
doi: 10.3319/TAO.2016.03.10.01(ISRS)

* Corresponding author
E-mail: 956403009@cc.ncu.edu.tw

Terr. Atmos. Ocean. Sci., Vol. 27, No. 4, 577-592, August 2016

SAR Image Simulations Using the LBM Algorithm on MPI-GPU

Chuan-Li Sun1, *, Lung-Chih Tsai1, 2, and Cheng-Yen Chiang 2, 3

1 Institute of Space science, National Central University, Taoyuan City, Taiwan, R.O.C.
2 Center of Space and Remote Sensing Research, National Central University, Taoyuan City, Taiwan, R.O.C.

3 Department of Computer Science & Information Engineering, National Central University, Taoyuan City, Taiwan, R.O.C.

Received 1 June 2015, revised 3 March 2016, accepted 10 March 2016

ABStRAct

Synthetic Aperture Radar (SAR) is a powerful tool for studying natural environments under all-weather and day-and-
night conditions. SAR system design and data-processing algorithm simulation is noted for its controllable parameters. The
satellite SAR echo signal simulation framework has been successfully applied to target recognition based on Radarsat-2 and
TerraSAR-X images and in strip map mode. However, such SAR image simulation works only on CPU or GPU (graph-
ics processing units) and requires huge calculations. We developed a “Load-Balancing Model (LBM)” algorithm that uses
Message Passing Interface GPU (MPI-GPU) to reduce the inner loop load and improve the computational performance. The
LBM algorithm uses MPI-GPU technology to build the simple GPU cluster system. The LBM algorithm is used to separate
the intensive computing and controlling tasks for each node, and exploit the contemporary GPU computation capability to
accelerate the computing tasks. We conducted a relevant experiment on a target radar cross section (RCS) and improved the
performance by a factor of > 40 compared to a 4-core CPU accelerated program.

Key words: SAR, MPI, GPU, Load-balancing model
Citation: Sun, C. L., L. C. Tsai, and C. Y. Chiang, 2016: SAR image simulations using the LBM algorithm on MPI-GPU. Terr. Atmos. Ocean. Sci., 27, 577-
592, doi: 10.3319/TAO.2016.03.10.01(ISRS)

1. INtRODUctION

Synthetic Aperture Radar (SAR) image databases have
an important role in target recognition and identification
system development (Lee 1980; Rihaczek and Hershkowitz
2000; Margarit et al. 2006; Kasim et al. 2008; Lee and Pot-
tier 2009; Guo et al. 2010; Huang and Lee 2010; Tian et al.
2011; Wang et al. 2011). It is mainly dependent on the oper-
ator’s prior knowledge. The operating load, experiments and
target types are the uncertainties. Hence, SAR simulation is
one potential alternative to alleviate this problem. Develop-
ing a full blown SAR image simulation scheme with high
verisimilitude including the sensor and target geo-location
relative to the Earth, SAR sensor movement, SAR system
parameters, target radiometric and geometric characteris-
tics, and environment clutter is highly desirable.

The SAR image simulation algorithm includes three
loops. The first loop is the sensor movement. The second
loop is the calculation for each polygon on the target. The

third loop is the echo signal integration for each slant range
element. The complexity is obviously O(n3). Because the
simulation run time drastically increases corresponding to
the data resolution, it is necessary to find approaches to re-
duce the simulation time.

Most desktop computers today are equipped with
fully programmable graphics processing units. These chips
contain many powerful Single Instruction Multiple Data
(SIMD) processors that can support parallel data processing
and high-precision computation (Bai et al. 2009)—a prac-
tice known as general-purpose computing on graphics pro-
cessing units (GPGPU). Newer general-purpose interfaces
include NVIDIA’s Compute Unified Device Architecture
(CUDA) and the new multivendor standard OpenCL. CUDA
is gaining position as the choice for the high performance
computing (Vasiliadis et al. 2008) community. There is a
growing amount of work being carried out on high perfor-
mance computing around the world (Harish and Narayanan
2007). Message Passing Interface (MPI) has been the choice
for high performance computing for more than a decade and
it has proven its capability in delivering higher performance

Sun et al.578

in parallel applications. CUDA and MPI use different pro-
gramming approaches but both of them depend on the in-
herent parallelism of the application to be effective. CUDA
runs on the GPU and the GPU is a magnitude order faster
than the common CPU. However, the GPU performance de-
pends on which application is executed by the GPU.

MPI typically runs on CPU clusters so that it does not
have the hardware level performance acceleration support
that CUDA has. However, using MPI, we can execute dif-
ferent components from different programs in different
CPUs in the cluster, whereas we can only run one kernel at
a time inside the GPU while we are using CUDA.

We propose the Load-Balancing Model (LBM) algo-
rithm that uses hybrid programming technologies with MPI
and CUDA to build a parallel computing environment to
reduce the run time and improve parallel program perfor-
mance, the LBM algorithm can reduce the inner loop load
and solve the dynamic balancing problem in homogeneous
computing.

In the LBM algorithm is divided into MPI strategy
mechanism and GPU strategy mechanism. In the MPI
strategy mechanism is mainly a combination of static and
dynamic loads, with three balanced stage parts, including
a pre-evaluation stage, management-work stage, and adjust-
strategy stage. In the GPU strategy mechanism, a task-par-
allel model strategy, where CUDA is used to build a parallel
computing environment on a single node and data can be
moved directly from one GPU to another using Peer to Peer
(P2P) communication that by-passes the main memory,
which includes feedback and calculation stages.

The rest of this paper is organized as follows. In section
2, we introduce the CUDA, MPI, and SAR image simula-
tion algorithm framework. In section 3, the LBM algorithm
method on MPI-GPU clusters and the LBM algorithm ap-
proach are described. Our system configuration is specified
in section 4. The evaluation results for our work on a test
bed are presented. Concluding remarks and future work are
given in section 5.

