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ABSTRACT

The present study utilized satellite imagery and the Normalized Difference Veg-
etation Index (NDVI) to investigate the post-earthquake spatio-temporal changes of 
landslide for Huisun Experimental Forest Station (HEFS). Total 26 SPOT satellite 
images taken between January 1999 (before the Chi-Chi earthquake) and July 2016 
shows that the total landslide area was fluctuated after the earthquake and then be-
came stable after 2008. Overall, the long-term landslide trends of HEFS is approach-
ing a stable stage in terms of the slightly increasing mean NDVI value with decreasing 
NDVI variance from 1999 to 2016 based on the linear regression and Mean-Variance 
analyses. Two large landslide areas in Xinsheng Village and along Meitangan River 
were identified as statistically significant hot spots. More than 50% of landslides in 
HEFS were observed in areas with S-facing and SE-facing slopes with the majority 
of landslides occurred at 500 - 1500 m elevation. The slope characteristic of land-
slides changed to a concentration in 30 - 40 degree after the Chi-Chi earthquake and 
changed again to a concentration in 20 - 30 degree after 2008. Based on the results 
of the frequency of landslide occurrence, the total landslide area was the largest in 
the 0 - 9 times category. In the 10 - 16 and 17 - 26 times categories, high percentages 
of landslides were found in SE-facing and S-facing slopes. An inverse relationship 
was found between the landslide areas and the distance to river channel in the 0 - 9 
and 10 - 16 times categories. The results of spatio-temporal landslide analysis can be 
references for management and conservation strategies in HEFS.

Article history:
Received 30 March 2018 
Revised 16 December 2018 
Accepted 3 March 2019

Keywords:
Post-earthquake, Spatio-temporal 
analysis, Landslide, NDVI, Chi-Chi 
earthquake

Citation:
Yang, M.-D. and H.-P. Tsai, 2019: 
Post-earthquake spatio-temporal 
landslide analysis of Huisun Experi-
mental Forest Station. Terr. Atmos. 
Ocean. Sci., 30, 493-508, doi: 10.3319/
TAO.2019.03.03.01

1. INTRODUCTION

In recent years, global climate patterns have changed at 
an unprecedented speed and extreme events occurred more 
frequently with a wide range of impacts. For instance, the 
phenomenon of low sea water temperature in 2008 associ-
ated with the El Niño Southern Oscillation (ENSO) and ex-
treme cold front occurred in 2016 affected many agricultural 
and fishery industries in Taiwan (Chang et al. 2013; Wang 
et al. 2016). Additionally, Taiwan has a steep topography 
and is located at a compressive tectonic boundary between 
the Eurasian Plate and the Philippine Sea Plate, which re-
sults in frequent and complex seismic activities. As Taiwan 
locates in the north-western Pacific Ocean, the main warm 
pool for tropical cyclones formation, 3 - 4 typhoons make 

landfall in Taiwan every year. The extreme precipitation as-
sociated with typhoons often caused serious landslides dam-
ages in Taiwan (Lin et al. 2011a; Lin 2015; Lee 2017).

In 1999, the large-scaled Chi-Chi earthquake (ML = 7.3 
and Mw = 7.6) occurred in Central Taiwan. Many mountain-
ous areas were seriously damaged, vegetation was lost, and 
the surface strata were extensively disturbed. After the sur-
face strata have been highly disturbed, typhoons and heavy 
rainfall events have triggered more landslides because of 
higher water infiltration in loose sediment (Chang and Slay-
maker 2002; Lin et al. 2011b; Yang et al. 2011). Conse-
quently, as frequent earthquakes, steep terrain, and typhoon 
incursions often pose great threats to the lives and property 
of Taiwan residents, a better understanding of long-term 
landslides spatial and temporal patterns in Central Taiwan 
is urgently needed.
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Taiwan has a wide mountainous area and a rugged ter-
rain, which results in high inaccessibility for most mountain-
ous regions, and it is more difficult for local investigations 
on landslides. Compared with traditional local investiga-
tions on landslides, remotely sensed data provides many 
advantages including higher spatial coverage and longer 
temporal coverage (Barrett 2013). Therefore, utilizing re-
motely sensed data to investigate landslides has become an 
efficient way to better interpret landslide patterns (Bozzano 
et al. 2017; Du et al. 2017; Qi et al. 2017). With the continu-
ous development and progress of remote sensing technol-
ogy, many new technology developments have contributed 
to the study of landslides. For instance, InSAR technology 
for surface deformation (Hetland et al. 2012; Chaussard et 
al. 2014; Lu and Dzurisin 2014), Light Detection and Rang-
ing (LiDAR) and airborne Laser Scanning (ALS) (Pope 
and Treitz 2013; Johnson and Ouimet 2014; Plowright et 
al. 2016), Geographic Information System (GIS) combined 
with multi-scaled satellite imageries (Czerepowicz et al. 
2012; Alexakis et al. 2013; Vibrans et al. 2013; Bhandari 
et al. 2014), and aerial photography using unmanned aerial 
vehicles (Turner et al. 2012; Mancini et al. 2013; Peña et al. 
2013; Yang et al. 2017b) all have brought increasing atten-
tions in landslide studies.

