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AbsTRACT

Full-Waveform (FW) Light Detection and Ranging (LiDAR) systems record the complete waveforms of backscattered 
laser signals, thus providing greater potential for extracting additional features and deriving physical properties from reflected 
laser signals. This study explores the feasibility of extracting volumetric texture features from airborne FW LiDAR point cloud 
data along with echo-based LiDAR features to improve land-cover classification. A second derivative algorithm is used to de-
tect signal echoes and extract single- and multi-echo features from FW LiDAR data derived from Gaussian fitting function. The 
dense point clouds are further regularized to construct a data cube for volumetric texture extractions using 3D-GLCM (Gray 
Level Co-occurrence Matrix) and Gray Level Co-occurrence Tensor Field (GLCTF) algorithms coupled with second and third 
order texture descriptors. Different feature combinations of traditional and echo-based LiDAR features and texture measures 
are collected for supervised land-cover classification using a Random Forests classifier. The experimental results indicate that 
the echo-based features may be useful for distinguishing general land-cover types with acceptable accuracy but may not be 
adequate for detailed classifications, such as discriminating different vegetation cover types. Incorporating volumetric texture 
features can improve the classification of relatively more detailed land-cover types with an approximate 10 and 14% increase 
in the overall accuracy and Kappa coefficient, respectively.
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1. InTRoDuCTIon

Airborne laser scanning (ALS) system (also known as 
airborne Light Detection and Ranging, LiDAR) is an active 
remote sensing technique that emits pulses and receives their 
responses to measure attitude angles and distances between 
the sensor and targets. Consequently, the target’s coordi-
nates can be computed using direct geo-referencing theory. 
The LiDAR outcome is referred to as point clouds consist-
ing of many discrete points. Each point also contains target 
intensity information. The pulse response with the passing 
of time is called a waveform. Most ALS systems record part 
of the waveform and the number of records depends on the 
instrument, e.g., one echo derived from the first return, two 
echoes composed of first and last return, or six echoes deter-
mined by echo detection in a waveform. Airborne LiDAR 

data have been widely used for DSM (Digital Surface Mod-
el) and DEM (Digital Elevation Model) generation (e.g., 
Gamba and Houshmand 2000; Liu 2008), forest assessment 
(e.g., Zimble et al. 2003; Hyyppä et al. 2004), and urban 
reconstruction (e.g., Guo et al. 2011; Liu et al. 2013). These 
applications are based primarily on the geometry of point 
clouds and sometimes on the intensity information (Hug 
and Wehr 1997).

As related technologies advance and data storage ca-
pacity increases, Full-Waveform (FW) LiDAR systems 
have emerged since 2004. In addition to three-dimension-
al (3D) coordinates and intensity of returned laser signals 
provided by conventional LiDAR systems, this new type 
of laser scanning sensor also records the complete wave-
forms of the backscattered signal echo (Mallet and Bretar 
2009). Thus, it provides more potential to extract additional 
parameters or features and derive physical properties from 
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the recorded laser signals. FW LiDAR point clouds have 
much larger data volumes and also need more sophisticated 
algorithms to process and analyze to fully explore and take 
advantage of the additional information derived from the 
waveform features.

2. FW LIDAR PRoCessIng AnD AnALysIs

There are two major developments in FW LiDAR 
(Bretar et al. 2008; Mallet and Bretar 2009). The first is 
transferring all waveform samples into point cloud space 
to increase the number of 3D points. This results in denser 
point clouds which should be helpful in extracting more in-
formation for segmentation and classification tasks in both 
forest and urban areas (e.g., Chauve et al. 2009; Lin et al. 
2010; Qin et al. 2012). Echo detection to decompose and fit 
the waveform is the core of another development for deriv-
ing further valuable parameters and features. For instance, 
Gaussian fitting or decomposition (Wagner et al. 2006) is a 
well-known solution that has been widely used for many ap-
plications (e.g., Mallet et al. 2011; Fieber et al. 2013; Tseng 
et al. 2015). Lin et al. (2010) and Lu and Tsai (2013) fur-
ther proposed using a second derivative algorithm to deter-
mine the initial position and number of echoes for iterating 
Gaussian waveform fitting. It has been demonstrated that 
both qualitative and quantitative validations of the second 
derivative-based echo detector outperformed two conven-
tional methods, i.e., center of gravity and zero-crossing of 
the first derivative, in terms of both range resolution and 
accuracy (Lin et al. 2010).

