible LPI calculations with respect to the four 
LiDAR datasets. By inspecting the diagrams we concluded 
that the most proper search radius is 13 m, which is therefore 
used to estimate LAI for the datasets applied in this study.

4. exPeRIMenTAL ReSULTS
4.1 CHM Results and Data Variations

All LiDAR datasets for test areas A and B were careful-
ly processed to generate DEM and DSM, so the correspond-
ing CHM was obtained by subtracting DEM from DSM. 
For each test area four CHMs were generated using Lei-
Orig-L, Lei-Wave-L, Lei-Wave-H, and Rig-Wave-L data-
sets, respectively. We took the mean CHMs as the results.  
Figure 8 shows the averaged CHMs for the four derived 
CHMs for forests A and B, in which the canopy height 
variations are intuitively presented. One may easily notice 
that the canopy height of forest B is much higher than that 
of forest A. The image in each CHM also clearly exhibits 
the canopy structure. One can certainly derive the woody 
volume, e.g., the whole volume between the canopy and 
ground surfaces of a certain forest area. This may be an im-
portant factor for the estimation of above ground biomass 
and carbon stocks (Rich 1990).

We also plotted histograms for the two averaged CHMs 
to show the frequency distributions for tree height in these 
two test areas (Fig. 9). One can see that the tree heights of 
forest A are lower than 16 m and most trees are about 6 m. 
On the other hand, the tree heights of forest B are lower 
than 21 m and most are about 10 m. The area l averaged 
canopy height of forest A is 5.04 m, and the area l averaged 
canopy height of forest B is 9.79 m. This means that forest 
B is about two times thicker than forest A. It also indicates 
that the age of forest B is greater than forest A, or forest 
B has much better local topographic conditions or growing 
environment than forest A.

In order to show the variations in the derived CHMs, 
we also calculated the standard deviations (STD) for the 
CHMs. Figure 10 shows the STD of the four derived CHMs 
for forests A and B. This figure presents the degree of con-
sistency among the derived CHMs from different datasets. 
The average STDs for forests A and B are ±0.79 and ±1.19 
respectively. The CHM consistency of forest B is lower 

Fig. 5. Procedure of LAI estimation using LiDAR point-cloud data.
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(a) (b) (c)

Fig. 6. Diagram of scope searching strategy for LPI calculation: (a) constituted points for LPI calculation; (b) searching radius changing from 1 - 15 m; 
(c) LAI measurement set up at a test site. (Color online only)

(a) (b)

(c) (d)

Fig. 7. The value changes of R2 versus searching radius for all possible LPI calculations with respect to (a) Lei-Orig-L, (b) Lei-Wave-L, (c) Lei-
Wave-H, and (d) Rie-Wave-L. (Color online only)

Fig. 8. Averaged CHMs of the four derived CHMs for forests A and B. (Color online only)
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than forest A mainly due to the larger DEM discrepancies 
in test area B. The reason for this can also be interpreted as 
the laser penetration rate of test area B is lower than that of 
test area A.

4.2 Linear Regression and LAI Results
4.2.1 Linear Regression

Linear regression is applied to tune the relationship 
between the derived LPIs from LiDAR data and the cor-
responding LAI in-situ measurements. For each dataset the 
regression is applied with 5 different LPI calculations ex-
cept Lei-Orig-L, which does not have LPI5. The regression 
results are shown in Table 4, including the regression coef-
ficients a  and b  as well as the coefficient of determination 
R2. The coefficient of determination indicates the fitness 
between the derived LPIs and the corresponding LAI in-situ 
measurements.

First of all, we examined the improvement in regression 
when waveform data are applied. We compared the Lei-Orig-
L and Lei-Wave-L dataset performance. These two datasets 
were actually collected with Leica LAS60 in the same flight 
mission. Lei-Orig-L is the original point-cloud dataset deliv-
ered by the Leica system, while Lei-Wave-L is the refined 
point-cloud dataset derived from waveform data. Table 2 
shows that Lei-Wave-L has about 8% more ground points. 

