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ABSTRACT

Water depth and the topography under water provide important information for 
near shore human activities. With the intensification of international territory con-
cerns, bathymetric mapping is also gaining attention. Optical satellite imagery is an 
efficient tool for estimating shallow water depth as compared to the traditional field 
surveying because of its wide coverage area. On the other hand, the existence of 
cloud and haze contaminates the spectral signatures, which introduces errors to the 
depth data retrieved. In this research, the contaminated pixels are treated as a mixture 
of water and cloud. Linear Spectral Unmixing (LSU) procedure is applied for esti-
mating the cloud abundance in mixed pixels. The cloud component is then removed 
with a linear function and the “purified” water component used for depth retrieval. 
In this research, water depth is estimated with two methods, namely, artificial neu-
ral network (ANN) and physical model. The former demands in-situ bathymetric 
samples for training, the latter requires site information of inherent optical properties 
(IOPs) and apparent optical properties (AOPs). The experiments reveal that retriev-
ing depth with ANN generates better results than the physical model, but with a few 
extremely large errors. As for mixed pixels, the error of depth estimation becomes 
higher as cloud abundance increases. The precision of depth retrieval is higher for 
mixed pixels at the reef flat level (within 10 m in depth) than those in the lagoon 
(about 20 m in depth), and the precision generally agrees with those retrieved from 
water pixels without cloud or haze.
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1. INTRODUCTION

The water depth and underwater topography are essen-
tial geospatial information for coastal engineering, aquacul-
ture, fishing industry, and other marine applications. Tradi-
tionally, the water depth requires on-site surveying such as 
shipborne sonar (Sound Navigation and Ranging) and air-
borne bathymetry lidar (Light Detection and Ranging). The 
shipborne sonar are classified into single-beam and multi-
beam echo sounders. The principle of sonar is to measure 
the water depth by transmitting acoustic waves from trans-
mitter to seafloor. On the other hand, the bathymetry lidar 
determines the water depth from green and near-infrared la-
sers. These two lasers are used for collecting waveform fea-
tures from sea floor and sea surface, respectively. Then, the 
waveforms are analyzed for deriving the sea-surface and/or 

seafloor topography. Instead of active sensor, another ap-
proach is to use passive remote sensing for the determina-
tion of water depth, for example, optical satellite image for 
shallow water. The idea is to utilize the characteristics of 
attenuation of visible light through water. Therefore, the at-
tenuation of visible light is a function of the properties of 
water column in which light passing through. To compare 
these three approaches, the measurement of sonar is deeper 
than two other approaches. But shipborne sonar is usually 
difficult to operate in shallow water region because of po-
tential navigation risk and narrow swath. For shallow water 
region, the airborne bathymetry lidar system is more flex-
ible than shipborne sonar system as the aircraft acquire data 
effectively in a flying platform. As the water transparency 
is the major constraint for laser and optical image in water 
depth measurements. Hence, these two systems are usually 
applied on coastal zone.

Retrieving water depth from satellite optical images 
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features means a large coverage at a lower cost. Although 
disadvantages of this method include lower accuracy and a 
limited depth range, valuable information for understand-
ing the sea bottom topography that is likely complimentary 
to the traditional acoustic sounding techniques can still be 
gathered. For these optical images, cloud and haze are com-
mon sources of disturbance. This study investigates the mit-
igation of haze disturbance to the depth retrieval with linear 
un-mixing schemes.

The relationship between depth and the radiance ob-
served has been long established. The approaches to ob-
serving this relationship include using single band and band 
ratio. Polcyn et al. (1970) reported the ratio between two 
bands decreases with the increase of water depth. Lyzenga 
(1978) proposed depth retrieval algorithms based on Beer’s 
Law with single band and applied them to airborne mul-
tispectral imagery. Lyzenga (1981, 1985), Stumpf et al. 
(2003), and Kao et al. (2009) are examples of much relat-
ed research along this line. Neural network algorithms are 
also applied in the depth retrieval modelling, Sandidge and 
Holyer (1998) applied to hyperspectral image. Ceyhun and 
Yalçın (2010) applied MLP neural network for modeling 
ASTER and QuickBird images with depth. Gholamalifard 
et al. (2013) applied Back-Propagation neural network for 
Landsat 5 TM with depth. Moses et al. (2013) and Mohamed 
et al. (2015) are other examples on using neural network. 
In this study, both the neural network and semi-analytical 
modeling schemes are applied.