It is a common practice to rasterize LiDAR data into 
regular grids (Dalponte et al. 2008; Palenichka et al. 2013), 
especially for deriving topographic features, such as slope 
gradients and aspects of DEMs generated from LiDAR data. 
After rasterization, LiDAR data sets can be treated and ana-
lyzed as images and easily overlaid with other raster and 
vector data sets. For example, it would be difficult to per-
form texture analysis on the original discrete LiDAR point 
clouds, but common texture measures, such as Gray Level 
Co-occurrence Matrix (GLCM), can be computed effectu-
ally from the rasterized grids. Although the FW LiDAR 
point cloud density is typically higher than conventional 
ALS, the general strategy for the texture analysis of LiDAR 
data still involves slicing the point clouds into a few lay-
ers and converting them into two-dimensional images for 
texture computation (e.g., Anderson et al. 2008; Heinzel 
and Koch 2011). Therefore, only pixel-based second-order 
texture measures are used. A few studies recently started to 
treat airborne and mobile FW LiDAR point clouds as volu-
metric datasets to perform voxel-based 3D analysis such as 
tree detection and segmentation, tree species classification, 
stem volume and DBH (Diameter at Breast Height) estima-
tion (e.g., Reitberger et al. 2008, 2009; Yao et al. 2012; Wu 
et al. 2013).

If FW LiDAR can be treated as volumetric data sets for 
voxel-based analysis, it has a greater potential for extract-
ing volumetric texture features from the dense point clouds 
using higher-order texture measures for more sophisticated 
classifications. This study therefore developed a systematic 
approach to extract high-order volumetric texture features 
based on 3D-GLCM (Tsai et al. 2007) and GLCTF (Gray 
Level Co-occurrence Tensor Field) (Tsai and Lai 2013) 
computations for FW LiDAR data and integrate these spa-
tial measures into waveform-based features for point cloud 
classification to improve land-cover identification. Several 
issues are addressed innovatively in this research, including 
(1) using a second derivative algorithm to detect echoes for 
extracting single- and multi-echo features derived from the 
Gaussian fitting function; (2) regularization of dense point 
clouds as a data cube for volumetric texture feature extrac-
tion; (3) comparing different waveform and texture feature 
combinations to evaluate the effectiveness of volumetric 
texture measures for FW LiDAR point cloud land-cover 
classification.

3. MATeRIAL AnD MeThoD

The study site is located in Taoyuan, Taiwan, as dis-
played in Fig. 1 with an orthorectified aerial image. The 
primary data set used in this study is a FW LiDAR point 
cloud acquired in May 2012 using an Optech ALTM Pe-
gasus airborne laser scanner. Table 1 lists a few important 
characteristics of the sensor. The flight height, point density 
and foot-print size in nadir were 2185 m, 0.54 point m-2, and  
0.43 m, respectively. Three data subsets were extracted from 
the original data set for analysis in three test cases. Their 
ground coverages are also marked in Fig. 1. The three test 
cases are designed to evaluate the performance in general 
land-cover classification, sophisticated classification (with 
more categories), and distinguishability among different 
vegetation covers, respectively. More detailed description 
and test case results are discussed in the next section.

The fundamental classification analysis principle in 
this research is to derive and collect useful features from 
original point clouds to improve land-cover type classifi-
cation. After pre-processing echo-based point features and 
volumetric texture features are extracted and computed. A 
supervised classifier is then employed to classify land-cover 
types in the test cases. Assessment and cost analysis are then 
performed to evaluate the classification performance in dif-
ferent test cases.

3.1 Pre-Processing

The main purpose of pre-processing is two-fold, noise 
elimination and radiometric correction. Noise elimination 
involves offsetting and smoothing waveforms using thresh-
olds and mean filters. The former eliminates path energy 
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from aerosols and the latter reduces the effect of noise. 
The purpose of radiometric calibration in this study is to 
decrease the radiometric variations of the same targets due 
to different directions and ranges when the sensor acquired 
energy. A model-driven approach (Höfle and Pfeifer 2007) 
derived from the radar equation was used to describe the 
loss of emitted pulse power because this approach can be 
applied without any constrains such as the flight height and 
so on. The reflectivity, t , of an object could be represented 
as a proportion shown in Eq. (1). It has been demonstrated 
that the outcome of Eq. (1) can reduce radial variations in 
the same targets acquired in different directions and ranges 
(Höfle and Pfeifer 2007).