The GPD, therefore, increases from 1.4 - 1.5 (pt m-2). This 
accordingly improves the DEM generation quality, which is 
a significant merit of using waveform data. Comparing the 
R-squared coefficients resulting from Lei-Orig-L and Lei-
Wave-L, the advantage of using waveform data is obvious 
for all LPI functions. This test strongly suggests using Li-
DAR waveform data for LAI mapping.

Second, we tested the flight height effect on data col-
lection. The Lei-Wave-L and Lei-Wave-H datasets were 
intentionally collected for this test. Comparing the point 
number and density factors in Table 2, Lei-Wave-H has 
much lower TNLH, LD, TNP, PD, TNGP, and GPD than 
Lei-Wave-L. It is the nature of laser scanning that the higher 
the flight height, the lower the dataset point density. How-
ever, increasing the flight altitude increases the ground 
swath and coverage accordingly, which makes data collec-
tion more efficient. Comparing the R-squared coefficients 
resulting from Lei-Wave-L and Lei-Wave-H, the correla-
tion can be maintained that data collection improved when 
the flight altitude reaches to 2500 m except for LPI5. This 
suggests that high flight altitude is acceptable for LAI map-
ping. We originally expected that using LPI5 would improve 
the result, but it turned out to be a worse case. We do not 
have a theory to explain this outcome. Perhaps, the function 
applied to estimate laser beam illustrated area is not quite 
good for the high flight case.

Fig. 9. Histograms of averaged CHMs for forests A and B.

Fig. 10. Standard deviations of the four derived CHMs for forests A and B.



Mapping CHM and LAI with Full-Waveform LiDAR 545

Third, the LAI mapping performance using different 
LiDAR systems was also examined. The Lei-Wave-L and 
Rie-Wave-L datasets were used for this test. Identical flight 
conditions were applied for these two datasets, which re-
sulted in similar point number and density factors, as shown 
in Table 2. Although the overall Riegl LMS-Q680i perfor-
mance was better than Leica ALS60 based on the R-squared 
coefficients comparison, we conclude that both instruments 
are qualified for LAI mapping.

The ultimate goal of this experiment was to choose 
the most appropriate LPI function for LAI mapping. By 
comparing the column average of R-squared coefficients in 
Table 4, one can find that LPI4 outperforms the others. The 
R-squared coefficients of LPI4 remain consistently higher 
than 0.55 in all cases, even although they may not be the 
best one for some datasets. We hereby use LPI4 to derive 
the LAI maps for the two test areas. Although the regression 
coefficients a  and b  were determined using the LAI ground 
measurements acquired in test area A, it is assumed that 
they can be applied for test area B to map LAI as well. This 
assumption was made because both test areas were to the 
same type of heterogeneous forest area. The ground mea-
surements obtained in test area B were needed to find the 
most suitable regression equation. However, it is not valid 
due to the positioning difficulty inside the forest.

4.2.2 LAI Results and Data Variations

LAI maps of forests A and B were estimated with each 
LiDAR dataset using the LPI4 function and its correspond-
ing regression coefficients. For each test area four LAI 
maps were generated using Lei-Orig-L, Lei-Wave-L, Lei-
Wave-H, and Rig-Wave-L datasets, respectively. We took 
the mean LAIs as the results. Figure 11 shows the averaged 
LAI maps for forests A and B, in which the vegetation den-

sity distributions are intuitively presented. One may easily 
notice that the vegetation density of forest B is much higher 
than that of forest A. Comparing Figs. 8 and 11 similar dis-
tribution patterns can be found in CHM and LAI maps. Both 
partially exhibit the forest structure and are important in es-
timating the forest biomass and carbon stocks (Ni-Meister 
et al. 2010).