2. MATERIAL

The Dongsha Atoll is located in the north of South China 
Sea. It is one of the national parks of Taiwan, which provides 
rich bio-diversities of marine life. The geographic location of 
Dongsha Atoll is between 20°35” to 47” north latitude and 
116° 42” to 55” east longitude. It is about 445 km from Ka-
ohsiung. The shape of Dongsha Atoll is like a full moon, and 
the diameter of the ring-shaped atoll is about 25 km. The reef 
crest is about 46 km long and 2 km wide. The greatest depth 
of the lagoon reaches 20 m in the center of the atoll. Because 
the water clarity is high and the location is remote, retrieving 
water depth from satellite images presents an economical and 
effective observation scheme.

DigitalGlobe Inc. launched the WorldView series satel-
lites. Currently, there are four high-resolution satellites in 
this satellite constellation. WorldView-1 provides a 0.5-m 
panchromatic image; WorldView-2 provides 0.5-m pan-
chromatic and 2-m multispectral images cover eight dif-
ferent wavelengths; WorldView-3 provides a standard pan-
chromatic, 8-band multispectral, 8-band short-wave infrared 
(SWIR), and 12-band CAVIS imagery in different spatial 
resolutions. WorldView-4 collects a panchromatic image 
at the 0.31-m resolution and 4-band multispectral images at 
1.24-m resolution.

A scene of WorldView-2 image (WV-2, Fig. 1a) and 
a scene of WorldView-3 (WV-3, Fig. 1b) of the area are 
used. The WV-2 image dimension is 12589 × 11588 pixels, 
corresponding to 25 km × 25 km on the ground. The image 
is acquired on July 3rd, 2010. The WV-3 image dimension 
is 1325 × 1270 pixels, equivalent to 2.65 km × 2.54 km 
on the ground, acquired on April 5th, 2015. The area of the 
WV-3 image is located in the red box as shown in Fig. 1. 
The ground truth is derived from the airborne bathymetric 
lidar mission with an AHAB HawkEye II (Shih et al. 2011). 
The survey mission was held in September of 2010 and the 
grid resolution of the resampled bathymetric model is 8 m. 
The spatial resolution of panchromatic and multispectral 
bands are 0.5 and 2 m respectively for WV-2, and 0.3 and 
1.2 m for WV-3. As shown in Table 1, there are eight bands. 
In this study, the standard Blue, Green, Red, and Near-infra-
red multispectral packages were available and the Blue and 
Green bands are both utilized for the depth retrieval.

3. METHODOLOGY

The workflow of depth retrieval includes three pro-
cesses, image pre-processing for converting digital numbers 
into reflectance, cloud component removal, and finally the 
depth retrieval. In the first process, ATCOR module in PCI 
Geomatica 2016 is applied for the reflectance conversion. 
Meanwhile, the image is resampled into 8 m with pixel ag-
gregation.

The second process is to remove the cloud components 
based on linear un-mixing. The cloud area is identified first; 
subsequently, two schemes are applied. The first scheme is 
a simple one based on applying a threshold to the infrared 
band. This is based on the fact that water would absorb in-
frared and result in dark reflectance. The other scheme is 
utilizing Haze Optimized Transformation (HOT) proposed 
by Zhang et al. (2002). HOT was developed and validated 
with Landsat TM imagery. The clear-sky vector and haze 
vector, which are orthogonal to each other, are derived from 
TM1 (blue) and TM3 (red) bands. Three thresholds, μ + σ, 
μ + 1.5σ, and μ + 2σ, are applied, producing three masks for 
each image. Where μ and σ are the mean and standard devia-
tion of pixel value, respectively. The pixel value could be 
reflectance of near-infrared or HOT. These three thresholds 
are simply applied to distinguish cloud and non-cloud pixels, 
separately. For example, if pixel value is larger than μ + σ, 
then, this pixel is treats as a cloud pixel. The three masks 
from near-infrared and three masks from HOT were then 
examined manually in the best mask selection. In the experi-
ments conducted, these masks separated water and non-wa-
ter area effectively. However, the area with cloud coverage 
is frequently mixed with white sand on Dongsha Island and 
the breaking wave. These areas were manually removed.

Linear un-mixing is based on the concept of endmem-
bers. That is, every pixel is either pure or a linear mixing of 
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a set of end-members.