cosP R
atm sys

2

\t
a
h h  (1)

where P is the received power; R is the recorded range; a  
indicates the angle of incidence between surface normal and 
incoming laser ray; atmh  and sysh  are atmospheric and in-
strument factors but these factors can be ignored because 

only one flight line was used in this study.
The theoretical backscatter cross-section (BC) of a na-

dir echo can be obtained from Eq. (2) as indicated in Wag-
ner et al. (2006), but the reflectance of the target surface is 
unknown. According to the radar equation, Eq. (2) can be 
replaced by Eq. (3) with a calibration constant, Ccal. Assum-
ing a reflectance of 0.25 for asphalt (Alexander et al. 2010), 
the calibration constant can be calculated from Eq. (4).

R2 2v rt b=  (2)
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where,
v : the backscatter cross section in square meters;
t: the reflectance of the target surface as in Eq. (1);
R: the recorded range in meters;

Fig. 1. Study site with an orthorectified aerial image.

Parameter specification

Laser wavelength 1064 nm

Pulse rate 33 - 70 kHz

Scan rate 70 Hz

Scan width (FOV) 0 - 65°

Beam divergence 0.2 mrad

Sample interval 1 ns

Table 1. Optech ALTM Pegasus parameters.
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b : the laser beam divergence angle in radians;
Ccal: the calibration constant;
Aj: the pulse amplitude of the j-th waveform;
Wj: the pulse width of the j-th waveform.

3.2 echo-based Feature extraction

Two major processes are performed in this step, in-
cluding echo detection and waveform filtering. When deal-
ing with waveform data, Gaussian decomposition is one of 
the most commonly adopted methods to detect echo posi-
tions (Wagner et al. 2006). In this approach each echo is 
represented by a set of Gaussian parameters corresponding 
to the interaction between emitted pulses and the surface of 
the Earth. The Gaussian decomposition equation is

( )
( )

expS x a
x
2G j

j

j
2

2

v

n
= -

-= G/  (5)

where SG represents the received waveform signal; aj is the 
amplitude of the j-th echo; x is the value of a waveform; jn  
indicates the distribution centre of the j-th echo; and jv  is 
the pulse width. Using Eq. (5), echo positions can be ap-
proximated by iteration.

Before performing Gaussian decomposition, a second-
derivative based echo detector is used to determine the ini-
tial positions and number of echoes for the iteration process. 
The second derivative of a waveform x is calculated as

( ) ( ) ( )
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where t indicates an echo location in the waveform and Δt is 
the time interval. In the second-derivative algorithm a local 
minimum is assumed to be a peak of a waveform.

Echo-based LiDAR features can be classified into two 
parts, i.e., single-echo and multi-echo features. Single-echo 
features include amplitude (A), width (W), and backscatter 
cross-section (BC) that describes each echo independently 
using Gaussian decomposition (Wagner et al. 2006). Multi-
echo features consider the relationship between the echoes 
in a waveform, including the number of returns (NR), am-
plitude mean (Ā), and time interval from the first to last 
echoes (ΔT). Table 2 lists all of the LiDAR features used 
in this study, including traditional LiDAR features, single 
echo features, and multi-echo features.

It should be noted that amplitude (A) indicates the re-
ceived energy of point clouds and is obtained after Gaussian 
decomposition (unit: DN), while BC describes the backscat-
ter cross-section that is the combination of the target term, 
the reflectance and footprint area (unit: m2). They may seem 
to be correlated; however, from a classifier’s point of view, 
these two terms (features) have different characteristics, 

units, and computational elements. Therefore, they both 
provide distinctive and useful information for distinguish-
ing between different targets.

3.3 Volumetric Texture Feature extraction

As mentioned previously, there is great potential to 
extract high order texture features from LiDAR, especially 
FW LiDAR, point clouds if they are treated as volumetric 
data sets. To do so all waveform samples should be trans-
formed into a geographic object space first using echo coor-
dinates, laser beam vectors and the time difference between 
echoes and samples. After that, the dense point clouds are 
regularized to construct a volumetric data cube in which 
the vertical direction is based on the normalized height to 
minimize feature variation of the same class caused by the 
terrain effect. In this study, the transformed waveform data 
are regularized (resampled) into a data cube with a voxel 
size of 1 m in all dimensions for texture computation and 
measures. The regularization process starts with identifying 
the volume cube extent based on the discrete FW LiDAR 
point cloud. The voxels are constructed by sub-setting the 
defined interval (1 m) in all dimensions from a reference 
corner (defined by the user) gradually and the value of each 
voxel is assigned to be the maximum DN value of the sam-
ples within the voxel.

