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ABStRAct

Synthetic Aperture Radar (SAR) is a powerful tool for studying natural environments under all-weather and day-and-
night conditions. SAR system design and data-processing algorithm simulation is noted for its controllable parameters. The 
satellite SAR echo signal simulation framework has been successfully applied to target recognition based on Radarsat-2 and 
TerraSAR-X images and in strip map mode. However, such SAR image simulation works only on CPU or GPU (graph-
ics processing units) and requires huge calculations. We developed a “Load-Balancing Model (LBM)” algorithm that uses 
Message Passing Interface GPU (MPI-GPU) to reduce the inner loop load and improve the computational performance. The 
LBM algorithm uses MPI-GPU technology to build the simple GPU cluster system. The LBM algorithm is used to separate 
the intensive computing and controlling tasks for each node, and exploit the contemporary GPU computation capability to 
accelerate the computing tasks. We conducted a relevant experiment on a target radar cross section (RCS) and improved the 
performance by a factor of > 40 compared to a 4-core CPU accelerated program.
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1. INtRODUctION

Synthetic Aperture Radar (SAR) image databases have 
an important role in target recognition and identification 
system development (Lee 1980; Rihaczek and Hershkowitz 
2000; Margarit et al. 2006; Kasim et al. 2008; Lee and Pot-
tier 2009; Guo et al. 2010; Huang and Lee 2010; Tian et al. 
2011; Wang et al. 2011). It is mainly dependent on the oper-
ator’s prior knowledge. The operating load, experiments and 
target types are the uncertainties. Hence, SAR simulation is 
one potential alternative to alleviate this problem. Develop-
ing a full blown SAR image simulation scheme with high 
verisimilitude including the sensor and target geo-location 
relative to the Earth, SAR sensor movement, SAR system 
parameters, target radiometric and geometric characteris-
tics, and environment clutter is highly desirable.

The SAR image simulation algorithm includes three 
loops. The first loop is the sensor movement. The second 
loop is the calculation for each polygon on the target. The 

third loop is the echo signal integration for each slant range 
element. The complexity is obviously O(n3). Because the 
simulation run time drastically increases corresponding to 
the data resolution, it is necessary to find approaches to re-
duce the simulation time.

Most desktop computers today are equipped with 
fully programmable graphics processing units. These chips 
contain many powerful Single Instruction Multiple Data 
(SIMD) processors that can support parallel data processing 
and high-precision computation (Bai et al. 2009)—a prac-
tice known as general-purpose computing on graphics pro-
cessing units (GPGPU). Newer general-purpose interfaces 
include NVIDIA’s Compute Unified Device Architecture 
(CUDA) and the new multivendor standard OpenCL. CUDA 
is gaining position as the choice for the high performance 
computing (Vasiliadis et al. 2008) community. There is a 
growing amount of work being carried out on high perfor-
mance computing around the world (Harish and Narayanan 
2007). Message Passing Interface (MPI) has been the choice 
for high performance computing for more than a decade and 
it has proven its capability in delivering higher performance 
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in parallel applications. CUDA and MPI use different pro-
gramming approaches but both of them depend on the in-
herent parallelism of the application to be effective. CUDA 
runs on the GPU and the GPU is a magnitude order faster 
than the common CPU. However, the GPU performance de-
pends on which application is executed by the GPU.

MPI typically runs on CPU clusters so that it does not 
have the hardware level performance acceleration support 
that CUDA has. However, using MPI, we can execute dif-
ferent components from different programs in different 
CPUs in the cluster, whereas we can only run one kernel at 
a time inside the GPU while we are using CUDA.

We propose the Load-Balancing Model (LBM) algo-
rithm that uses hybrid programming technologies with MPI 
and CUDA to build a parallel computing environment to 
reduce the run time and improve parallel program perfor-
mance, the LBM algorithm can reduce the inner loop load 
and solve the dynamic balancing problem in homogeneous 
computing.

In the LBM algorithm is divided into MPI strategy 
mechanism and GPU strategy mechanism. In the MPI 
strategy mechanism is mainly a combination of static and 
dynamic loads, with three balanced stage parts, including 
a pre-evaluation stage, management-work stage, and adjust-
strategy stage. In the GPU strategy mechanism, a task-par-
allel model strategy, where CUDA is used to build a parallel 
computing environment on a single node and data can be 
moved directly from one GPU to another using Peer to Peer 
(P2P) communication that by-passes the main memory, 
which includes feedback and calculation stages.