R Efij ij ijf= +  (1)

Where Rij is the reflectance at pixel (i, j), with a dimension 
of L × 1; E is the spectral feature of endmembers, the dimen-
sion is L × K; fij is the abundance of each endmembers of the 
pixel, the dimension is K × 1; εij is the noise. Huguenin et al. 
(2004) applied this concept to purifying the pixel for depth 
retrieval. For the computation of the abundance matrix in 
un-mixing, the number of end members should be less than 
the bands. In this study, there are four multispectral bands in 
the WorldView images obtained. Four endmembers, cloud 
and three water components with different substrates, are 
chosen. ISODATA is applied for classifying the water area 
without cloud components into three classes. The average 
spectra of each classes are used as the spectra of endmem-
ber. With the selected endmembers, the abundance is de-
rived. Then, the cloud component is removed with the fol-
lowing equation,

W P f C f1c c= - -^ h6 @  (2)

Where, P is the spectra of the mixed pixel; W is the spectra 
of water; C is the spectra of cloud; fc is the fraction of cloud 
in this pixel.

The third process is the depth retrieval. Two schemes 
are applied, the back-propagation neural network (BP) and 
the semi-analytical model. While ground truth is required 
for the training of BP; optical property parameters are re-
quired for the semi-analytical model. BP is a well-estab-
lished neural network scheme. Gholamalifard et al. (2013) 
indicated that the artificial neural networks method per-
forming the highest correlation (r = 0.94) when compared to 
principal components analysis and single band algorithms. 
Besides, the three-layered back-propagation network can 
approximate most polynomial functions and suitable for the 
prediction from visible bands to bathymetry. According to 
the previous study, this study utilized a three-layered back-
propagation network. In the input layer, three units corre-
spond to the reflectance of R, G, and B bands. There are six 
neurons in the hidden layer, and one unit in the output layer 
also known as the water depth. Log sigmoidal function is 
used as the transfer in the hidden layer, while linear transfer 
function is used in the output layer.

The other scheme for depth retrieval is analytical model. 
The property of both water itself such as water reflectance, 
attenuation coefficient, and the type of substrate would af-
fect the reflectance collected via remote sensors. Lee et al. 
(2001) proposed a semi-analytical model for describing the 
relationship between above surface reflectance, water, and 
substrate. The model is shown in Eqs. (3) and (4).
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Fig. 1. (a) Dongsha Atoll, WorldView-2, 2017-07-03. (b) Dongsha Atoll, WorldView-3, 2015-04-05.

Band Spectral range (nm)

Coastal 450 - 800

Blue 400 - 450

Green 450 - 510

Yellow 510 - 580

Red 585 - 625

RedEdge 630 - 690

NIR1 705 - 745

NIR2 770 - 895

Table 1. Spectral ranges of World-
View-3 sensors.



Tsou et al.470

( ) ( )

( ) ( )

exp cos cos

exp cos cos

r r D kH

D kH

1 1

1 1

rs rs
dp

s

u
C

s

u
B

.
j j

r
t

j j

- - + +

- +

c m;

;

E

E

'

'

1

1
 (4)

Where, . ( . )D u1 03 1 2 4 .
u
C 0 5. + , . ( . )D u1 04 1 5 4 .

u
B 0 5. + , and 

u = bb/(a + bb), the meaning of parameters in Eqs. (3) and (4) 
are shown in Table 2.

Liew and He (2008) proposed a similar but simpler 
model. While the model of Lee et al. (2001) is developed 
for hyperspectral images, Liew and He (2008) is designed 
for the green and red bands of SPOT-5. The attenuation co-
efficient of deep water in the Liew and He (2008) model is 
derived with the absorption coefficient and the backscatter-
ing coefficient from Lee et al. (2002) model. The unknown 
parameters are reduced to water depth and the bottom re-
flectance, and solved with two bands. Because the pen-
etration capability of the red band is limited, Liew and He 
(2008) model is targeted for water depths of less than 3 m. 
This study followed the process of Liew and He (2008) but 
utilizes the more detailed function from Lee et al. (2001), 
i.e., Eqs. (3) and (4).

Blue and green bands from WorldView are used as ob-
servation material. Water surface reflectance Rrs is derived 
through application of atmospheric correction. Deep-water 
reflectance rrsdp  is obtained from the image. Zenith angle of 
the sun wj  and viewing angle of sensors j  are obtained from 
the satellite image metadata. The attenuation coefficients of 
blue and green light is obtained from IOCCG (International 
Ocean Color Coordination Group) dataset (IOCCG 2006).