One of the most important factors in GLCM-based 
texture computation is the moving box (kernel) size that 
might account for 90% of the variability in a classification 
task (Marceau et al. 1990). To address this issue, Tsai et al. 
(2007) proposed a 3D semi-variance analysis to determine 
the appropriate kernel sizes for volumetric data sets. Semi-
variance, ( )dc , describes the spatial variance using a unit 
pair of pixels or voxels with a lag of d in 2D or 3D space, 
defined as

( ) ( ) ( ) ( )d N d W x W x d1
i i

2c = - +6 @/  (7)

where d is the distance between a unit pair and N(d) is the 
number of unit pairs. Typically, when d increases, ( )dc  also 
increases. When ( )dc  reaches the maximum (sill), the range 
(d) indicates the best spatial variability to compute GLCM-
based texture measures.

Second and third order texture measures are computed 
using voxel pairs and triplets with 3D-GLCM and GLCTF 
algorithms. As demonstrated in Tsai et al. (2007), 3D-GL-
CM utilizes second-order GLCM statistics but the process is 
performed in a 3D data cube. However, GLCTF extends the 
conventional GLCM to the third-order texture measure as a 
tensor field and requires voxel triplets for computation (Tsai 
and Lai 2013). For voxel triplets within a moving box, the 
GLCTF is calculated using the following equation.
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The test condition (cond.) is defined as
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In Eqs. (8) and (9), W(x, y, z) is the value of a voxel at 
(x, y, z) and Wx, Wy, and Wz are the size (kernel) of the 
moving box, which are determined by the 3D semi-vari-
ance analysis as mentioned above. Two distance vectors,  
(dx1, dy1, dz1) and (dx2, dy2, dz2), define the relationship 
between the voxel triplets and their maximum values are 
dx, dy, and dz. Two types of voxel triplet connections are 
considered in this study, vertical and horizontal connection 
(labelled as GLCTF_vh) and bi-diagonal (45°) connection 
(labelled as GLCTF_45d).

After gray level co-occurrence computation, the next 
step is to extract texture features from GLCM or GLCTF 
with different statistical indexes. Previous studies indi-
cated that four statistical texture measures, including An-
gular Second Moment (ASM), Contrast (CON), Entropy 
(ENT), and Homogeneity (HOM), are most appropriate for 
remote sensing classification applications (e.g., Marceau 
et al. 1990; Baraldi and Parmiggiani 1995; Clausi 2002). 
These measures were originally designed for second-order 
GLCM, thus need to be extended in order to be applied 
to the third-order GLCTF. First the calculated GLCTF,  
M(i, j, k), is converted into a probability form according to 
Eq. (10). The four texture measures are then extended to the 
third order as described in Eqs. (11) to (14). More detailed 
description and discussions about the GLCTF computation, 
semi-variance analysis and texture measures can be found 
in various references (e.g., Clausi 2002; Tsai et al. 2007; 
Warner 2011; Tsai and Lai 2013).
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3.4 Classification, Assessment, and Cost Analysis

This research adopts the Random Forests (RF) machine 
learning algorithm to classify collected LiDAR features into 
different land-cover categories. The RF algorithm is a non-
parametric classifier that uses multiple decision trees, boot-
strap aggregation (bagging), and internal cross-validation 
techniques (Breiman 2001). The RF classifier principle is to 
build many decision tree models from randomized original 
data subsets and integrate all trees into a best model for the 
classification task. One of the advantages of the RF classi-
fier is that it can avoid the over-fitting problem to improve 
classification accuracy (Ismail et al. 2010). It has been suc-
cessfully applied to the mapping of invasive plant species 
(Lawrence et al. 2006), FW LiDAR point cloud classifica-
tion (Guo et al. 2011) and other applications with plausible 
results. For comparison, a Naive Bayes (NB) classifier is 
also used in the point cloud classification. All RF and NB 
classifications are carried out using WEKA software (Wit-
ten et al. 2011). Before the classification operation all nu-
meric features are discretized by searching the cut-point 
to transform them into binary data. A detailed description 
about the discretization can be found in Witten et al. (2011) 
and related references.