The rest of this paper is organized as follows. In section 
2, we introduce the CUDA, MPI, and SAR image simula-
tion algorithm framework. In section 3, the LBM algorithm 
method on MPI-GPU clusters and the LBM algorithm ap-
proach are described. Our system configuration is specified 
in section 4. The evaluation results for our work on a test 
bed are presented. Concluding remarks and future work are 
given in section 5.

2. BAckGROUND
2.1 cUDA and MPI

The CUDA integrated technology introduced by the 
NVIDIA Company is the official name for this kind of 
GPU product. In CUDA hardware the threads are grouped 
into 32-thread units called warps. Each warp works on a 
task, which we call a worker. The threads are organized 
through a “Thread Block” (CUDA, http://en.wikipedia.org/
wiki/CUDA). A Thread Block can have up to 512 threads. 
Threads that belong to the same Thread Block can share data 
through a shared memory. These threads execute intensive 
computing tasks in SIMD. A CUDA program consists of 
one or more portions that are executed on either the host or 
the GPU (CUDA C Programming Guide, http://docs.nvidia.

com/cuda/cuda-c-programming-guide/#axzz4EBzi6mCo). 
GPU nodes are connected as peripheral devices on the I/O 
bus (PCI express). Data can be moved directly from one 
GPU to another using P2P communication that by-passes 
the main memory. However, communication between GPU 
buffers used by different processes must go through the main 
memory. GPU task-parallel models have recently become a 
popular topic in GPU research. Aila and Laine (2009) pre-
sented the idea of persistent threads for handling irregular 
ray generation in ray tracing and this was further developed 
in a GPU ray tracer OptiX (Parker et al. 2010).

The stated goals of MPI are high performance, scal-
ability and portability. Achieving low latency and high 
throughput is important for computing clusters, since a lack 
of shared memory implies large amounts of network data 
transfer. In the MPI model data must be explicitly transmit-
ted between processors using Send() and Recv() primitives. 
MPI can cooperate with Fortran, C, C++, and other lan-
guages for developers’ selection (Zheng 2002, http://moo-
dle.ncku.edu.tw/pluginfile.php/685069/mod_resource/con-
tent/0/mpic_2002.pdf). At present, the most common MPI 
version in the academic field is S-MPI, MPICH, OpenMPI, 
IBM MPL, CHIMP, and LAM (Local Area Multicomputer) 
which all made based on MPI standards. Many literatures re-
lated to MPI are published, such as performance realization 
of Mixed Model MPI, Noaje mixed researches of CUDA 
and MPI Speeding up matrix multiplication and conjugate 
gradient (Noaje et al. 2010) and so on. Henty (2000) com-
pares the performance achieved by the hybrid model with 
that achieved by a pure MPI. Chang et al. (2009) developed 
an algorithm to compute pair wise Pearson correlation coef-
ficients on a single GPU using CUDA. The hybrid CUDA 
and MPI programming has also been studied by Noaje et 
al. (2010). Yang et al. (2010) discussed the performance 
gain via hybrid CUDA and MPI programming through sev-
eral applications including matrix multiplication, MD5 and 
Bubble sort on GPU clusters. Though the hybrid CUDA 
and MPI demonstrates good combination the load balancing 
problem among GPUs has not been addressed in the afore-
mentioned works.

Considering that the OpenMPI is equipped with 
strengths such as easy transplant and cross-platform (Kar-
unadasa and Ranasinghe 2009), the paper adopts Open-
MPI, CUDA and cluster-based computers to serve as the 
testing environment of parallel computing of echo signals 
of simulation radar images. Furthermore, for OpenMPI is 
one of suits of Linux and is used for testing efficiency by 
the high-efficiency evaluation website TOP 500 (OpenMPI, 
Open Source High Performance Computing, http://www.
open-mpi.org/), it is suitable for testing efficiency of vari-
ous supercomputers or high-efficiency operation cluster-
based system.

OpenMPI uses the mpirun instruction to execute pro-
grams. Parameters of mpirun instruction are divided into two 

http://en.wikipedia.org/wiki/CUDA
http://en.wikipedia.org/wiki/CUDA
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz4EBzi6mCo
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz4EBzi6mCo
http://moodle.ncku.edu.tw/pluginfile.php/685069/mod_resource/content/0/mpic_2002.pdf
http://moodle.ncku.edu.tw/pluginfile.php/685069/mod_resource/content/0/mpic_2002.pdf
http://moodle.ncku.edu.tw/pluginfile.php/685069/mod_resource/content/0/mpic_2002.pdf
http://www.open-mpi.org/
http://www.open-mpi.org/
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parts, one is parameter options of mpirun (mpirun-options), 
and the other one is the name of program. The complete 
command is mpirun (mpirun-options) (program name). Us-
ers can set parameter options of mpirun according to their 
own demands, which can be referred to Table 1 for common 
settings.