2. BAckGROUND
2.1 cUDA and MPI

The CUDA integrated technology introduced by the
NVIDIA Company is the official name for this kind of
GPU product. In CUDA hardware the threads are grouped
into 32-thread units called warps. Each warp works on a
task, which we call a worker. The threads are organized
through a “Thread Block” (CUDA, http://en.wikipedia.org/
wiki/CUDA). A Thread Block can have up to 512 threads.
Threads that belong to the same Thread Block can share data
through a shared memory. These threads execute intensive
computing tasks in SIMD. A CUDA program consists of
one or more portions that are executed on either the host or
the GPU (CUDA C Programming Guide, http://docs.nvidia.

com/cuda/cuda-c-programming-guide/#axzz4EBzi6mCo).
GPU nodes are connected as peripheral devices on the I/O
bus (PCI express). Data can be moved directly from one
GPU to another using P2P communication that by-passes
the main memory. However, communication between GPU
buffers used by different processes must go through the main
memory. GPU task-parallel models have recently become a
popular topic in GPU research. Aila and Laine (2009) pre-
sented the idea of persistent threads for handling irregular
ray generation in ray tracing and this was further developed
in a GPU ray tracer OptiX (Parker et al. 2010).

The stated goals of MPI are high performance, scal-
ability and portability. Achieving low latency and high
throughput is important for computing clusters, since a lack
of shared memory implies large amounts of network data
transfer. In the MPI model data must be explicitly transmit-
ted between processors using Send() and Recv() primitives.
MPI can cooperate with Fortran, C, C++, and other lan-
guages for developers’ selection (Zheng 2002, http://moo-
dle.ncku.edu.tw/pluginfile.php/685069/mod_resource/con-
tent/0/mpic_2002.pdf). At present, the most common MPI
version in the academic field is S-MPI, MPICH, OpenMPI,
IBM MPL, CHIMP, and LAM (Local Area Multicomputer)
which all made based on MPI standards. Many literatures re-
lated to MPI are published, such as performance realization
of Mixed Model MPI, Noaje mixed researches of CUDA
and MPI Speeding up matrix multiplication and conjugate
gradient (Noaje et al. 2010) and so on. Henty (2000) com-
pares the performance achieved by the hybrid model with
that achieved by a pure MPI. Chang et al. (2009) developed
an algorithm to compute pair wise Pearson correlation coef-
ficients on a single GPU using CUDA. The hybrid CUDA
and MPI programming has also been studied by Noaje et
al. (2010). Yang et al. (2010) discussed the performance
gain via hybrid CUDA and MPI programming through sev-
eral applications including matrix multiplication, MD5 and
Bubble sort on GPU clusters. Though the hybrid CUDA
and MPI demonstrates good combination the load balancing
problem among GPUs has not been addressed in the afore-
mentioned works.

Considering that the OpenMPI is equipped with
strengths such as easy transplant and cross-platform (Kar-
unadasa and Ranasinghe 2009), the paper adopts Open-
MPI, CUDA and cluster-based computers to serve as the
testing environment of parallel computing of echo signals
of simulation radar images. Furthermore, for OpenMPI is
one of suits of Linux and is used for testing efficiency by
the high-efficiency evaluation website TOP 500 (OpenMPI,
Open Source High Performance Computing, http://www.
open-mpi.org/), it is suitable for testing efficiency of vari-
ous supercomputers or high-efficiency operation cluster-
based system.

OpenMPI uses the mpirun instruction to execute pro-
grams. Parameters of mpirun instruction are divided into two

http://en.wikipedia.org/wiki/CUDA
http://en.wikipedia.org/wiki/CUDA
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz4EBzi6mCo
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz4EBzi6mCo
http://moodle.ncku.edu.tw/pluginfile.php/685069/mod_resource/content/0/mpic_2002.pdf
http://moodle.ncku.edu.tw/pluginfile.php/685069/mod_resource/content/0/mpic_2002.pdf
http://moodle.ncku.edu.tw/pluginfile.php/685069/mod_resource/content/0/mpic_2002.pdf
http://www.open-mpi.org/
http://www.open-mpi.org/

Load Balance Model Maintaining Good Efficiency for Each Node 579

parts, one is parameter options of mpirun (mpirun-options),
and the other one is the name of program. The complete
command is mpirun (mpirun-options) (program name). Us-
ers can set parameter options of mpirun according to their
own demands, which can be referred to Table 1 for common
settings.

2.2 Satellite SAR Echo Signal Simulation Framework

We announced an algorithm to simulate a complex
SAR echo signal reference in (Loper and Parr 2007). It is
suitable for use in establishing a procedure for calculating

the altitude of all targets at the same time. The algorithm’s
framework can be seen in Fig. 1. The simulation process-
ing flow is basically adapted from Refs. (Curlander and
McDonough 1991; Cumming and Wong 2005; Wang et al.
2011). We divided this flow chart into three partitions. The
first partition is the data collection including parameter set-
ting (label 1A) and database (label 1B). The next partition
is preprocessing including scene location calculation, object
dimension estimation, SAR echo signal raw data dimension
estimation and fast time series generation. The final stage is
the main calculation consisting of three loops, sensor/azi-
muth position loop, polygon loop, and slant range loop.

Parameter Options Illustrations

--app Notifying file names of app files. Other parameters will be ignored with the presence of this parameter.

-bind-to-board Binding the process to a motherboard and being executed by CPU of the motherboard (this setting is applicable for the case that
there are more than one motherboard on single node).

-bind-to-core Binding the process to a core and being executed by the core.

-bind-to-none Do not bind the process (default).

-byboard Setting that the process performs looping execution by taking a motherboard as a unit (the setting is applicable for the case that
there are more than one motherboard on single node).

-bycore Setting that the process performs looping execution by taking a core as a unit.

-bynode Setting that the process performs looping execution by taking a node as a unit.

-c-n-np The quantity of used processes when executing a program.

-cpus-per-proc Setting the quantity of CPU when dealing with single process.

-h--help Displaying illustrations of instructions.

-H--host Using which operational resources of nodes when setting processes.

-machinefile Notifying file names of profiles of a system.

-path Setting positions of program execution.

Table 1. Parameter List of mpirun Instruction.

Fig. 1. SAR echo signal simulation flowcharts. (Color online only)

Sun et al.580

There are two divisions, parameter setting and database
collection. Parameter setting is separated into three sections,
the radar cross section (RCS), Orbit, and SAR system. The
important SAR system parameters including satellite name,
look angle range in degree, transmitted frequency in Hz,
pulse repeat frequency (PRF) in Hz, ADC sampling rate
in Hz, duty cycle, effective antenna dimensions in meters
(they can be replaced with beam width for elevation and
azimuth direction in degrees), chirp bandwidth in Hz and
squint angle in degrees.