The classification results are evaluated using the confu-
sion (contingency) matrices constructed from 10-fold cross 
validation against independent check data (ground truth) 
identified from high resolution aerial photos and ground sur-
veys. Both overall accuracy (OA) and Kappa coefficient are 
used for preliminary evaluation. Producer’s Accuracy (PA) 
and User’s Accuracy (UA) are further utilized to evaluate 
omission (1-PA) and commission (1-UA) errors for each 
class in the advanced classification cases. When the omis-
sion or commission errors of certain classes are unaccept-
able, the classification model decision boundary can be ad-
justed according to the cost matrix (Witten et al. 2011; Desai 
and Jadav 2012). The cost matrix is a descriptor whose size 
is the same as the confusion matrix. The diagonal elements 
represent the cost of correct classification and the remain-
der indicates the incorrect parts between different classes. 

Category symbol Feature

Traditional
I Intensity

h Normalized height

Single-echo

A Amplitude

W Width

BC Backscatter cross section

Multi-echo

NR Number of returns

Ā Mean of amplitude

ΔT Time from first to last echoes

Table 2. LiDAR features used in this study.
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In general, the costs are set to 0 and 1 for the diagonal and 
other elements, respectively. Increasing the cost of an incor-
rect part can enlarge the decision boundary to include more 
samples for improving the classification results of a certain 
class, although it might also affect the classification of other 
classes positively or negatively. Therefore, the cost should 
be modified with care and different costs and their effects 
should be analyzed in order to achieve the best cost-benefit 
trade-off. Based on the cost-benefit analysis of poorly clas-
sified classes, the classification model decision boundary is 
adjusted to decrease misclassifications.

4. ResuLTs AnD DIsCussIons

A three-phase scenario with three test cases was ad-
opted to demonstrate the effectiveness of volumetric texture 
features for improving FW LiDAR point cloud land-cover 
classification. The ground coverage of the three test cases 
is indicated in Fig. 1. Table 3 shows the land-cover catego-
ries of the test cases and their LiDAR sample numbers. The 
spatial distribution of ground truth samples used in each test 
case is displayed in Fig. 2. The first and second test cases 
are designed for general (broad) and detailed (with more 
ground cover types) land-cover classifications, respectively, 
while the third test case aims for distinguishing between dif-
ferent vegetation types. Four different combinations of fea-
tures are used in the test cases. These combinations include 
traditional LiDAR features only (comb. 1), comb. 1 plus 
single-echo features (comb. 2), comb. 2 plus multi-echo 
features (comb. 3), and comb. 3 plus volumetric texture fea-
tures (comb. 4), as listed in Table 4.

As described in section 3 the echo-based features are 
calculated using Gaussian decomposition coupled with a 
second-derivative algorithm and the features are assigned 
to the corresponding LiDAR points (peaks). On the other 
hand, to derive volumetric texture features, the dense point 
cloud generated from transforming all waveform samples to 
the point cloud space has to be rasterized by regularization. 
However, after computing volumetric texture measures, they 
are associated back to LiDAR points from the nearest voxels, 
so the volumetric texture features can be combined with con-
ventional (I, h) and echo-based features for classification.

4.1 Preliminary Classification Results

A series of tests were carried out in this study to better 
understand the effects of different LiDAR feature combina-
tions in land-cover classification. First of all, to understand 
the effectiveness of the selected classifier (RF), it was com-
pared with the NB algorithm using test case 1 as an example 
and with traditional LiDAR features and single- and multi-
echo features derived from second-derivative echo detec-
tion and Gaussian fitting (but without volumetric texture 
measures). The preliminary classification result of this test 

is displayed in Fig. 3. The best NB classification result oc-
curred in the comb. 3, but RF classifier outperformed NB 
in all three feature combinations, even with less features 
as in comb. 1 and 2. This clearly demonstrates that the se-
lected RF classifier can provide better land-cover classifi-
cation of LiDAR features than general statistical NB-based 
algorithms. Furthermore, from Fig. 3, it is also obvious that 
combining single- and multi-echo features produces better 
land-cover classification results than using only traditional 
LiDAR features. A classification map of the best result in 
test case 1 is displayed in Fig. 4. A visual comparison of 
the classification map with the high-resolution aerial photo 
shown in Fig. 2 also confirms that the classification result 
is reasonable.

Similar procedures were also applied to the land-cover 
identification in test case 2, which consists of more land-
cover types, thus requiring more sophisticated classifier 
discrimination function. Figure 5 compares the NB and RF 
classification accuracy with different feature combinations. 
As shown in the figure, in test case 2, the RF classifier again 
outperformed NB in all feature combinations, further prov-
ing the advantage of using RF in detailed land-cover clas-
sification of LiDAR features.