2.2 Satellite SAR Echo Signal Simulation Framework

We announced an algorithm to simulate a complex 
SAR echo signal reference in (Loper and Parr 2007). It is 
suitable for use in establishing a procedure for calculating 

the altitude of all targets at the same time. The algorithm’s 
framework can be seen in Fig. 1. The simulation process-
ing flow is basically adapted from Refs. (Curlander and 
McDonough 1991; Cumming and Wong 2005; Wang et al. 
2011). We divided this flow chart into three partitions. The 
first partition is the data collection including parameter set-
ting (label 1A) and database (label 1B). The next partition 
is preprocessing including scene location calculation, object 
dimension estimation, SAR echo signal raw data dimension 
estimation and fast time series generation. The final stage is 
the main calculation consisting of three loops, sensor/azi-
muth position loop, polygon loop, and slant range loop.

Parameter Options Illustrations

--app Notifying file names of app files. Other parameters will be ignored with the presence of this parameter.

-bind-to-board Binding the process to a motherboard and being executed by CPU of the motherboard (this setting is applicable for the case that 
there are more than one motherboard on single node).

-bind-to-core Binding the process to a core and being executed by the core.

-bind-to-none Do not bind the process (default).

-byboard Setting that the process performs looping execution by taking a motherboard as a unit (the setting is applicable for the case that 
there are more than one motherboard on single node).

-bycore Setting that the process performs looping execution by taking a core as a unit.

-bynode Setting that the process performs looping execution by taking a node as a unit.

-c-n-np The quantity of used processes when executing a program.

-cpus-per-proc Setting the quantity of CPU when dealing with single process.

-h--help Displaying illustrations of instructions.

-H--host Using which operational resources of nodes when setting processes.

-machinefile Notifying file names of profiles of a system.

-path Setting positions of program execution.

Table 1. Parameter List of mpirun Instruction.

Fig. 1. SAR echo signal simulation flowcharts. (Color online only)
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There are two divisions, parameter setting and database 
collection. Parameter setting is separated into three sections, 
the radar cross section (RCS), Orbit, and SAR system. The 
important SAR system parameters including satellite name, 
look angle range in degree, transmitted frequency in Hz, 
pulse repeat frequency (PRF) in Hz, ADC sampling rate 
in Hz, duty cycle, effective antenna dimensions in meters 
(they can be replaced with beam width for elevation and 
azimuth direction in degrees), chirp bandwidth in Hz and 
squint angle in degrees.

The satellite orbit state vector in the orbit database in-
cluding position, velocity and time can be simulated from two-
line elements or collected from real historical satellite header 
files. The RCS database simulates from 3D CAD models us-
ing physical-optic (PO) / electro-optic (EO) methods. There 
are differences in the incidence and aspect angles at discrete 
degree intervals between the satellite and target object.

The main kernel can be divided into three parts based 
on the loop type. The first loop is the azimuth sampling. The 
satellite position derived from the state vector at the azimuth 
direction is the input in this stage.

In the polygon loop some values are calculated sequen-
tially including the instantaneous slant range, angle between 
light-of-sight and polygon central location, synthetic anten-
na pattern at the azimuth direction and the RCS database file 
search. This loop needs to calculate for each polygon on the 
target’s surface.

The final loop, slant range loop, is the SAR echo signal 
equation and integration for each polygon and each slant 
range line.

3. HYBRID MPI/cUDA PROGRAM WItH LBM

In Fig. 2, The time complexity in calculation kernel is 
O(n3) originally because the three loops. According to the 
number of calculations in this procedure for SAR target im-
ages, 2520 altitudes exist under incidence angle sampling 
from 20 - 50 degrees with 5 degree and aspect angle sam-
pling from -180 - 180 degrees with 1 degree. The polygon 
numbers for each target model can reach orders of magni-
tude of more than 20000. From the test results using 25600 
polygons, 2200 azimuth position samples, 7500 slant range 
samples under Intel 2.33 GHz (Quad cores), 8 Gbytes RAM 
and 64 bits Linux 2.6.18 kernel environment, requires almost 
10.3 months to calculate with one thread for all altitudes.