The satellite orbit state vector in the orbit database in-
cluding position, velocity and time can be simulated from two-
line elements or collected from real historical satellite header
files. The RCS database simulates from 3D CAD models us-
ing physical-optic (PO) / electro-optic (EO) methods. There
are differences in the incidence and aspect angles at discrete
degree intervals between the satellite and target object.

The main kernel can be divided into three parts based
on the loop type. The first loop is the azimuth sampling. The
satellite position derived from the state vector at the azimuth
direction is the input in this stage.

In the polygon loop some values are calculated sequen-
tially including the instantaneous slant range, angle between
light-of-sight and polygon central location, synthetic anten-
na pattern at the azimuth direction and the RCS database file
search. This loop needs to calculate for each polygon on the
target’s surface.

The final loop, slant range loop, is the SAR echo signal
equation and integration for each polygon and each slant
range line.

3. HYBRID MPI/cUDA PROGRAM WItH LBM

In Fig. 2, The time complexity in calculation kernel is
O(n3) originally because the three loops. According to the
number of calculations in this procedure for SAR target im-
ages, 2520 altitudes exist under incidence angle sampling
from 20 - 50 degrees with 5 degree and aspect angle sam-
pling from -180 - 180 degrees with 1 degree. The polygon
numbers for each target model can reach orders of magni-
tude of more than 20000. From the test results using 25600
polygons, 2200 azimuth position samples, 7500 slant range
samples under Intel 2.33 GHz (Quad cores), 8 Gbytes RAM
and 64 bits Linux 2.6.18 kernel environment, requires almost
10.3 months to calculate with one thread for all altitudes.

We developed an efficient LBM algorithm which uses
MPI+GPU-based cluster structure model, and combining the
advantages of both static and dynamic load balance in the
LBM (Willebeek-LeMair and Reeves 1993; Hui and Chan-
son 1999; Arora et al. 2001; Tzeng et al. 2010; Cederman and
Tsigas 2012). Therefore, we refer to (Colajanni et al. 1998;
Pai et al. 1998; Srisuresh and Gan 1998; Bunt et al. 1999;
Cardellini et al. 2002; Padhy and Rao 2011) research papers,
and design LBM operating mechanism based on Queuing

Theory, which is divided into MPI strategy mechanism and
GPU strategy mechanism. The MPI strategy mechanism can
handle the information collection, performance evaluation
and work distribution adjustment. Besides, GPU strategy
mechanism mainly applies CUDA procedure to call the ker-
nel function, to execute by GPU, for the convenience of ap-
plying large amount of threads in GPU for parallel process-
ing work. So the LBM operating mechanism can make each
computer of the resource used effectively, and reduce the
working time, and improve each computer working of load
balance by simulation radar image echo signal, as shown in
Fig. 3 of the LBM overall operation schematic diagram.

3.1 In the MPI Strategy Mechanism

MPI provides abundant functions for message passing
and related operations. MPI adopts the signal process signal
data program model, in other words, each process carries
out the same MPI program. The MPI program can obtain a
number of current programs, with each program differing
from the other programs by the number. Each program can
carry out different tasks while communicating with other
processes (Song and Dongarra 2012; Shi et al. 2013). In the
MPI Strategy Mechanism divided into pre-evaluation stage,
management-work stage and adjust-strategy stage are dis-
cussed separately as follows.

3.1.1 Pre-Evaluation Stage

In worker node network, we have established intercon-
nect communication between master node and other worker
nodes, each node’s back-pass CPU queue length and GPU
memory, thread and cores, etc. As CPU load is most influ-
enced by queue length (Medhi 1991), we’ve thereby only
classified CPU’s queue length as its operational performance
reference indicator. Besides, to reduce message passing and
waiting time during work assignment, in this stage we’ve
also combined azimuth angle, side look angle, and polygon
indicator into Matrix Pool area, as shown in Fig. 4.

As shown in Fig. 5, the operation schematic diagram
of result back-pass master node after each worker node fin-
ished calculating 1000 polygons. This is to facilitate cutting
quantity for each worker node’s computation, and attach
each worker node computational task with independence,
thereby to avoid increasing back-pass reaction time due to
busy work, which would be enormously helpful for enhanc-
ing LBM overall working efficacy.

3.1.2 Management-Work Stage

After the aforementioned stage finished, the system
starts to execute computational task, which is divided into
“work assignment” and “performance assessment”, as fol-
lows:

Load Balance Model Maintaining Good Efficiency for Each Node 581

(1) Work Assignment: master node receives each node’s
(including itself) back-pass assessment result, and co-
verts to performance indicator based on equation for
work assignment according to performance indicator
size. Performance indicator indicates each work node’s

computing ability, and also represents the maximum
computing quantity of each work node before computa-
tion, so as to ensure each node is with same work load
when startup. The result is each node’s assignment work
quantity ratio, as shown in below:

Fig. 2. The original time complexity for the echo signal simulation. (Color online only)

Fig. 3. The overall operation schematic diagram of LBM. (Color online only)

Fig. 4. Matrix pool area combined by azimuth angle, side look angle, and polygon. (Color online only)

Sun et al.582

A polygons1000processing time()T master node = (1)

B polygons1000processing time()T nodeworker = (2)

R B AAB T T= (3)

Now we regard 1000 polygons as the testing condition for
each work node’s performance indicator, the result is such
node’s assignment work quantity ratio. RAB is a such simple
average processing time ratio, each worker node divided by
master node’s specific value, can be approximately work out
each work node’s initial performance indicator, to decide
each node’s suitable computational polygon quantity (azi-
muth angle and horizontal angle) region range, and equalize
each work node’s average load when startup.
(2) Performance Assessment: In actual operating process,

due to various node resources (such as memory size,
main board efficacy, etc.), there will exist inconsistent
information. So, after referred (Shi and Tang 1999; Liu
and Shi 2007), we are able to design a load trigger con-
dition that is suitable for this paper’s environment, so
as to facilitate master node’s (MPI node) command for
work node operating status, and avoid scheduling con-
gestion and other worker nodes’ idle conditions, thereby
to achieve the best effect, with trigger condition equa-
tion as below:

,
()

m N
n

N
n mii

N
ii

N
1

2
1v= =

-= =/ /
 (4)

In Eq. (4), m is the overall work group network’s com-
putational average time value, v is variance, N is refers to
worker node number, ni represents the time of finishing K
times of polygon (K is multiple of 1000) on the No. i node.