The semi-analytical model to determine water depth 
is shown in Eq. (3). The subsurface water reflectance rrs in  
Eq. (3) can be substituted by Eq. (4). All the sensor-depen-
dent parameters (e.g., zenith and viewing angles) derived 
from metadata and deep-water reflectance from blue and 
green images are substituted into physical model. The un-
known parameters (i.e., water depth H and bottom albedo t) 
can be calculated based on the principle of least squares. The 
IOCCG data set (a total of 500 points) contains both inher-
ent (IOP) and apparent (AOP) optical properties, including 
the absorption coefficient of pure seawater aw, backscatter-
ing coefficient of pure seawater bbw, absorption coefficient 
of phytoplankton pigments aph, absorption coefficient of 
detritus/mineral adm, backscattering coefficient of detritus/
mineral bbdm. Spectral wavelength ranges from 400 - 700 nm 
at steps of 10 nm. This dataset uses phytoplankton concen-
tration [C] as a variable, ranges from 0.03 - 30.0 μg l-1, in 20 
layers, 25 sets in each layer.

The central wavelength of WorldView blue and green 
bands is 480 and 545 nm, respectively. The absorption and 
backscattering coefficients for these two wavelengths are 
extracted from IOCCG synthetic dataset. Together with the 
image reflectance, water depth is derived with the semi-

analytical model and evaluated with ground truth. The best 
coefficients are then selected for the depth retrieval. Due to 
the consideration of water clarity in Dongsha Atoll, the first 
15 layers, including pure seawater, rather than all 20 layers, 
are computed. The average of 25 sets in each layer is taken 
as the attenuation coefficient of that layer. The resulting co-
efficients are listed in Table 3.

The depth derived from the semi-analytical model 
should be the absolute value theoretically, because the 
ground truths were used. In practice, systematic biases exist. 
This bias is then adjusted with land/water boundary lines, 
where the depth of water should be zero. In this study, this 
waterline is extracted with NIR band by thresholding and 
using a Sobel operator for line extraction.

4. THE EXPERIMENTS

With the WorldView images and procedure described 
above, the experiments on depth retrieval are conducted. 
Both the semi-analytical model and BP regression approach 
are performed for validating the effectiveness of the cloud 
removal procedure.

4.1 Cloud Masking

There are two schemes for masking cloud areas, direct 
thresholding with NIR and thresholding after HOT. Figure 2 
shows the sub-scenes of WV-2 result from the first method 
and Fig. 3 from the second. Manual interpretation confirmed 
that direct thresholding with (μ + 1.5σ) and (μ + 2σ) provides 
better results than the HOT approach. The result from WV-3 
scene is the same but less significant. The direct thresholding 
with NIR image is then selected and is followed by manual 
editing for refinement such as removing the breaking wave 
area. The threshold chosen is (μ + 1.5σ) for the least editing 
required.

4.2 Cloud Component Removal

This study determined four endmembers through the 
cloud masking and water substrate classification. These 
four endmembers (i.e., cloud, substrates 1 to 3) are shown 
as Table 4. This study combines endmembers (E) and 
mixed reflectance (R) to determine the abundance (f) of 
each endmembers of the pixel using linear un-mixing model  
[Eq. (1)]. The cloud abundance of a WV-2 sub-scene is 
shown in Fig. 4a and WV-3 in Fig. 4b. The highest value 
is approximately 0.49 (49%) for WV-2 and 1 (100%) for 
WV-3. The distribution agrees with the visual impressions 
shown below. After cloud component removal, the result-
ing images are shown in Fig. 5. Only the clouds inside the 
atoll, the study area, are processed and removed. The cloud 
outside the atoll remains. The Cloud removal result from 
the WV-3 scene is shown in Fig. 6. The disturbance from 
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cloud components are significantly reduced and the texture 
of substrates can be clearly observed. Examining carefully, 
there are still some cloud effects left, particularly on the 
edge of the cloud where the cloud is thin, but these remnants 
are not obvious.

4.3 Depth Retrieval with Neural Network

There are about three million grid points in the digital 
bathymetric model applied for investigation. Random sam-
pling is applied in selecting 1000 grid points for the training. 
In order to account for the substrate types, the WV-2 image 
is classified into six classes with ISODATA. The result is 
shown in Fig. 7.

Plotting the randomly selected sampling points with 
classes as the axis of abscissa, depth as the vertical axis,  
Fig. 8 indicates that the samples are reasonably distributed 
in the combination of substrate types and depth ranges. Sub-
strate 1 has 332 samples, 226 for substrate 2, 134 for sub-
strate 3, 111 for substrate 4, 124 for substrate 5, and 73 for 
substrate 6. The depth ranges from 0 - 45 m for substrate 
type 1, 2, 3, which are corresponding to the deeper area in-
side lagoon. Substrate type 4, 5, and 6 are corresponding to 
shallower water. The depth is subsequently less than 10 m.