We developed an efficient LBM algorithm which uses 
MPI+GPU-based cluster structure model, and combining the 
advantages of both static and dynamic load balance in the 
LBM (Willebeek-LeMair and Reeves 1993; Hui and Chan-
son 1999; Arora et al. 2001; Tzeng et al. 2010; Cederman and 
Tsigas 2012). Therefore, we refer to (Colajanni et al. 1998; 
Pai et al. 1998; Srisuresh and Gan 1998; Bunt et al. 1999; 
Cardellini et al. 2002; Padhy and Rao 2011) research papers, 
and design LBM operating mechanism based on Queuing 

Theory, which is divided into MPI strategy mechanism and 
GPU strategy mechanism. The MPI strategy mechanism can 
handle the information collection, performance evaluation 
and work distribution adjustment. Besides, GPU strategy 
mechanism mainly applies CUDA procedure to call the ker-
nel function, to execute by GPU, for the convenience of ap-
plying large amount of threads in GPU for parallel process-
ing work. So the LBM operating mechanism can make each 
computer of the resource used effectively, and reduce the 
working time, and improve each computer working of load 
balance by simulation radar image echo signal, as shown in 
Fig. 3 of the LBM overall operation schematic diagram.

3.1 In the MPI Strategy Mechanism

MPI provides abundant functions for message passing 
and related operations. MPI adopts the signal process signal 
data program model, in other words, each process carries 
out the same MPI program. The MPI program can obtain a 
number of current programs, with each program differing 
from the other programs by the number. Each program can 
carry out different tasks while communicating with other 
processes (Song and Dongarra 2012; Shi et al. 2013). In the 
MPI Strategy Mechanism divided into pre-evaluation stage, 
management-work stage and adjust-strategy stage are dis-
cussed separately as follows.

3.1.1 Pre-Evaluation Stage

In worker node network, we have established intercon-
nect communication between master node and other worker 
nodes, each node’s back-pass CPU queue length and GPU 
memory, thread and cores, etc. As CPU load is most influ-
enced by queue length (Medhi 1991), we’ve thereby only 
classified CPU’s queue length as its operational performance 
reference indicator. Besides, to reduce message passing and 
waiting time during work assignment, in this stage we’ve 
also combined azimuth angle, side look angle, and polygon 
indicator into Matrix Pool area, as shown in Fig. 4.

As shown in Fig. 5, the operation schematic diagram 
of result back-pass master node after each worker node fin-
ished calculating 1000 polygons. This is to facilitate cutting 
quantity for each worker node’s computation, and attach 
each worker node computational task with independence, 
thereby to avoid increasing back-pass reaction time due to 
busy work, which would be enormously helpful for enhanc-
ing LBM overall working efficacy.

3.1.2 Management-Work Stage

After the aforementioned stage finished, the system 
starts to execute computational task, which is divided into 
“work assignment” and “performance assessment”, as fol-
lows:
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(1)  Work Assignment: master node receives each node’s 
(including itself) back-pass assessment result, and co-
verts to performance indicator based on equation for 
work assignment according to performance indicator 
size. Performance indicator indicates each work node’s 

computing ability, and also represents the maximum 
computing quantity of each work node before computa-
tion, so as to ensure each node is with same work load 
when startup. The result is each node’s assignment work 
quantity ratio, as shown in below:

Fig. 2. The original time complexity for the echo signal simulation. (Color online only)

Fig. 3. The overall operation schematic diagram of LBM. (Color online only)

Fig. 4. Matrix pool area combined by azimuth angle, side look angle, and polygon. (Color online only)
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A polygons1000processing time( )T master node =  (1)

B polygons1000processing time( )T nodeworker =  (2)

R B AAB T T=  (3)

Now we regard 1000 polygons as the testing condition for 
each work node’s performance indicator, the result is such 
node’s assignment work quantity ratio. RAB is a such simple 
average processing time ratio, each worker node divided by 
master node’s specific value, can be approximately work out 
each work node’s initial performance indicator, to decide 
each node’s suitable computational polygon quantity (azi-
muth angle and horizontal angle) region range, and equalize 
each work node’s average load when startup.
(2)  Performance Assessment: In actual operating process, 

due to various node resources (such as memory size, 
main board efficacy, etc.), there will exist inconsistent 
information. So, after referred (Shi and Tang 1999; Liu 
and Shi 2007), we are able to design a load trigger con-
dition that is suitable for this paper’s environment, so 
as to facilitate master node’s (MPI node) command for 
work node operating status, and avoid scheduling con-
gestion and other worker nodes’ idle conditions, thereby 
to achieve the best effect, with trigger condition equa-
tion as below:

,
( )

m N
n

N
n mii

N
ii

N
1

2
1v= =

-= =/ /
 (4)

In Eq. (4), m is the overall work group network’s com-
putational average time value, v  is variance, N is refers to 
worker node number, ni represents the time of finishing K 
times of polygon (K is multiple of 1000) on the No. i node.