Therefore, m indicates a required average time of each
work node’s K times of polygon computation, while varia-
tion degree refers to the size between each node’s operation

time and average operation time difference. As such node’s
variation degree increasing, this node is perhaps with busy
or idle computational amount. Figure 6 is the schematic
diagram of management-work Stage’s “performance as-
sessment”, of which, tolerance (threshold) is a result after
compared each node’s average back-pass time value with
variation degree according to Eq. (4), and the threshold
value is mv .

3.1.3 Adjust-Strategy Stage

After each node finished work computation, and when
passing result back to master node, master node will com-
pare each node’s average back-pass time value with variation
degree, and figure out the tolerance value, which is estab-
lished according to experimental environment’s assessment
results. As a result, unbalanced load will occur in this group
when exceeding such range value, which also refers to other
nodes are in idle. Therefore, MPI will then readjust work
assignment, and launch “central decision” mechanism to ex-
ecute work assignment, to assign unfinished work regions to
worker nodes that not exceeding tolerance value, as shown
in Fig. 7, the schematic diagram of adjust-strategy stage.

3.2 GPU Strategy Mechanism

We’ve utilized CUDA to construct GPU worker node’s
strategy mechanism, and applied GPU multi-task paral-
lel feature to jointly execute computation by using several
threads (Kunz 1991; Willebeek-LeMair and Reeves 1993;
Wang et al. 2008). Besides, through employing share mem-
ory communication, we are able to execute SIMD intensive
computer task. GPU strategy mechanism in this part can be
mainly divided into “work computation stage” and “result
feedback stage”, as follows.

3.2.1 Work computation Stage

From Fig. 5, matrix computational region is managed

Fig. 5. Operation schematic diagram of pre-evaluation stage. (Color online only)

Load Balance Model Maintaining Good Efficiency for Each Node 583

by master node (MPI node), each worker node will upload
corresponding input value (range) to GPU for computing.
Furthermore, by referring (Guim et al. 2010) papers, we di-
vided computational task into several subtasks, and allocate
them separately to CPU or GPU for processing, together
with resource allocation modes in (OSCAR, Observing
Systems Capability Analysis and Review Tool, http://www.
wmo-sat.info/oscar/satellites) papers related CPU/GPU sys-
tems, bandwidth conditions and power consumption, etc., to
reduce power consumption and increase available resources.
Optimized work load condition during GPU computational
process is established as Eq. (5).

, () , (,)maxT P
L T mP

L T T T1
GPU

GPU
CPU

CPU
CPU GPU

a a= = - = (5)

Of which, a is load rate, L is total load quantity, m
is CPU executing cores, and P represents GPU or CPU’s
thread size. Therefore, such node’s reasonable load time
should be the maximum computational value between CPU
and GPU, and when two times are roughly the same, it in-
dicates that current load balance is the best status. Due to
this paper’s utilized experimental load rate is 0.6, and we
can compute CPU and GPU’s reasonable time according to
assigned work quantity.

3.2.2 Result Feedback Stage

After GPU node finished all assigned tasks, it will pass
result back to master node, and start new computational
task. Besides, when there is no other computational task, it
will then activate its feedback mechanism and notify master
node to conduct work assignment requisition. As a result,
in the MPI Strategy Mechanism, not only MPI can actively
inspect each node’s work condition, but each node is also
able to feed master node’s current condition back during
GPU strategy mechanism, to compensate the blank of mas-
ter node due to busy work. Figure 8 refers to the schematic
diagram of MPI and GPU’s work reassignments under GPU
strategy mechanism.

4. EXPERIMENt EVALUAtION
4.1 Load Balance trigger condition

To establish load balance trigger condition, we take
multi-node and single GPU card environment as the testing
benchmark, and conduct more than 10 times of computa-
tional tests, to decide its average back-pass time value. Test-
ing results are respectively shown in Tables 2 and 3 and we
thereby to know GTX660 and C2050 GPU cards’ collected
computational resources under different polygons compu-
tation. In Table 2 the GTX660 GPU card, which polygon
number exceeding over 4000, and in Table 3 the C2050

GPU card, which polygon number exceeding over 8000, we
adjust and increase both GPUs thread to one time. We found
their average memory access time and computing time are
increased to more than one time, there were to indicate the
GPU’s loading is busy.

4.2 Single-Node and Multi-GPU Work Environment

To test LBM load’s equilibrium mechanism efficacy
under single-node and multi-GPU, and after considered
computer’s main board space and slot size, we select two
pieces of NVIDIA GeForce 470 video cards as the testing
objects, and relevant NVIDIA GeForce 470 GPU specifica-
tions are shown in Table 4.

We take the polygon size, which is 26500 generated
from common CAD chart file as the benchmark, to simu-
late it is within satellite synthetic aperture radar flight direc-
tion’s squint angle range, and make statistic on the comput-
ing time required by 1 - 30000 polygons of SAR echo signal
simulated, thereby assessing single-node MPI-2GPU’s ac-
tual computational efficacy, whose average operation time
is shown in Fig. 9.

4.3 Multi-Node and Single GPU’s Work Environment

Under multiple worker nodes network environment, we
utilize two pieces of NVIDIA GTX660 card and two Tesla
C2050 cards to actually create high-performance comput-
ing cluster system through D-LINK DGS-3100-24 switcher
to connect each work node, with relevant specifications are
shown in Table 5.

Due to each work node only has one GPU card, we also
adjust CUDA’s thread number and increase GPU computa-
tional amount, and one polygon is only finished in 0.07 sec
as indicated in Fig. 10, 32 polygons are finished in 2.339 sec,
with average back-pass operation time being 0.073 sec.

Under LBM modal multi-node MPI-GPU environ-
ment, we input the same computational condition to it is
within satellite synthetic aperture radar flight direction’s
squint angle range, and make statistic on the computing
time required by 1 - 30000 polygons of SAR echo signal
simulated from as shown in Fig. 11. It can thus be seen that
the more GPU quantity is, load equilibrium effect is better
to save overall operation time.