4.2 Classification of Different Vegetation Types

Examining Fig. 5 further it appears that the difference 
between the RF classification results for feature combina-
tions 2 and 3 is not significant. This suggests that single- 
and multi-echo LiDAR features may still have limitations 
in terms of helping distinguish between similar land-cover 
classes. This will become worse in the classification of dif-
ferent vegetation types because they are likely to have very 
similar LiDAR features. Additional unconventional features 
such as volumetric texture measures should therefore be in-
cluded to provide better separability among different veg-
etation types.

Test case 3 of this study is designed specifically to 
understand the effectiveness of including volumetric tex-
ture measures of FW LiDAR into the feature data set for 
detailed vegetation classification. Figure 6 shows the OA 
and Kappa values computed from RF classification results 
for test case 3 with different feature combinations. As il-
lustrated in this figure, both the OA and Kappa values for 
feature combinations 2 and 3 are relatively low, indicating 
that the echo-based FW LiDAR features do not provide ad-
equate separability for the classifier to produce satisfactory 
classification results for different vegetation types in the 
study site. After including volumetric texture features (3D-
GLCM, or GLCTF in 45° or vertical-horizontal connected 
voxel triplets) extracted from the FW LiDAR data cube, the 
RF classification results accuracy is significantly improved. 
An overall comparison of all test cases is listed in Table 5 
to provide a comprehensive understanding of the analysis 
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Case Land-cover types (no. of samples)

1 Building (3833); Grass (602); Road (2996); Tree (3020)

2 Building (5362); Grass (4541); Shrub (935); Tree (2345); Soil (2243); Asphalt (1963); PU runway (1374)

3 Bamboo (1425); Broadleaf (4665); Coniferous (2145); Drought farms (1484); Orchard (1510); Rice (1899)

Table 3. Land-cover categories and number of test case samples.

Fig. 2. Ground truth of test cases (from top to bottom: cases 1, 2, and 3).
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Comb. Features

1 I, h

2 I, h, A, W, BC

3 I, h, A, W, BC, NR, Ā, ΔT

4 I, h, A, W, BC, NR, Ā, ΔT, ASM, CON, ENT, HOM

Table 4. Combinations of LiDAR features for land-cover classification.

Fig. 3. Comparison of Naïve Bayes and Random Forests classifications for test case 1.

Fig. 4. Classification map of feature combination 3 in test case 1 using Random Forests (red: building; black: grass; orange: road; green: tree).

Fig. 5. Comparison of Naïve Bayes and Random Forests classifications for test case 2.
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results discussed in 4.1 and 4.2.
As mentioned previously, appropriate kernel sizes must 

be determined before computing 3D-GLCM and GLCTF to 
obtain the best texture statistics. According to the confu-
sion matrix (as listed in Table 6a) generated from the clas-
sification results for test case 3 with feature combination 3 
(conventional and echo-based LiDAR features), Bamboo, 
Broadleaf, and Coniferous have the most serious misclas-
sification among the 6 different vegetation types. There-
fore, two sets of VOIs (volume of interest) were selected 
from ground truth to perform 3D semi-variance analysis as 
described in 3.3 to determine the most appropriate kernel 
size for 3D-GLCM and GLCTF computation. The 3D semi-
variance analysis result indicated that the best separability 
occurred at a spatial range of 7 voxels. Accordingly, the ker-
nel size was set as 7 × 7 × 7 when computing the 3D-GLCM 
and GLCTF for the echo-based LiDAR data cube for texture 
measures.

After including volumetric texture measures computed 
from 3D-GLCM or GLCTF, the classification accuracy was 
significantly improved, as shown in Fig. 6. This suggests 

that volumetric texture measures can extract subtle features 
that are difficult to find from conventional or echo-based Li-
DAR features and are helpful in distinguishing between dif-
ferent vegetation types. Further examining the classification 
of individual classes reveals that the improvement stems 
mainly from the decrease in omission and commission er-
rors among the three classes (Bamboo, Broadleaf, and Co-
niferous) which previously could not be separated clearly 
by the RF classifier. For example, Table 6b lists the confu-
sion matrix generated from the classification results for test 
case 3 with traditional and echo-based LiDAR features and 
third-order texture measures computed from GLCTF with 
vertical-horizontal connected voxel triplets (GLCTF_vh). 
Comparing Table 6b against Table 6a the number of Bam-
boo points misclassified as Broadleaf was reduced from 775 
to 393, while the number of Broadleaf points misclassified 
as Bamboo was reduced from 328 to 238. A similar decrease 
in misclassified points can also be observed in Broadleaf vs. 
Coniferous (reduced from 258 to 109 and from 437 to 184, 
respectively). In addition, the misclassification among other 
vegetation classes were also reduced, thus improving the 