Therefore, m indicates a required average time of each 
work node’s K times of polygon computation, while varia-
tion degree refers to the size between each node’s operation 

time and average operation time difference. As such node’s 
variation degree increasing, this node is perhaps with busy 
or idle computational amount. Figure 6 is the schematic 
diagram of management-work Stage’s “performance as-
sessment”, of which, tolerance (threshold) is a result after 
compared each node’s average back-pass time value with 
variation degree according to Eq. (4), and the threshold 
value is mv .

3.1.3 Adjust-Strategy Stage

After each node finished work computation, and when 
passing result back to master node, master node will com-
pare each node’s average back-pass time value with variation 
degree, and figure out the tolerance value, which is estab-
lished according to experimental environment’s assessment 
results. As a result, unbalanced load will occur in this group 
when exceeding such range value, which also refers to other 
nodes are in idle. Therefore, MPI will then readjust work 
assignment, and launch “central decision” mechanism to ex-
ecute work assignment, to assign unfinished work regions to 
worker nodes that not exceeding tolerance value, as shown 
in Fig. 7, the schematic diagram of adjust-strategy stage.

3.2 GPU Strategy Mechanism

We’ve utilized CUDA to construct GPU worker node’s 
strategy mechanism, and applied GPU multi-task paral-
lel feature to jointly execute computation by using several 
threads (Kunz 1991; Willebeek-LeMair and Reeves 1993; 
Wang et al. 2008). Besides, through employing share mem-
ory communication, we are able to execute SIMD intensive 
computer task. GPU strategy mechanism in this part can be 
mainly divided into “work computation stage” and “result 
feedback stage”, as follows.

3.2.1 Work computation Stage

From Fig. 5, matrix computational region is managed 

Fig. 5. Operation schematic diagram of pre-evaluation stage. (Color online only)
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by master node (MPI node), each worker node will upload 
corresponding input value (range) to GPU for computing. 
Furthermore, by referring (Guim et al. 2010) papers, we di-
vided computational task into several subtasks, and allocate 
them separately to CPU or GPU for processing, together 
with resource allocation modes in (OSCAR, Observing 
Systems Capability Analysis and Review Tool, http://www.
wmo-sat.info/oscar/satellites) papers related CPU/GPU sys-
tems, bandwidth conditions and power consumption, etc., to 
reduce power consumption and increase available resources. 
Optimized work load condition during GPU computational 
process is established as Eq. (5).

, ( ) , ( , )maxT P
L T mP

L T T T1
GPU

GPU
CPU

CPU
CPU GPU

a a= = - =  (5)

Of which, a  is load rate, L is total load quantity, m 
is CPU executing cores, and P represents GPU or CPU’s 
thread size. Therefore, such node’s reasonable load time 
should be the maximum computational value between CPU 
and GPU, and when two times are roughly the same, it in-
dicates that current load balance is the best status. Due to 
this paper’s utilized experimental load rate is 0.6, and we 
can compute CPU and GPU’s reasonable time according to 
assigned work quantity.

3.2.2 Result Feedback Stage

After GPU node finished all assigned tasks, it will pass 
result back to master node, and start new computational 
task. Besides, when there is no other computational task, it 
will then activate its feedback mechanism and notify master 
node to conduct work assignment requisition. As a result, 
in the MPI Strategy Mechanism, not only MPI can actively 
inspect each node’s work condition, but each node is also 
able to feed master node’s current condition back during 
GPU strategy mechanism, to compensate the blank of mas-
ter node due to busy work. Figure 8 refers to the schematic 
diagram of MPI and GPU’s work reassignments under GPU 
strategy mechanism.