In Fig. 11, operation time is each node’s average value,
which is neither directly related with GPU card’s sequence,
nor indicates that No. 4 piece’s efficacy is higher than that
of the previous three. The key to upgrade computational
efficacy is maintain the overall load balance within toler-
ance value range. Base on the SAR echo signal simulation
framework, Table 6 shows it is need almost 10.3 months
calculated under Intel 2.33 GHz (Quad cores) reduce to 1.06
days calculated under LBM-4GPU with one thread for all
altitudes.

http://www.wmo-sat.info/oscar/satellites
http://www.wmo-sat.info/oscar/satellites

Sun et al.584

Fig. 6. Schematic diagram of management-work stage. (Color online only)

Fig. 7. Schematic diagram of adjust-strategy stage. (Color online only)

Fig. 8. Schematic diagram of GPU strategy mechanism. (Color online only)

Load Balance Model Maintaining Good Efficiency for Each Node 585

Polygon number
資源條件

1 1000 2000 4000 8000 16000 20000 25000 30000 35000

最高CPU使用率 (%) 1 1 25 80 96 99 99 99 99 99

調整GPU執行緒 (大小) 16 16 16 32 32 32 32 32 32 32

平均計算時間 (sec) 0.0128 16.6 37.86 72.86 166.15 428.97 521.42 820.67 1023.58 1436.25

平均記憶體存取時間 (sec) 0.044 60 166 552 1423 3675 7253 9594 13634.5 21262

Table 2. GTX660 computational task testing situation. (Color online only)

Polygon number
資源條件

1 1000 2000 4000 8000 16000 20000 25000 30000 35000

最高CPU使用率 (%) 1 1 25 30 85 96 99 99 99 99

調整GPU執行緒 (大小) 16 16 16 16 32 32 32 32 32 32

平均計算時間 (sec) 0.0122 15.21 30.89 61.25 138.21 398.12 488.26 756.89 865.32 1058.98

平均記憶體存取時間 (sec) 0.028 56.6 166.5 462.99 951.55 3210.2 5624.58 7412.56 9351.03 18306.47

Table 3. C2050 computational task testing situation. (Color online only)

Specifications GeForce 470

Size 9.5-inch PCIe × 16 slot

CUDA core 448

CUDA core frequency 0.607 GHz

Total memory capacity 1.6 GB GDDR5

Memory speed 1.28 GHz

Memory port 320 bit

Memory bandwidth 133.9 GB sec-1

Displayer support Double-linked DVI-I × 1

Displayer’s minimum resolution ratio 2560 × 1600

Table 4. NVIDIA GeForce 470 GPU specification.

Fig. 9. Single-node MPI-2GPU’s operation time. (Color online only)

Sun et al.586

Master node
Worker node

Node 2 Node 3/Node 4

Processors Intel Xeon/NVIDIA Tesla C2050 × 1 NVIDIA Tesla C2050 × 1 GeForce GTX660 × 1

Clock frequency 3.33 GHz 1.15 GHz 980 MHz

Cores per processor 4 448 960

Memory size 16 GB 3 GB 2 GB

GFLOPs/sec 515 486

OS nUbuntu Linux 12.0.4

Table 5. LBM model multi-node MPI-GPU’s simulated environment.

Fig. 10. Average time of MPI-GPU computing one polygon.

Fig. 11. MPI-1GPU~4GPU operation time. (Color online only)

Polygons = 26500 4 core MPI-1GPU MPI-2GPU MPI-3GPU MPI-4GPU

Time 309.7 7.7 4.19 2.68 1.06

Speedup 1 40.22 73.93 115.56 292.17

Table 6. Each node process time result for SAR echo signal simulation (day).

4.4 the Result of SAR Echo Signal Simulation for
MD80

As described, the LBM method can strengthen the
SAR database establishment at all target’s altitudes. The

simulated SAR images can be obtained at different sequen-
tial incidence angles and aspect angles. In this study, we
applied the LBM method in SAR echo signal framework
to simulate MCDONNELL DOUGLAS MD-80 image target
and compared the results with real TerraSAR-X Satellite

Load Balance Model Maintaining Good Efficiency for Each Node 587

and Radarsat-2 Satellite image. The simulated SAR echo
signal is certificated by the developed SAR processor evalu-
ated using real satellite SAR echo signal data. The main pro-
cessing system produced a modelled MD-80 3D CAD im-
age containing numerous grids or polygons with computed
RCS as a function of the incident and aspect angles used for
a given set of radar parameters. The number of polygons can
be determined by the target’s geometry complexity and its
electromagnetic size. To realize the imaging scenario, each
polygon must be properly oriented and positioned based on
Earth Centered Rotating (ECR) coordinates.

Table 7 shows the parameter values of TerraSAR-X and
Radarsat-2 satellites (Hsu et al. 2008) for the SAR echo sig-
nal simulation program. Figures 12a and b show simulated
SAR images of the MCDONNELL DOUGLAS MD-80 target
model, in which the polygon numbers can reach orders of
magnitude greater than 20000. For these simulations the in-
cidence angle was fixed at 35 (35) degrees and the aspect an-
gles were from 2 - 56 (0 - 54) degrees at intervals of 2 degrees
for TerraSAR-X (Radarsat-2) satellite images. Each image
contains the amplitude and phase information and some attri-
butions such as corner longitude/latitude location, time, Dop-
pler parameters, and other values processed by the processor.
To produce simulated Radarsat-2 and TerraSAR-X images
for MCDONNELL DOUGLAS MD-80 aircraft target we use
the SAR processing software, Multi-Sensor Processor (MSP)
(Bailey and Werdell 2006), which was verified by the general
satellite data (Bailey and Werdell 2006). Both the simulated
Radarsat-2 and TerraSAR-X images are used to compare and
evaluate the results using the LBM method.

The comparison principle for the real radar images and
simulation image for the selected target object about the ap-
proximation point (RCS area smaller than the size of a real
radar image resolution), is evaluated based on the real point
target and 3 dB width simulation image. Because the real

image is projected onto the ground, the slant range resolu-
tion direction is changed. Therefore, the analysis is based
only on the flight direction. Figure 13 shows the MD-80
CAD model and real SAR image and simulated SAR image
targets where the incidence angle is fixed at 30 degrees and
the aspect angles are from -80 to -120 degrees at intervals of 1
degree and the aspect angles are from -1620 to -1660 degrees
at intervals of 1 degree. Because the RCS target is quite dif-
ficult to estimate and normally determined by measurement,
it depends on the airplane’s physical geometry and exterior
features, the direction of the illuminating radar, the radar
transmitter frequency, and the aircraft material types etc.