We also plotted histograms for the two averaged LAIs 
to show the forest density frequency distributions (Fig. 12). 
One can see that the LAIs of forest A are lower than 6.3 and 
most are 5.8 except for the non-forested area. On the other 
hand the LAIs of forest B are lower than 6.8 and most are 
6.6. The area l averaged LAI of forest A is 3.37 and the area 
l averaged LAI of forest B is 5.52. Corresponding to the 
estimated CHM values, this indicates again that forest B is 
much thicker than forest A. This difference may related to 
differences in forest age, local topographic condition or lo-
cal growing environment (Baldocchi et al. 2002).

In order to show the variations in the derived LAIs, 
we also calculated the STD of the LAIs. Figure 13 shows 
the STD of the four derived LAIs for forests A and B. This 
figure presents the degree of consistency among the derived 
LAIs from different datasets. The average STDs for forests 
A and B are ±0.69 and ±0.51 respectively.

5. ConCLUSIonS

This paper demonstrates that contemporary commer-
cial airborne LiDAR systems are efficient in producing 
both CHM and LAI maps for heterogeneous forest areas. 
This is especially true for those LiDAR systems that are ca-
pable of collecting waveform data to improve the vegeta-
tion penetration capability. We developed and tested some 
methods to map CHM and LAI for a heterogeneous forest 
using airborne waveform LiDAR datasets acquired using 

LAIi = a  + b ·LPIi LPI1 LPI2 LPI3 LPI4 LPI5

Lei-Orig-L

a 6.6153 5.7236 6.1526 6.9327 -

b 20.0789 29.1139 14.1775 19.0732 -

R2 0.3025 0.4364 0.2094 0.5561 -

Lei-Wave-L

a 6.8429 6.8142 7.1862 6.9551 7.1522

b 14.0471 26.4962 10.8338 13.4004 20.0670

R2 0.4896 0.7717 0.4681 0.6828 0.7265

Lei-Wave-H

a 5.5327 5.3523 5.2504 5.5073 5.2351

b 10.8053 13.3573 7.2155 8.8458 26.2298

R2 0.6614 0.5175 0.5585 0.6442 0.4741

Rie-Wave-L

a 6.7992 6.4840 7.4070 6.7473 6.3788

b 14.5435 14.7289 11.6239 13.2666 15.2182

R2 0.7343 0.8301 0.8366 0.8215 0.7872

Table 4. Regression results of all datasets.
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two different LiDAR systems and flying altitudes. It can be 
concluded that GDP is essentially the most important factor 
for CHM and LAI estimation. The higher GDP will lead to 
higher CHM and LAI estimation accuracy. We recommend 
that the collected data have GDP higher than 0.5 pt m-2 to 
obtain reliable CHM and LAI estimation. Since using wave-
form data significantly increases the laser penetration rate, 
the test results strongly recommend using waveform data 
for both CHM and LAI estimation. Our experiments also 
revealed that increasing the flight data collection altitude 

would not affect CHMs and LAIs estimation accuracy.
In order to find an appropriate LPI function, five Li-

DAR LPIs were tested for LAI estimation. Linear regression 
was applied to tune the relationship between the derived 
LPIs from LiDAR data and the corresponding LAI in-situ 
measurements. The R-squared coefficients for LPI4 remain 
consistently higher than 0.55 for all datasets. We therefore 
considered LPI4 the best one. We expect that the regression 
coefficients a  and b  determined using LAI ground mea-
surements acquired in test area A can be applied for other 

Fig. 11. Averaged LAIs of the four derived LAIs for forests A and B. (Color online only)

Fig. 12. Histograms of averaged LAIs for forests A and B.

Fig. 13. Standard deviations of the four derived CHMs for forests A and B.
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heterogeneous forest areas.
One may expect to know the quality of CHM and LAI 

estimation for a heterogeneous forest. Through the analysis 
of CHMs and LAIs data variations derived from 4 different 
datasets, the CHM estimation may be good to 0.8 m and 
LAI estimation may be as precise as 0.5.
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