4. EXPERIMENt EVALUAtION
4.1 Load Balance trigger condition

To establish load balance trigger condition, we take 
multi-node and single GPU card environment as the testing 
benchmark, and conduct more than 10 times of computa-
tional tests, to decide its average back-pass time value. Test-
ing results are respectively shown in Tables 2 and 3 and we 
thereby to know GTX660 and C2050 GPU cards’ collected 
computational resources under different polygons compu-
tation. In Table 2 the GTX660 GPU card, which polygon 
number exceeding over 4000, and in Table 3 the C2050 

GPU card, which polygon number exceeding over 8000, we 
adjust and increase both GPUs thread to one time. We found 
their average memory access time and computing time are 
increased to more than one time, there were to indicate the 
GPU’s loading is busy.

4.2 Single-Node and Multi-GPU Work Environment

To test LBM load’s equilibrium mechanism efficacy 
under single-node and multi-GPU, and after considered 
computer’s main board space and slot size, we select two 
pieces of NVIDIA GeForce 470 video cards as the testing 
objects, and relevant NVIDIA GeForce 470 GPU specifica-
tions are shown in Table 4.

We take the polygon size, which is 26500 generated 
from common CAD chart file as the benchmark, to simu-
late it is within satellite synthetic aperture radar flight direc-
tion’s squint angle range, and make statistic on the comput-
ing time required by 1 - 30000 polygons of SAR echo signal 
simulated, thereby assessing single-node MPI-2GPU’s ac-
tual computational efficacy, whose average operation time 
is shown in Fig. 9.

4.3 Multi-Node and Single GPU’s Work Environment

Under multiple worker nodes network environment, we 
utilize two pieces of NVIDIA GTX660 card and two Tesla 
C2050 cards to actually create high-performance comput-
ing cluster system through D-LINK DGS-3100-24 switcher 
to connect each work node, with relevant specifications are 
shown in Table 5.

Due to each work node only has one GPU card, we also 
adjust CUDA’s thread number and increase GPU computa-
tional amount, and one polygon is only finished in 0.07 sec 
as indicated in Fig. 10, 32 polygons are finished in 2.339 sec, 
with average back-pass operation time being 0.073 sec.

Under LBM modal multi-node MPI-GPU environ-
ment, we input the same computational condition to it is 
within satellite synthetic aperture radar flight direction’s 
squint angle range, and make statistic on the computing 
time required by 1 - 30000 polygons of SAR echo signal 
simulated from as shown in Fig. 11. It can thus be seen that 
the more GPU quantity is, load equilibrium effect is better 
to save overall operation time.

In Fig. 11, operation time is each node’s average value, 
which is neither directly related with GPU card’s sequence, 
nor indicates that No. 4 piece’s efficacy is higher than that 
of the previous three. The key to upgrade computational 
efficacy is maintain the overall load balance within toler-
ance value range. Base on the SAR echo signal simulation 
framework, Table 6 shows it is need almost 10.3 months 
calculated under Intel 2.33 GHz (Quad cores) reduce to 1.06 
days calculated under LBM-4GPU with one thread for all 
altitudes.

http://www.wmo-sat.info/oscar/satellites
http://www.wmo-sat.info/oscar/satellites


Sun et al.584

Fig. 6. Schematic diagram of management-work stage. (Color online only)

Fig. 7. Schematic diagram of adjust-strategy stage. (Color online only)

Fig. 8. Schematic diagram of GPU strategy mechanism. (Color online only)
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Polygon number
資源條件

1 1000 2000 4000 8000 16000 20000 25000 30000 35000

最高CPU使用率 (%) 1 1 25 80 96 99 99 99 99 99

調整GPU執行緒 (大小) 16 16 16 32 32 32 32 32 32 32

平均計算時間 (sec) 0.0128 16.6 37.86 72.86 166.15 428.97 521.42 820.67 1023.58 1436.25

平均記憶體存取時間 (sec) 0.044 60 166 552 1423 3675 7253 9594 13634.5 21262

Table 2. GTX660 computational task testing situation. (Color online only)

Polygon number
資源條件

1 1000 2000 4000 8000 16000 20000 25000 30000 35000

最高CPU使用率 (%) 1 1 25 30 85 96 99 99 99 99

調整GPU執行緒 (大小) 16 16 16 16 32 32 32 32 32 32

平均計算時間 (sec) 0.0122 15.21 30.89 61.25 138.21 398.12 488.26 756.89 865.32 1058.98

平均記憶體存取時間 (sec) 0.028 56.6 166.5 462.99 951.55 3210.2 5624.58 7412.56 9351.03 18306.47

Table 3. C2050 computational task testing situation. (Color online only)

Specifications GeForce 470

Size 9.5-inch PCIe × 16 slot

CUDA core 448

CUDA core frequency 0.607 GHz

Total memory capacity 1.6 GB GDDR5

Memory speed 1.28 GHz

Memory port 320 bit

Memory bandwidth 133.9 GB sec-1

Displayer support Double-linked DVI-I × 1

Displayer’s minimum resolution ratio 2560 × 1600

Table 4. NVIDIA GeForce 470 GPU specification.