Based on real TerraSAR-X satellite data, we obtained
the image center coordinates (119.395060, 24.894620)
and compared it to the simulated image center coordinates
(119.395090, 24.894470). The difference is in 1.5 × 10-4 de-
gress or less accuracy, i.e., about 0.06 m on the ground and
about 16.97 m on the satellite flight direction. The location
results are also shown in Table 8. The proposed working
flows and algorithms were validated by evaluating the im-
age quality including geometric and radiometric accuracy
using simple point targets first, followed by simulating MD-
80 aircraft. According to the TerraSAR-X image products,
the flight direction resolution is 4.51 m, with the simulation
results in 3 dB width at 3.5 m, with about 1 m difference.
The product of the general situation will be similar to the
pixel interpolation (for the sake of pixel Founder), so dif-
ferences will exist. TerraSAR-X target point of the analysis
results shown in Fig. 14, simulate TerraSAR-X point target
image of the analysis results shown in Fig. 15, and Fig. 16
shows the position accuracy is almost 10-7 degrees for both
simulate and real TerraSAR-X point target image of error
point ration. The 3 dB width error evaluated from PSLR/
ISLR index in the free clutter comparing to the real satellite
product is less than 10%.

characteristics terraSAR-X Satellite Radarsat-2 Satellite

Resolution StripMap: 3 m 5 - 50 m

Band Active X band Microwave Active C band Microwave

Nominal swath Width StripMap: 30 km × 50 km 500 km

Look angle (deg) 33.8 (beam center) 30.78

Squint angle (deg) 0 0

Transmitted freq. (Hz) 9.63 G 5.405 G

PRF (Hz) 3798 1000 - 3800

ADC Sampling rate (Hz) 165 M 31.67 M

Antenna size (m) 3.37 m2

(0.704 m × 4.784 m)
9.43 m2

(1.37 m × 6.88 m)

Chirp bandwidth (Hz) 150 M 100 M

Transmit duty cycle (%) 16.5 28

Table 7. TerraSAR-X and Radarsat-2 Satellite parameters.

Sun et al.588

(a)

(b)

Fig. 12. (a) SAR image simulation results in TerraSAR-X Satellite parameters. (b) SAR image simulation results in Radarsat-2 Satellite parameters.
(Color online only)

Fig. 13. Real and simulated SAR image combine with CAD model image results based on LBM method. (Color online only)

Index Real terraSAR-X image Simulate results Difference

Scene
Center

Location

Geodetic (longitude, latitude) 119.395060°E, 24.894620°N 119.395090°E, 24.894470°N -3 × 10-5, 1.5 × 10-4 (degree)

ECR(x, y, z) (m) -2817397.45 X, 5608996.11 Y,
2830630.29 Z

-2817396.77 X, 5608995.60 Y,
2830631.97 Z

distance: 0.06 (m)
flight direction: 16.97 (m)

Table 8. Target point location verification results for SAR image.

Load Balance Model Maintaining Good Efficiency for Each Node 589

Fig. 14. Real TerraSAR-X point target image results for 3 dB width analysis. (Color online only)

Fig. 15. Simulate TerraSAR-X point target image results for 3 dB width analysis. (Color online only)

Fig. 16. Accuracy verification of error point ration for TerraSAR-X point target image. (Color online only)

Sun et al.590

5. cONcLUSION AND FUtURE WORk

We introduced a framework of SAR image database
simulation produced the amplitude and phase at the same
time. The simulated SAR echo signal is certificated by the
developed SAR processor evaluated by real satellite SAR
echo signal data.

In this paper, we combined CPU with GPU, owned an
integration of multi-programming environment based on
MPI and CUDA, built a LBM cluster system to separate
computing tasks from scheduling tasks. According to the
results, the time complexity contributed from the calcula-
tion kernel is O(n3) reduced to O(n2), and it needs almost
10.3 months calculation under Intel 2.33 GHz (Quad cores)
reduced to 1.06 days calculated under LBM-4GPU with
one thread for all altitudes. Figure 13 shows the maximum
differential amplitude value is almost 10-7 order. The error
point ratio related to the entire image is less than 0.006%.
According to these results the floating point precision using
the LBM algorithm is the SAR image database product.

Our future work includes how to extend LBM for multi-
GPU clusters in which each node may have more than one
GPU installed and further excavate the LBM computation ca-
pability in heterogeneous multi-CPU based cluster systems.

REFERENcES

Aila, T. and S. Laine, 2009: Understanding the effi-
ciency of ray traversal on GPUs. HPG ‚09 Proceed-
ings of the Conference on High Performance Graph-
ics 2009, ACM New York, NY, USA, 145-149, doi:
10.1145/1572769.1572792. [Link]

Arora, N. S., R. D. Blumofe, and C. G. Plaxton, 2001:
Thread scheduling for multiprogrammed multiproces-
sors. Theor. Comput. Syst., 34, 115-144, doi: 10.1007/
s00224-001-0004-z. [Link]

Bai, H., L. He, D. Ouyang, Z. Li, and H. Li, 2009: K-means
on commodity GPUs with CUDA. 2009 WRI World
Congress on Computer Science and Information Engi-
neering, Vol. 3, 651-655, doi: 10.1109/CSIE.2009.491.
[Link]

Bailey, S. W. and P. J. Werdell, 2006: A multi-sensor ap-
proach for the on-orbit validation of ocean color satel-
lite data products. Remote Sens. Environ., 102, 12-23,
doi: 10.1016/j.rse.2006.01.015. [Link]

Bunt, R. B., D. L. Eager, G. M. Oster, and C. L. Williamson,
1999: Achieving load balance and effective caching in
clustered Web servers. Proceedings of the Fourth In-
ternational Web Caching Workshop, San Diego, Cali-
fornia, 159-169.