Fig. 6. RF classification accuracies for test case 3 with traditional and echo-based LiDAR features (comb. 2 and 3) and with volumetric texture 
features.

Case Classifier Feature oA (%) Kappa

1

NB Comb. 3 83.83 0.77

RF

Comb. 1 86.47 0.81

Comb. 2 90.33 0.86

Comb. 3 93.06 0.90

2

NB Comb. 3 81.57 0.77

RF
Comb. 2 93.03 0.91

Comb. 3 93.42 0.92

3 RF

Comb. 2 73.23 0.66

Comb. 3 79.30 0.73

Comb. 4 (3D GLCM) 89.54 0.87

Comb. 4 (GLCTF_45d) 89.35 0.86

Comb. 4 (GLCTF_vh) 89.82 0.87

Table 5. Classification evaluations for all three test cases.
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PA and UA for all classes and the OA has been improved 
from 79.3 - 89.82%, while the Kappa value also increases 
from 0.7336 - 0.8698.

The effects of including ASM, CON, ENT, and HOM 
individually and all of them as features for discriminat-
ing detailed vegetation types can be further examined in  
Fig. 7. As illustrated in Fig. 7, individually, all four texture 
measures contributed to the classification improvement for 
all vegetation types. In particular, CON reduces the Bam-
boo and Coniferous omission errors significantly, while 
Orchard’s PA is increased noticeably by ASM, ENT, and 
HOM. Similarly, commission errors for all class types are 
also evidently reduced by the volumetric texture features, 
with Bamboo having the most improvement in UA. Includ-
ing all texture features results in the pronounced improve-
ment in OA and Kappa of the classification as exhibited in 
Fig. 7a and discussed above.

To further improve the classification, cost analysis was 
performed to adjust the decision boundary during the clas-
sification. Assume the classifier considers all costs are equal 
(referred to C1 thereinafter) in the original classification 
process. According to Table 6b, there are still misclassifica-
tions between Bamboo and Broadleaf, so the cost of mis-
classification between Bamboo and Broadleaf was set to 5-, 

10-, and 20-fold (referred to as C5, C10, and C20) in the cost 
matrix and the test case was reclassified three times using 
the three new cost settings. Figure 8 compares the classifi-
cation results for different volumetric texture measures with 
different cost settings in terms of the number of misclassi-
fied points (omissions and commissions) between Bamboo 
and Broadleaf, in which the black vertical lines highlight 
the difference in omission and commission errors at differ-
ent cost settings. From this figure, it can be observed that 
C5 is the best trade-off to obtain minimum omission and 
commission errors for Bamboo and Broadleaf while main-
taining high OA and Kappa values of the classification. It 
also appears that among the three sets of volumetric texture 
features, GLCTF_vh produced the least omission and com-
mission errors between Bamboo and Broadleaf in the clas-
sification with C5 cost setting as illustrated in Fig. 9.

In addition to enabling the computation of high order 
texture measures, another advantage of treating LiDAR 
point clouds as volumetric data sets is the possibility of 
cross-section examination of the data. In particular, with the 
denser point clouds of FW LiDAR, different targets can be 
examined in more complete profiles. Figure 10 shows pro-
files of a few vegetated areas, including Coniferous, Broa-
dleaf, Orchard, and Bamboo of the study site based on the 

Classification

bamboo broadleaf Coniferous Dry farm orchard Rice PA

Ground truth

Bamboo 602 775 32 0 15 1 0.422

Broadleaf 328 3916 258 3 159 1 0.839

Coniferous 30 437 1589 3 82 4 0.741

Dry farm 0 0 0 1347 29 108 0.908

Orchard 17 177 36 27 1195 58 0.791

Rice 0 0 1 116 21 1761 0.927

UA 0.616 0.738 0.828 0.9 0.796 0.927

OA = 79.3% Kappa = 0.7336

(a)