Using multi-date satellite image remote sensed data 
to analyse terrain vegetation has been recognized as an ef-
ficient way to distinguish vegetation recovery dynamics 
and trends on large-scaled landslides (Yang et al. 2013). 
The normalized difference vegetation index (NDVI) has 
been widely used to analyse seasonal trends of vegetation 
(Brandt et al. 2016; Maeda et al. 2016; Tsai et al. 2016), 
climate change trends (Pravalie et al. 2014; Li et al. 2015; 
Tsai and Yang 2016), vegetation health status (Yang et al. 
2004, 2007; Yang 2007; Dutta et al. 2015; Gopinath 2015) 

and land use change (Adesuyi and Műnch 2015; Guan et 
al. 2017). Many scholars in Taiwan have applied NDVI de-
rived from multi-date satellite images for landslide studies 
(Lin et al. 2004, 2006; Tsai et al. 2010; Yang et al. 2017a), 
which addresses vegetation recovery status after the Chi-
Chi earthquake in Central Taiwan. Huisun Experimental 
Forest Station (HEFS), an important ecological conserva-
tion area in Central Taiwan (Hsieh et al. 2016), has been 
influenced by the Chi-Chi earthquake in 1999. Empowered 
by remotely sensed data availability, the present study aims 
to understand the long-term landslides spatial and temporal 
patterns in Central Taiwan by utilizing multi-date satellite 
images from 1999 to 2016 to evaluate the overall landslide 
changes in HEFS after the Chi-Chi earthquake. The results 
of the present study are expected to be important in terms 
of contributions to a better and deeper understanding of 
landslide occurrence in Central Taiwan. Additionally, the 
characteristics of landslides are analyzed both spatially and 
temporally. Moreover, this study also carries out spatial 
hotspot analysis of landslides and conducts in-depth discus-
sions on long-term vegetation and landslide trends. As the 
landslides in HSFS been characterized, detailed quantitative 
properties can serve as a fundamental tool both for improv-
ing the efficiency of management and conservation and also 
for enhancing relevant modeling geo-processes related to 
landslide dynamics in the future.

2. MATERIALS AND METHODS
2.1 Study Site

Huisun Experimental Forest Station (HEFS) (24°04’N; 
121°01’E) is situated in central Taiwan in Ren’ai Town-
ship, Nantou County (Fig. 1). HEFS is one of four forestry 
stations operated by the Department of Forestry, National 

Fig. 1. Study site of Huisun Experimental Forest Station (HEFS).
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Chung Hsing University and comprises 77.47 km2 with the 
highest altitude of 2417 m located in the southern east part 
of Shouchen Mountain. Around 80% of HEFS area main-
tain the primitive forest, which is a valuable resource for 
both research and recreation purpose.

HEFS with a range in altitude from 433 - 2417 m, nearly 
2000 m of elevation difference. Beigang River flowing along 
this area coupled with the tributaries of Guandao river under 
the vigorous down cutting effect and the crisscrossed of high 
mountain deep valley, forming of majestic canyon, water-
fall, torrent and other scenery. HEFS mostly are old-growth 
forest, comprising varieties of Taiwan-specific plants, native 
fish species and variety of rare animals, etc., can be used 
for teaching, academic research, ecology conservation and 
forestry new technology demonstration business premises.