Fig. 9. Single-node MPI-2GPU’s operation time. (Color online only)
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Master node
Worker node

Node 2 Node 3/Node 4

Processors Intel Xeon/NVIDIA Tesla C2050 × 1 NVIDIA Tesla C2050 × 1 GeForce GTX660 × 1

Clock frequency 3.33 GHz 1.15 GHz 980 MHz

Cores per processor 4 448 960

Memory size 16 GB 3 GB 2 GB

GFLOPs/sec 515 486

OS nUbuntu Linux 12.0.4

Table 5. LBM model multi-node MPI-GPU’s simulated environment.

Fig. 10. Average time of MPI-GPU computing one polygon.

Fig. 11. MPI-1GPU~4GPU operation time. (Color online only)

Polygons = 26500 4 core MPI-1GPU MPI-2GPU MPI-3GPU MPI-4GPU

Time 309.7 7.7 4.19 2.68 1.06

Speedup 1 40.22 73.93 115.56 292.17

Table 6. Each node process time result for SAR echo signal simulation (day).

4.4 the Result of SAR Echo Signal Simulation for 
MD80

As described, the LBM method can strengthen the 
SAR database establishment at all target’s altitudes. The 

simulated SAR images can be obtained at different sequen-
tial incidence angles and aspect angles. In this study, we 
applied the LBM method in SAR echo signal framework 
to simulate MCDONNELL DOUGLAS MD-80 image target 
and compared the results with real TerraSAR-X Satellite 
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and Radarsat-2 Satellite image. The simulated SAR echo 
signal is certificated by the developed SAR processor evalu-
ated using real satellite SAR echo signal data. The main pro-
cessing system produced a modelled MD-80 3D CAD im-
age containing numerous grids or polygons with computed 
RCS as a function of the incident and aspect angles used for 
a given set of radar parameters. The number of polygons can 
be determined by the target’s geometry complexity and its 
electromagnetic size. To realize the imaging scenario, each 
polygon must be properly oriented and positioned based on 
Earth Centered Rotating (ECR) coordinates.

Table 7 shows the parameter values of TerraSAR-X and 
Radarsat-2 satellites (Hsu et al. 2008) for the SAR echo sig-
nal simulation program. Figures 12a and b show simulated 
SAR images of the MCDONNELL DOUGLAS MD-80 target 
model, in which the polygon numbers can reach orders of 
magnitude greater than 20000. For these simulations the in-
cidence angle was fixed at 35 (35) degrees and the aspect an-
gles were from 2 - 56 (0 - 54) degrees at intervals of 2 degrees 
for TerraSAR-X (Radarsat-2) satellite images. Each image 
contains the amplitude and phase information and some attri-
butions such as corner longitude/latitude location, time, Dop-
pler parameters, and other values processed by the processor. 
To produce simulated Radarsat-2 and TerraSAR-X images 
for MCDONNELL DOUGLAS MD-80 aircraft target we use 
the SAR processing software, Multi-Sensor Processor (MSP) 
(Bailey and Werdell 2006), which was verified by the general 
satellite data (Bailey and Werdell 2006). Both the simulated 
Radarsat-2 and TerraSAR-X images are used to compare and 
evaluate the results using the LBM method.

The comparison principle for the real radar images and 
simulation image for the selected target object about the ap-
proximation point (RCS area smaller than the size of a real 
radar image resolution), is evaluated based on the real point 
target and 3 dB width simulation image. Because the real 

image is projected onto the ground, the slant range resolu-
tion direction is changed. Therefore, the analysis is based 
only on the flight direction. Figure 13 shows the MD-80 
CAD model and real SAR image and simulated SAR image 
targets where the incidence angle is fixed at 30 degrees and 
the aspect angles are from -80 to -120 degrees at intervals of 1 
degree and the aspect angles are from -1620 to -1660 degrees 
at intervals of 1 degree. Because the RCS target is quite dif-
ficult to estimate and normally determined by measurement, 
it depends on the airplane’s physical geometry and exterior 
features, the direction of the illuminating radar, the radar 
transmitter frequency, and the aircraft material types etc.