The BP neural network is trained with the depth and 
WV-2 image reflectance of randomly selected 1000 samples. 
The constructed model is then applied to estimate depth with 
both WV-2 and WV-3 images. The training and validation 

Parameter Description

Rrs Above-surface remote sensing reflectance

rrs Subsurface remote sensing reflectance

rrsdp Remote sensing reflectance for deep water

Du
C Optical path-elongation factor for scattered photon from water column

Du
B Optical path-elongation factor for scattered photon from water bottom

sj Subsurface solar zenith angle

j Viewing angle

t Bottom albedo

k Attenuation coefficient

H Water depth

Table 2. The parameter in the semi-analytical model.

[C]
480 nm 545 nm

Absorption a Backscatter bb Absorption a Backscatter bb

0 0.01270000 0.001698900 0.05195000 0.000999345

0.03 0.02089596 0.003225972 0.05431798 0.002257068

0.05 0.02413064 0.003738796 0.05519632 0.002698724

0.07 0.02719744 0.004367980 0.05606174 0.003266780

0.10 0.03379752 0.004752224 0.05902766 0.003589304

0.15 0.03777720 0.005379860 0.06028880 0.004199552

0.20 0.04781844 0.005614964 0.06345974 0.004423208

0.30 0.05771264 0.007199072 0.06704276 0.005842460

0.50 0.08551636 0.009958872 0.07877340 0.008473350

0.70 0.10438128 0.010626892 0.08857622 0.009179984

1.00 0.13120812 0.012861188 0.09501068 0.011408436

1.50 0.19048800 0.017107552 0.12470846 0.015525784

2.00 0.19304640 0.018210316 0.12631864 0.016704478

3.00 0.27081280 0.019985104 0.15801500 0.018702958

5.00 0.34714160 0.028513440 0.19578580 0.027271360

Table 3. The coefficients of 15 layers.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Cloud mask with direct thresholding, sub-scenes of WV-2, (a) (e) the true color image; (b) (f) NIR (μ + σ); (c) (g) NIR (μ + 1.5σ); (d) (h) 
NIR (μ + 2σ).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Cloud mask thresholding after HOT, sub-scenes of WV-2, (a) (e) the true color image; (b) (f) NIR (μ + σ); (c) (g) NIR (μ + 1.5σ); (d) (h) 
NIR (μ + 2σ).

Band 1
(478.3 nm)

Band 2
(545.7 nm)

Band 3
(658.8 nm)

Band 4
(832.9 nm)

WV2

Cloud 0.331372 0.310115 0.278355 0.281826

substrate 1 0.050445 0.039589 0.014943 0.022746

substrate 2 0.077279 0.072141 0.019162 0.024029

substrate 3 0.108760 0.105438 0.022221 0.025948

WV3

Cloud 0.559959 0.568018 0.549883 0.523428

substrate 1 0.038311 0.022660 0.012651 0.021222

substrate 2 0.057343 0.053939 0.020646 0.023372

substrate 3 0.092521 0.095148 0.032143 0.026000

Table 4. The endmembers E for linear un-mixing.
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(a) (b)

Fig. 4. Cloud abundance, (a) WV-2 sub-scene; (b) WV-3 sub-scene.

(a) (b)

Fig. 5. Cloud removal, WV-2, (a) before; (b) after.

(a) (b)

Fig. 6. Cloud removal, Wv-3, (a) before; (b) after.
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performance is shown in Fig. 9. Best performance reached 
at the 30th epoch with an MSE value of 6.5 m. Among the 
1000 samples, 80% were used as training subset. The cor-
relation R between output and target is 0.92869. 10% were 
used for validation with a correlation of 0.9293. 10% were 
used for testing with a correlation of 0.94401. The correla-
tion of the complete sample set is 0.93106.

After the cloud component removal, the estimated water 
depth from WV-2 and its discrepancy with the ground truth 
is shown in Fig. 10. The error indices derived for the com-
plete image, including cloud influenced area, are, average 
error is 0.21 m, standard deviation 2.79 m, RMSE 2.80 m, 
extreme errors are 150.69 and -77.70 m. This data is clearly 
normally distributed, as seen from the histogram of errors. 
As a concluding remark, the overall accuracy is better than  

3 m, but with large outliers. The error indices derived for 
the pure water area and the cloud-influenced area are sum-
marized in Tables 5 and 6, respectively.

From Table 5, the positive correlation between the 
RMSE of depth estimation and the depth of the water is 
quite clear. When the depth exceeds 30 m, the mean error is 
above -8 m and no longer meaningful. This generally agrees 
with the penetration capability of light in water. For depth 
0 - 15 m, the RMSE is 2.00 m, equivalent to 13.3% of the 
depth. The RMSE is 2.81 m with a ratio of 9.36% for the 
15 - 30 m range.