This study investigates changes after the Chi-Chi earth-
quake in HEFS from 1999 till 2016. By using multi-date 
satellite images, the long-term change trajectory of HEFS 
can be evaluated by combining the analysis of vegetation 
index and landslide analysis. The flowchart of this study is 
illustrated in Fig. 2 and the information of used multi-date 
satellite images was provided in Table 1.

2.2 Radiometric Correction for Multi-Date Satellite 
Image

Radiometric correction for multi-date satellite image 
processing is essential and critical in conducting long-term 
spatial monitoring. Due to the different environmental con-
ditions of image shooting at different times, spectral differ-
ences and atmospheric conditions need to be considered. 

This study utilized histogram matching, a relative radiomet-
ric correction process, to adjust the radiometric properties 
based on 2012/10/17 image for all other images. Histogram 
matching is an algorithm that can make the grayscale his-
togram of one image become as similar as possible to the 
user-specified one. Additionally, histogram matching sup-
ports the best contrast enhancement to the ideal span of 
the brightness value of the output image and automatically 
avoids output image from becoming too bright or too dark 
by removing the extreme part of a normal distribution histo-
gram (Jensen 2005).

2.3 Normalized Difference Vegetation Index (NDVI) 
and Mean-Variance Analysis (MVA)

Currently, this research is based on France SPOT satel-
lite image data, collecting images before and after landslide 
happened, calculating NDVI based on the spectrum differ-
ences of vegetation. Additionally, a linear regression anal-
ysis is applied to evaluate the long-term trends of NDVI. 
Moreover, the Mean-Variance analysis (MVA) of NDVI is 
carried out in order to investigate vegetation index.

2.3.1 NDVI

NDVI calculation theorem is based on the green plant 
which will strongly absorb red light and reflect infrared, 
as a result the value of NDVI can reflect plant in the red 
spectrum portion and infrared spectrum portion difference 
(Rouse et al. 1974; Huete et al. 2002; Warner and Cam-
pagna 2009), and then used to evaluate the healthiness of the 

Fig. 2. Flowchart of the present study.
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Date SPOT Spatial resolution (m) Typhoon (TY) and heavy rain event Description

1999/01/05 SP1

20

Chi-Chi earthquake (1999/9/21)
1999/10/31 SP4

2000/10/29 SP4 Bilis (2000/8/21)

2001/01/20 SP4 Xangsane (2000/10/30)

2001/10/12 SP4 Toraji (2001/7/28)
Nari (2001/9/13)

Two bridges were submerged by mudslide, and parts of forest 
land were destroyed

2002/01/08 SP4

2003/07/07 SP5

10

Soudelor (2003/6/16)

2004/03/13 SP5

2004/07/10 SP5 Mindulle (2004/6/28) Two bridges were submerged by mudslide causing traffic 
congestion.

2005/11/11 SP5
Haitang (2005/07/16)
Talim (2005/08/30)

Longwang (2005/09/30)

2006/12/06 SP5

2007/11/25 SP5 Sepat (2007/08/16)
Krosa (2007/10/04)

2008/05/14 SP5

2008/11/28 SP5

Kalmaegi (2008/07/16)
Fung/wong (2008/07/26)

Sinlaku (2008/09/11)
Jangmi (2008/09/26)

Meitangan River landslide  (associated with TY Sinlaku)

2009/05/08 SP5

2009/12/12 SP5 Morakot (2009/08/05)

2010/02/28 SP5

2010/12/21 SP5

2011/02/27 SP5

2011/09/18 SP5 Nanmadol (2011/08/27)

2012/01/10 SP5

2012/10/17 SP5
Heavy rain event (2012/6/10)

Tembin (2012/08/26)
Saola (2012/07/30)

2013/02/24 SP5

2014/08/29 SP5
Soulik (2013/07/11)
Usagi (2013/09/19)

Matmo (2014/07/21)

2015/02/01 SP5

2016/07/20 SP6 6
Dujuan (2015/09/27)

Soudelor (2015/08/06)
Nepartak (2016/07/06)

Table 1. Satellite image date and corresponding information.
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plant. NDVI calculation is expressed in Eq. (1):

NDVI NIR RED
NIR RED= +

-  (1)

The value of NDVI is between -1 and +1. The formula 
of NDVI calculation could cancel out mostly of the deviation 
of radiation. A larger NDVI value indicates the plant was tak-
ing in so much of the infrared spectrum and so the plant is 
healthier but if the value is small then it is the contrary.