Based on real TerraSAR-X satellite data, we obtained 
the image center coordinates (119.395060, 24.894620) 
and compared it to the simulated image center coordinates 
(119.395090, 24.894470). The difference is in 1.5 × 10-4 de-
gress or less accuracy, i.e., about 0.06 m on the ground and 
about 16.97 m on the satellite flight direction. The location 
results are also shown in Table 8. The proposed working 
flows and algorithms were validated by evaluating the im-
age quality including geometric and radiometric accuracy 
using simple point targets first, followed by simulating MD-
80 aircraft. According to the TerraSAR-X image products, 
the flight direction resolution is 4.51 m, with the simulation 
results in 3 dB width at 3.5 m, with about 1 m difference. 
The product of the general situation will be similar to the 
pixel interpolation (for the sake of pixel Founder), so dif-
ferences will exist. TerraSAR-X target point of the analysis 
results shown in Fig. 14, simulate TerraSAR-X point target 
image of the analysis results shown in Fig. 15, and Fig. 16 
shows the position accuracy is almost 10-7 degrees for both 
simulate and real TerraSAR-X point target image of error 
point ration. The 3 dB width error evaluated from PSLR/
ISLR index in the free clutter comparing to the real satellite 
product is less than 10%.

characteristics terraSAR-X Satellite Radarsat-2 Satellite

Resolution StripMap: 3 m 5 - 50 m

Band Active X band Microwave Active C band Microwave

Nominal swath Width StripMap: 30 km × 50 km 500 km

Look angle (deg) 33.8 (beam center) 30.78

Squint angle (deg) 0 0

Transmitted freq. (Hz) 9.63 G 5.405 G

PRF (Hz) 3798 1000 - 3800

ADC Sampling rate (Hz) 165 M 31.67 M

Antenna size (m) 3.37 m2

(0.704 m × 4.784 m)
9.43 m2

(1.37 m × 6.88 m)

Chirp bandwidth (Hz) 150 M 100 M

Transmit duty cycle (%) 16.5 28

Table 7. TerraSAR-X and Radarsat-2 Satellite parameters.
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(a)

(b)

Fig. 12. (a) SAR image simulation results in TerraSAR-X Satellite parameters. (b) SAR image simulation results in Radarsat-2 Satellite parameters. 
(Color online only)

Fig. 13. Real and simulated SAR image combine with CAD model image results based on LBM method. (Color online only)

Index Real terraSAR-X image Simulate results Difference

Scene 
Center 

Location

Geodetic (longitude, latitude) 119.395060°E, 24.894620°N 119.395090°E, 24.894470°N -3 × 10-5, 1.5 × 10-4 (degree)

ECR(x, y, z) (m) -2817397.45 X, 5608996.11 Y, 
2830630.29 Z

-2817396.77 X, 5608995.60 Y, 
2830631.97 Z

distance: 0.06 (m)
flight direction: 16.97 (m)

Table 8. Target point location verification results for SAR image.
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Fig. 14. Real TerraSAR-X point target image results for 3 dB width analysis. (Color online only)

Fig. 15. Simulate TerraSAR-X point target image results for 3 dB width analysis. (Color online only)

Fig. 16. Accuracy verification of error point ration for TerraSAR-X point target image. (Color online only)
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5. cONcLUSION AND FUtURE WORk

We introduced a framework of SAR image database 
simulation produced the amplitude and phase at the same 
time. The simulated SAR echo signal is certificated by the 
developed SAR processor evaluated by real satellite SAR 
echo signal data.

In this paper, we combined CPU with GPU, owned an 
integration of multi-programming environment based on 
MPI and CUDA, built a LBM cluster system to separate 
computing tasks from scheduling tasks. According to the 
results, the time complexity contributed from the calcula-
tion kernel is O(n3) reduced to O(n2), and it needs almost 
10.3 months calculation under Intel 2.33 GHz (Quad cores) 
reduced to 1.06 days calculated under LBM-4GPU with 
one thread for all altitudes. Figure 13 shows the maximum 
differential amplitude value is almost 10-7 order. The error 
point ratio related to the entire image is less than 0.006%. 
According to these results the floating point precision using 
the LBM algorithm is the SAR image database product.

Our future work includes how to extend LBM for multi-
GPU clusters in which each node may have more than one 
GPU installed and further excavate the LBM computation ca-
pability in heterogeneous multi-CPU based cluster systems.
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