Cardellini, V., E. Casalicchio, M. Colajanni, and P. S. Yu,
2002: The state of the art in locally distributed Web-
server systems. ACM Comput. Surv., 34, 263-311, doi:
10.1145/508352.508355. [Link]

Cederman, D. and P. Tsigas, 2012: Dynamic load balancing
using work-stealing. In: Hwu, W. W. (Ed.), GPU Com-
puting Gems Jade Edition, Morgan Kaufmann, 485-499,
doi: 10.1016/B978-0-12-385963-1.00035-6. [Link]

Chang, D. J., A. H. Desoky, M. Ouyang, and E. C. Rouch-
ka, 2009: Compute pairwise Manhattan distance and
Pearson correlation coefficient of data points with
GPU. SNPD '09, 10th ACIS International Conference
on Software Engineering, Artificial Intelligences, Net-
working and Parallel/Distributed Computing, 501-506,
doi: 10.1109/SNPD.2009.34. [Link]

Colajanni, M., P. S. Yu, and D. M. Dias, 1998: Analysis of
task assignment policies in scalable distributed web-
server systems. IEEE Trans. Parallel Distr. Syst., 9,
585-600, doi: 10.1109/71.689446. [Link]

Cumming, I. G. and F. H. Wong, 2005: Digital Processing
of Synthetic Aperture Radar Data: Algorithms and Im-
plementation, Artech House Print on Demand, 660 pp.

Curlander, J. C. and R. N. McDonough, 1991: Synthetic
Aperture Radar: Systems and Signal Processing, Wi-
ley-Interscience, 672 pp.

Guim, F., I. Rodero, J. Corbalan, and M. Parashar, 2010: En-
abling GPU and many-core systems in heterogeneous
HPC environments using memory considerations.
2010 12th IEEE International Conference on High Per-
formance Computing and Communications (HPCC),
146-155, doi: 10.1109/HPCC.2010.29. [Link]

Guo, K. Y., Q. Li, and X. Q. Sheng, 2010: A precise recog-
nition method of missile warhead and decoy in multi-
target scene. J. Electromagn. Waves Appl., 24, 641-
652, doi: 10.1163/156939310791036250. [Link]

Harish, P. and P. J. Narayanan, 2007: Accelerating large
graph algorithms on the GPU using CUDA. In: Alu-
ru, S., M. Parashar, R. Badrinath, and V. K. Prasanna
(Eds.), High Performance Computing – HiPC 2007:
14th International Conference, Goa, India, December
18-21, 2007. Proceedings, Springer Berlin Heidelberg,
197-208, doi: 10.1007/978-3-540-77220-0_21. [Link]

Henty, D. S., 2000: Performance of hybrid message-passing
and shared-memory parallelism for Discrete Element
Modeling. Proceedings of the IEEE/ACM SC2000
Conference (SC’00), IEEE, 9 pp, doi: 10.1109/
SC.2000.10005. [Link]

Hsu, S. M., C. T. Wang, K. S. Chen, C. Y. Chiang, and J. R.
Kao, 2008: ALOS/PALSAR Mission Operation in Tai-
wan. 4th Asian Space Conference & FORMOSAT-3/
COSMIC International Workshop, Taipei, Taiwan.

Huang, C. W. and K. C. Lee, 2010: Frequency-diversity
RCS based target recognition with ICA projection.
J. Electromagn. Waves Appl., 24, 2547-2559, doi:
10.1163/156939310793675763. [Link]

Hui, C. C. and S. T. Chanson, 1999: Hydrodynamic load
balancing. IEEE Trans. Parallel Distr. Syst., 10, 1118-
1137, doi: 10.1109/71.809572. [Link]

http://dx.doi.org/10.1145/1572769.1572792
http://dx.doi.org/10.1007/s00224-001-0004-z
http://dx.doi.org/10.1109/CSIE.2009.491
http://dx.doi.org/10.1016/j.rse.2006.01.015
http://dx.doi.org/10.1145/508352.508355
http://dx.doi.org/10.1016/B978-0-12-385963-1.00035-6
http://dx.doi.org/10.1109/SNPD.2009.34
http://dx.doi.org/10.1109/71.689446
http://dx.doi.org/10.1109/HPCC.2010.29
http://dx.doi.org/10.1163/156939310791036250
http://dx.doi.org/10.1007/978-3-540-77220-0_21
http://dx.doi.org/10.1109/SC.2000.10005
http://dx.doi.org/10.1163/156939310793675763
http://dx.doi.org/10.1109/71.809572

Load Balance Model Maintaining Good Efficiency for Each Node 591

Karunadasa, N. P. and D. N. Ranasinghe, 2009: Acceler-
ating high performance applications with CUDA and
MPI. 2009 International Conference on Industrial and
Information Systems (ICIIS), 331-336, doi: 10.1109/
ICIINFS.2009.5429842. [Link]

Kasim, H., V. March, R. Zhang, and S. See, 2008: Survey on
parallel programming model. In: Cao, J., M. Li, M. Y.
Wu, and J. Chen (Eds.), Network and Parallel Comput-
ing: IFIP International Conference, NPC 2008, Shang-
hai, China, October 18-20, 2008, Proceedings, Springer
Berlin Heidelberg, 266-275, doi: 10.1007/978-3-540-
88140-7_24. [Link]

Kunz, T., 1991: The influence of different workload descrip-
tions on a heuristic load balancing scheme. IEEE Trans.
Software Eng., 17, 725-730, doi: 10.1109/32.83908.
[Link]

Lee, J. S., 1980: Digital image enhancement and noise fil-
tering by use of local statistics. IEEE Trans. Pattern
Anal. Mach. Intell., PAMI-2, 165-168, doi: 10.1109/
TPAMI.1980.4766994. [Link]

Lee, J. S. and E. Pottier, 2009: Polarimetric Radar Imaging:
From Basics to Applications, CRC Press, 438 pp, doi:
10.1201/9781420054989. [Link]

Liu, B. and F. Shi, 2007: Research on Dynamic Load Bal-
ancing Algorithm Based on Message Passing Mecha-
nism. Comput. Eng., 33, 58-60.

Loper, J. and S. Parr, 2007: Energy efficiency in data cen-
ters: A new policy frontier. Environ. Qual. Manag., 16,
83-97, doi: 10.1002/tqem.20144. [Link]

Margarit, G., J. J. Mallorqui, J. M. Rius, and J. Sanz-
Marcos, 2006: On the usage of GRECOSAR, an or-
bital polarimetric SAR simulator of complex targets,
to vessel classification studies. IEEE Trans. Geo-
sci. Remote Sensing, 44, 3517-3526, doi: 10.1109/
TGRS.2006.881120. [Link]

Medhi, J., 1991: Stochastic Models in Queueing Theory,
Academic Press, 450 pp.