(b)
Classification

bamboo broadleaf Coniferous Dry farm orchard Rice PA

Ground truth

Bamboo 1020 393 3 2 7 0 0.716

Broadleaf 238 4278 109 0 40 0 0.917

Coniferous 2 184 1891 1 65 2 0.882

Dry farm 0 0 0 1439 2 43 0.97

Orchard 7 153 14 0 1336 0 0.885

Rice 0 0 1 70 1 1827 0.962

UA 0.805 0.854 0.937 0.952 0.921 0.976

OA = 89.82% Kappa = 0.8698

Table 6. Confusion matrices of test case 3 without and with volumetric texture measures (unit: point); (a) without texture 
measures (traditional and echo-based LiDAR features only); (b) with traditional and echo-based LiDAR featrues plus 3rd. 
order texture measures.
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(a)

(b)

(c)

Fig. 7. Effects of texture features on different class types. (a) Overall accuracy (OA) and Kappa, (b) producer’s accuracy (PA), (c) user’s accuracy 
(UA).

Fig. 8. Omission and commission counts between Bamboo and Broadleaf with different cost settings. (Color online only)
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best classification result. This type of profile allows visual 
examination and visualization of the classification results 
from a different point of view, and also provides an opportu-
nity for further deriving important plant characteristics such 
as tree crown structure, crown height model (CHW) and the 

like. The derivation and analysis of these characteristics are 
beyond the scope of this research and are not discussed fur-
ther in this paper.

One thing to note is that although only one flight line 
was used in this study, the algorithms presented in this paper 

Fig. 9. Omission and commission errors between Bamboo and Broadleaf in the classification with C5 cost setting of the three volumetric texture 
feature sets.

(a)

(b)

(c)

(d)

Fig. 10. Example profiles of different vegetation in the study site (Red dots indicate misclassified points). (a) Coniferous, (b) Broadleaf, (c) Orchard, 
(d) Bamboo. (Color online only)
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can still be applied to analyze multiple overlapping flight 
lines or multi-temporal data sets. However, in the cases 
of multiple flight lines or multi-temporal analysis, the ra-
diometric calibration in the pre-processing becomes more 
important as it reduces the radiometric variations between 
different flight lines or time, thus producing more robust 
and unbiased features derived from later feature extraction 
processes described in 3.2 and 3.3 and reliable classification 
results.

5. ConCLusIons

This study extracted traditional and unconventional 
FW LiDAR features for improving land-cover classification 
of LiDAR point clouds. In addition to traditional LiDAR 
features such as intensity and normalized height, a second-
derivative algorithm is used to detect echoes and extract 
echo-based features from Gaussian-fitted waveforms. The 
dense point clouds acquired with FW LiDAR sensors are 
also treated as volumetric data sets to allow the extraction 
of volumetric texture features from 3D-GLCM and GLCTF 
using second and third order texture measures to fully ex-
plore 3D gray level co-occurrence characteristics of the data 
sets. As the kernel size is an important factor in GLCM-
based texture analysis, 3D semi-variance analysis is adopted 
to determine the most appropriate kernel size for 3D-GLCM 
and GLCTF computation. Comparisons between different 
combinations of traditional, single- and multi-echo based 
LiDAR features, and volumetric texture measures are ac-
complished using a RF classifier to evaluate the effective-
ness of volumetric LiDAR texture features for improving 
land-cover identification.

The results presented in this paper demonstrate that 
echo-based LiDAR features may generate acceptable gen-
eral land-cover classification results, but they may not be 
adequate for more detailed classifications such as distin-
guishing different vegetation types. After including volu-
metric texture features, the OA and Kappa coefficient of the 
classification have a 10 and 14% increases, respectively. 
The result can be further improved by a cost analysis to ad-
just the decision boundary during the classification.

The examples described above prove that volumetric 
texture measures can extract distinct characteristics from 
regularized FW LiDAR data cubes for better land-cover clas-
sifications. However, volumetric texture extraction requires 
intensive computation and is time-consuming, especially the 
GLCTF algorithm and third-order texture descriptors. De-
veloping a simplified method to reduce the computational 
requirement may be required in the future. For instance, 
Akono et al. (2003) proposed a simple summation to sim-
plify GLCM-based computation. Although it still has some 
limitations (Akono et al. 2006; Warner 2011), it has great 
potential to be incorporated into the texture computation al-
gorithms discussed in this paper to increase the volumetric 

texture feature extraction efficiency of FW LiDAR data.
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