The statistics for cloud-influenced areas is summarized 
in Table 6. In general, the RMSE increases with the cloud 
abundance. The exception is the 0 - 10% category. This can 
be explained by the depth range that reaches a height of  

Fig. 7. Substrate classification with ISODATA, WV-2.

Fig. 8. The distribution of the depth and substrate type training samples.
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Fig. 9. MSE curve of training.

(a) (b)

Fig. 10. WV-2 result from BP, (a) depth retrieved; (b) error.

Depth (m) Mean Error (m) Stan. Dev. (m) RMSE (m) Maximum (m) Minimum (m)

0 - 15 0.52 1.93 2.00 150.69 -77.70

15 - 30 0.36 2.79 2.81 69.35 -43.76

30 - 48 -8.46 5.13 9.89 40.86 -53.45

Table 5. Error indices of pure water area, BP depth estimation, WV-2.

Cloud (%) Mean Error (m) Stan. Dev. (m) RMSE (m) Maximum (m) Minimum (m) Reference Depth (m)

0 - 10 -0.63 3.01 3.08 14.65 -32.90 0.6 - 43.8

10 - 20 0.72 2.44 2.54 13.38 -7.69 0.7 - 18.5

20 - 30 3.49 3.82 5.18 19.00 -4.92 1.7 - 18.7

30 - 40 5.43 4.87 7.30 23.66 -3.37 1.9 - 18.7

40 - 49 11.69 6.11 13.24 25.03 -2.45 13.0 - 17.8

Table 6. Error indices of cloud influenced area, BP depth estimation, WV-2.
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43.8 m and is the largest of the five categories. The RMSE 
value reflects that uncertainty of the estimate is a function 
of both the depth and the cloud abundance. When limiting 
depth is less than 20 m, the RMSE is 2.82 m for 0 - 20% 
cloud abundance, which is about 14% of the depth.

The depth retrieved and its error from WV-3 are shown 
in Fig. 10. The trace of cloud coverage is visible in both, 
indicating the incompleteness of the cloud removal scheme. 
Overall, the mean error is 0.16 m, standard deviation 2.79 m,  
RMSE 2.79 m, error ranges from 41.59 m to -16.43 m. This 
experiment demonstrated that the retrieval model established 
with training samples from a WV-2 image could yield depth 
estimation from another image of WV-3, with RMSE equiv-
alent to those yielded from the original training image.

The error statistics from the pure water area and 
cloud-influenced area of the WV-3 case are summarized in  
Tables 7 and 8, respectively. Due to the nature of the site, 
the water is relatively shallower nearby the Dongsha island. 
However, the trend that the RMSE is positively correlated 
to the depth is still clear. For areas with depth ranges from  
0 - 15 m, the RMSE is 1.54 m, about 10% of the depth, 
which is slightly lower than the 13% in WV-2 case. But, this 
is reversed in the 15 - 30 m depth range.

The influence of depth and cloud abundance to the 
depth uncertainty is reflected in Table 8. There are much 
fewer samples in the WV-3 case than the WV-2. In particu-
lar, there are only 6 samples for 0 - 10% cloud abundance 
and 15 samples for the 90 - 100% category. This should be 
taken into consideration when interpreting the indices. In 

comparing the WV-3 case with WV-2, the cloud removal 
scheme performs better in the WV-2 case than in WV-3. 
This may result from the site characteristics. In WV-3 scene, 
the sea bottom of the cloud-influenced area has good reflec-
tance due to the substrate type, which is also an important 
factor of the depth estimation quality.

4.4 Depth Retrieval with Semi-Analytical Model

In this processing scheme, the reflectance from the 
blue and green bands of the WorldView images are the in-
put observation. The 15 sets of attenuation coefficients de-
rived from the absorption and backscatter coefficient with 
the use of IOCCG synthetic dataset, as listed in Table 3, 
are applied to retrieve the depth. Then, the depth of each set 
is evaluated with the aid of reference depth obtained from 
airborne bathymetric lidar. The set of coefficients, which 
produces the best agreement with ground truth, is selected. 
This procedure may be avoided if the in situ measurements 
of the water property parameters are available.