Noaje, G., M. Krajecki, and C. Jaillet, 2010: MultiGPU
computing using MPI or OpenMP. 2010 IEEE Interna-
tional Conference on Intelligent Computer Communi-
cation and Processing (ICCP), 347-354, doi: 10.1109/
ICCP.2010.5606414. [Link]

Padhy, R. P. and P. G. P. Rao, 2011: Load Balancing in
Cloud Computing System, Department of Computer
Science and Engineering National Institute of Technol-
ogy, Rourkela, 1-56.

Pai, V. S., M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum, 1998: Locality-aware
request distribution in cluster-based network servers.
Proceedings of the Eighth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ACM New York, NY, USA,
205-216, doi: 10.1145/291006.291048. [Link]

Parker, S. G., J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock,

D. Luebke, D. McAllister, M. McGuire, K. Morley, A.
Robison, and M. Stich, 2010: OptiX: A general pur-
pose ray tracing engine. ACM Trans. Graph., 29, doi:
10.1145/1778765.1778803. [Link]

Rihaczek, A. W. and S. J. Hershkowitz, 2000: Theory and
Practice of Radar Target Identification, Artech House
Publishers, 738 pp.

Shi, R., S. Potluri, K. Hamidouche, X. Lu, K. Tomko, and
D. K. Panda, 2013: A scalable and portable approach
to accelerate hybrid HPL on heterogeneous CPU-GPU
clusters. 2013 IEEE International Conference on Clus-
ter Computing (CLUSTER), IEEE, 1-8, doi: 10.1109/
CLUSTER.2013.6702619. [Link]

Shi, W. and Z. Tang, 1999: Dynamic computation sched-
uling for load balancing in home-based software
DSMs. Proceedings of Fourth International Sympo-
sium on Parallel Architectures, Algorithms, and Net-
works, 1999 (I-SPAN '99), 248-253, doi: 10.1109/
ISPAN.1999.778947. [Link]

Song, F. and J. Dongarra, 2012: A scalable framework for
heterogeneous GPU-based clusters. Proceedings of the
Twenty-Fourth Annual ACM Symposium on Parallel-
ism in Algorithms and Architectures, ACM New York,
NY, USA, 91-100, doi: 10.1145/2312005.2312025.
[Link]

Srisuresh, P. and D. Gan, 1998: Load Sharing using IP
Network Address Translation (LSNAT), RFC Editor,
United States, No. RFC 2391.

Tian, B., D. Y. Zhu, and Z. D. Zhu, 2011: A novel mov-
ing target detection approach for dual-channel SAR
system. Progress In Electromagnetics Research, 115,
191-206, doi: 10.2528/PIER10120107. [Link]

Tzeng, S., A. Patney, and J. D. Owens, 2010: Task manage-
ment for irregular-parallel workloads on the GPU. In:
Doggett, M., S. Laine, and W. Hunt (Eds.), High Per-
formance Graphics, Eurographics Association, 29-37.

Vasiliadis, G., S. Antonatos, M. Polychronakis, E. P. Mar-
katos, and S. Ioannidis, 2008: Gnort: High performance
network intrusion detection using graphics processors.
In: Lippmann, R., E. Kirda, and A. Trachtenberg (Eds.),
Recent Advances in Intrusion Detection: 11th Inter-
national Symposium, RAID 2008, Cambridge, MA,
USA, September 15-17, 2008, Proceedings, Springer
Berlin Heidelberg, 116-134, doi: 10.1007/978-3-540-
87403-4_7. [Link]

Wang, L., Y. Huang, X. Chen, and C. Zhang, 2008: Task
scheduling of parallel processing in CPU-GPU collab-
orative environment. ICCSIT '08, International Con-
ference on Computer Science and Information Tech-
nology, IEEE, 228-232, doi: 10.1109/ICCSIT.2008.27.
[Link]

Wang, X. F., J. F. Chen, Z. G. Shi, and K. S. Chen, 2011:
Fuzzy-control-based particle filter for maneuvering tar-
get tracking. Progress In Electromagnetics Research,

http://dx.doi.org/10.1109/ICIINFS.2009.5429842
http://dx.doi.org/10.1007/978-3-540-88140-7_24
http://dx.doi.org/10.1109/32.83908
http://dx.doi.org/10.1109/TPAMI.1980.4766994
http://dx.doi.org/10.1201/9781420054989
http://dx.doi.org/10.1002/tqem.20144
http://dx.doi.org/10.1109/TGRS.2006.881120
http://dx.doi.org/10.1109/ICCP.2010.5606414
http://dx.doi.org/10.1145/291006.291048
http://dx.doi.org/10.1145/1778765.1778803
http://dx.doi.org/10.1109/CLUSTER.2013.6702619
http://dx.doi.org/10.1109/ISPAN.1999.778947
http://dx.doi.org/10.1145/2312005.2312025
http://dx.doi.org/10.2528/PIER10120107
http://dx.doi.org/10.1007/978-3-540-87403-4_7
http://dx.doi.org/10.1109/ICCSIT.2008.27

Sun et al.592

118, 1-5, doi: 10.2528/PIER11051907. [Link]
Willebeek-LeMair, M. H. and A. P. Reeves, 1993: Strat-

egies for dynamic load balancing on highly parallel
computers. IEEE Trans. Parallel Distr. Syst., 4, 979-
993, doi: 10.1109/71.243526. [Link]

Yang, C. T., C. L. Huang, C. F. Lin, and T. C. Chang, 2010:
Hybrid parallel programming on GPU clusters. 2010

International Symposium on Parallel and Distributed
Processing with Applications (ISPA), 142-147, doi:
10.1109/ISPA.2010.97. [Link]

Zheng, S. C., 2002: C program and MPI Hybrid Parallel
Programming. Available at http://moodle.ncku.edu.
tw/pluginfile.php/685069/mod_resource/content/0/
mpic_2002.pdf. (in Chinese)

http://dx.doi.org/10.2528/PIER11051907
http://dx.doi.org/10.1109/71.243526
http://dx.doi.org/10.1109/ISPA.2010.97
http://moodle.ncku.edu.tw/pluginfile.php/685069/mod_resource/content/0/mpic_2002.pdf
http://moodle.ncku.edu.tw/pluginfile.php/685069/mod_resource/content/0/mpic_2002.pdf
http://moodle.ncku.edu.tw/pluginfile.php/685069/mod_resource/content/0/mpic_2002.pdf