IOCCG dataset uses phytoplankton concentration [C] 
as a variable, ranges from 0.03 - 30.0 μg l-1, in 20 layers, 
with 25 sets in each layer. Starting with [C] = 0, the depth 
at waterline is -4.59 m, which is above water. The trend is 
consistent at [C] = 0.5 with depth of -6.08 m, then reverses 
at [C] = 5.0 with depth of -0.65. The final retrieved depth 
is adjusted with waterline constraints. The RMSEs of depth 
from these 15 sets are all larger than 6 m before applying 
waterline constraints. With waterline constraints, the RMSE 

Depth (m) Mean Error (m) Stan. Dev. (m) RMSE (m) Maximum (m) Minimum (m)

0 - 15 0.72 1.36 1.54 4.74 -7.13

15 - 30 -3.28 5.83 6.69 36.31 -14.79

30 - 38 -4.07 5.80 7.09 20.53 -16.43

Table 7. Error indices of pure water area, BP depth estimation, WV-3.

Cloud (%) Mean Error (m) Stan. Dev. (m) RMSE (m) Maximum (m) Minimum (m) Reference Depth (m)

0 - 10 -0.77 5.54 5.60 1.89 -12.06 3.5 - 30.0

10 - 20 -0.45 1.95 2.00 25.06 -7.90 3.0 - 25.0

20 - 30 0.11 2.61 2.62 41.59 -4.96 3.0 - 22.4

30 - 40 0.54 3.47 3.51 36.53 -3.02 3.2 - 21.6

40 - 50 0.00 1.93 1.93 38.19 -1.56 3.7 - 19.5

50 - 60 -0.26 1.09 1.13 10.41 -2.22 4.1 - 12.1

60 - 70 -0.84 0.66 1.07 1.55 -2.52 4.3 - 6.6

70 - 80 -1.04 1.20 1.59 3.13 -3.36 4.3 - 6.7

80 - 90 -1.42 1.95 2.42 5.88 -4.10 5.0 - 6.7

90 - 100 -0.44 2.20 2.25 3.97 -3.09 6.2 - 6.6

Table 8. Error indices of cloud influenced area, BP depth estimation, WV-3.
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of [C] = 0.30 dataset reduces to 3.88 m, the lowest among 
the 15. Consequently, the coefficients corresponding to [C] 
= 0.30, i.e., 480 nm: a = 0.05771264, bb = 0.07199072 for 
wavelength 480 nm, blue band; and a = 0.06704276, bb = 
0.05842460 for 545 nm, green band, are applied in the mod-
el for retrieval. The waterline offset is -5.4650 m.

The depth retrieved from this semi-analytical model 
with waterline constraint and its discrepancy between the 
reference dataset is shown in Fig. 11. The overall mean error 
is -0.07 m, standard deviation 3.89 m, RMSE 3.89 m, error 
range from 19.74 to -34.65 m. Assessing pure water areas 
and cloud influenced areas separately, the error indices are 
summarized in Tables 9 and 10. The overall performance 
of this semi-analytical model based approach is inferior to 
the one obtained with BP (RMSE 2.80 m). In the 0 - 15 m 
depth range without cloud influence, RMSE 2.22 m from the 
semi-analytical model is close to the 2.0 m from BP. The 
other interesting finding is that the error ranges of the semi-
analytical model are smaller than the one with BP. In other 
words, the depth retrieved with this model has less probabil-
ity of large errors as compared to the BP approach.

The retrieved depth and error from WV-3 are shown 
in Fig. 12. The overall mean error is 1.06 m, standard de-
viation 2.91 m, RMSE 3.10 m, and error ranges from 17.70 
to -18.45 m. The performance is also inferior to the BP 
approach, which has RMSE value 2.79 m. Regarding the 
cloud removal, the trace of cloud in Fig. 12 is much less 
noticeable than Fig. 13 produced with the BP approach. Er-
ror indices for the pure water and cloud influenced areas are 

summarized in Tables 11 and 12. The observations on the 
performance are consistent with the WV-2 case.

4.5 Discussions
4.5.1 The Comparison of Two Different Approaches in 

Depth Retrieval

This study applied two methods for water depth retriev-
al from optical satellite images. The semi-analytical model 
contains several important physical parameters in depth re-
trieval while the BP neural network implies non-linear func-
tion to model the relationship between reflectance and water 
depth. The BP neural network highly relies on the quality 
of input data. The ground truth of this study was acquired 
by high precision bathymetric lidar. The numerical analysis 
indicated that the BP neural network provides better over-
all accuracy than the semi-analytical model. However, BP 
neural network has larger maximum depth error when com-
pared to semi-analytical method. In the visual analysis, the 
trend of water depth from semi-analytical model is more 
stable than BP neural network.

4.5.2 The Effect of Water Depth

The actual water depth is one of the constraints for the 
optical image in water depth retrieval. The experiment ana-
lyzed the accuracies in different depths. The results dem-
onstrated that the deeper water depth induces larger depth 
error via optical satellite image. To consider the water depth 

(a) (b)

Fig. 11. WV-2 result from model with waterline constraint, (a) depth retrieved; (b) error.

Depth (m) Mean Error (m) Stan. Dev. (m) RMSE (m) Maximum (m) Minimum (m)

0 - 15 1.03 1.97 2.22 11.39 -10.57

15 - 30 -1.59 2.42 2.89 19.74 -22.13

30 - 48 -16.03 6.87 17.44 15.70 -34.65

Table 9. Error indices of pure water area, model depth estimation, WV-2.
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Cloud (%) Mean Error (m) Stan. Dev. (m) RMSE (m) Maximum (m) Minimum (m) Reference Depth (m)

0 - 10 -1.49 3.99 4.26 11.58 -31.08 0.6 - 43.8

10 - 20 0.68 3.05 3.13 14.09 -5.90 0.7 - 18.5

20 - 30 4.49 3.57 5.74 18.93 -4.97 1.7 - 18.7

30 - 40 7.25 3.59 8.09 19.47 -2.37 1.9 - 18.7

40 - 49 10.74 2.81 11.16 16.16 2.16 13.0 - 17.8

Table 10. Error indices of cloud influenced area, model depth estimation, WV-2.

(a) (b)

Fig. 12. WV-3 result from model with waterline constraint, (a) depth retrieved; (b) error.

(a) (b)

Fig. 13. WV-3 result from BP, (a) depth retrieved; (b) error.

Depth (m) Mean Error (m) Stan. Dev. (m) RMSE (m) Maximum (m) Minimum (m)

0 - 15 1.66 1.11 2.00 5.63 -4.32

15 - 30 -2.87 5.49 6.19 15.73 -13.92

30 - 38 -3.50 8.27 8.98 17.70 -18.45

Table 11. Error indices of pure water area, model depth estimation, WV-3.
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in the pure water region less than 30 m, the root-mean-
squared errors of both methods is better than 2.89 m, which 
is equivalent to 10% relative error in WV2. In summary, the 
overall accuracy of the water depth retrieval using very high 
resolution multispectral satellite image reached 10%.

4.5.3 The Effect of Cloud Coverage

This study also considers the effect of cloud abundance 
and utilizes linear un-mixing for the cloud component removal 
for improving the quality of depth retrieval. The higher cloud 
abundance depicts the lower water abundance, and conse-
quently, the retrieval water depth in cloud influenced area 
showed lower accuracy when compared to pure water region. 
To consider the cloud abundance less than 20%, the RMSE 
of both methods is better than a 3.13 m while the reference 
depth is less than 20 m. But for the 50% cloud abundance, the 
RMSE reached 13.24 and 11.16 m for semi-analytical and BP 
models. In summary, the cloud abundance should be consid-
ered in the water depth retrieval from the optical image.

5. CONCLUSIONS AND FUTURE WORKS

The depth retrieval scheme proposed in this study in-
cludes cloud component removal with linear un-mixing al-
gorithm. With the experiment focused on two WorldView 
images and validated with bathymetric data obtained from 
airborne bathymetric lidar survey, the cloud removal pro-
cedure is shown to be most effective. Two depth retrieval 
approaches are then implemented. While the overall perfor-
mance of BP neural network is better than the semi-analyti-
cal model, the model has less probability in producing large 
errors than the BP. The cloud removal procedure is even 
more effective in the semi-analytical model than with BP.

Three error factors are identified: the cloud abundance, 
the depth, and the substrate type. The agreement between 
the estimated and ground truth is better with less cloud 

abundance. It is likewise clear that the error increases with 
the depth. Regarding the substrate type, the one providing 
higher reflectance performs better.

In this experiment, the conversion model established 
with the WV-2 image is applied to another image success-
fully. This may imply that a model established at a given 
time could be applied to other images collected at differ-
ent dates providing the environment factors such as water 
property remain unchanged. Reference bathymetric data 
were used in both depth retrieval schemes. While the train-
ing is indispensable for the BP approach, there is possibility 
that no in situ depth observation is required for the semi-
analytical model approach. In case the in situ information of 
phytoplankton concentration [C] is available, ground truth 
may not be required.

In this study, the proposed method only focused on 
cloud area without cloud shadow. As the cloud shadow will 
also affect the result of water depth determination, future 
work will also focus on cloud shadow removing. Once the 
cloud regions have been detected, it is possible to identify 
the possible cloud shadow region based on the azimuth and 
elevation angles of satellite and sun from image metadata 
(Fisher 2014). It can reduce the impact of cloud shadow and 
consequently improve the quality of water depth from an 
optical satellite image.
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