2.3.2 Mean-Variance Analysis (MVA)

Mean-Variance analysis (MVA) developed by Pickup 
and Foran (1987) is used to reveal the spatial and temporal 
pattern of vegetation indices (VIs) derived from remotely 
sensed data. Many scholars modified the method to define 
meaningful seasonal and inter-annual responses of veg-
etation to climate and disturbances (Tsai and Yang 2016). 
The MVA portrays dynamic systems graphically as a time-
evolving process by plotting the mean of the vegetation in-
dex (VI) response versus its variance on a portrait.

2.4 Landslide Identification

The present study used supervised classification of 
Gaussian Maximum Likelihood Classifier for landslide 
identification from all images. Gaussian Maximum Likeli-
hood Classifier is one of the supervised classification that 
requires assigned training sample data. After the training 
sample data are selected, the spectral characteristics of 
training sample data were extracted as a template to clas-
sify the whole image. The spectral characteristics of the 
training sample data such as homogeneous aggregation and 
heterogeneous separation have a great impact on the result 
so training sample data must be carefully chosen. The ba-
sics steps of Gaussian Maximum Likelihood Classifier are 
shown below:
(1) Decide the types of surficial coverage.
(2) Choose pixels from each category as a training sample.
(3)  Calculate the probability of unknown pixel from each 

category.
(4)  Assign the highest probability of occurrence to catego-

rize unknown pixel.
As a result, it is assumed that the number of categories 

by the image is i~  i = 1, 2, ..., n, where n represents the 
number of classes. To determine the types of each pixel x 
or its various types of the probability of occurrence, the for-
mula can be expressed as Eq. (2).

, , ...,P x i n1 2i~ =^ h  (2)

The classification is analysed according Eq. (3).

if P x P x j ifor all>i j !~ ~^ ^h h  (3)

If P xi~^ h the probability of occurrence is the highest, then 
the pixel belong to the category i~ .

Assume each surficial coverage is in normal distribu-
tion, having sufficient training information, we could use 
these training information to estimate the distribution of 
each surficial coverage. Although P xi~^ h could not be ob-
tained, P xi~^ h can be found from the training information 
and is expressed as Eq. (4).

( ) ( )P x P x P P xi i i~ ~ ~=^ ^h h  (4)

Among them, ( )P i~  is the probability of occurrence 
of category i~ . The way Gaussian Maximum Likelihood 
Classifier classify unknown pixel is likely using estimation 
of variations and correlation of spectral reaction patterns in 
each category. For this purpose, assume that the category 
training area formed by the distribution of the intensive 
points of the training sample area is the Gaussian value, that 
is, normal distribution. Under this assumption, the distribu-
tions of the board spectrum reaction form of each category 
can be expressed by the mean vector and the covariance ma-
trix, the spectral response patterns and mean vectors is cor-
related. After having these parameters, the statistical prob-
ability of each unknown pixel can be calculated (Lillesand 
et al. 2008).

2.5 Frequency of Landslide Occurrence

The number of landslides occurs during 1999 to 2016 
were calculated for each pixel (10 × 10 m). By summing the 
number of occurrences, a frequency of landslide occurrence 
map was produced for further analyses regarding the rela-
tionship between the frequency of landslide with elevation, 
slope, aspect, and distance to the river.

2.6 Hotspot Analysis

Hotspot Analysis has been widely used in vegetation 
science (Fortin et al. 1990), plant spatial genetic structure 
(Takahashi et al. 2008), land pollutions (Zhang et al. 2008; 
De la Torre et al. 2012), road collision analysis (Manepalli 
et al. 2011), coral reef environment evaluations (LeDrew 
et al. 2000), and many other fields. The spatial hotspot 
calculates the degree of spatial autocorrelation based on a 
certain eigenvalue between the spatial unit and its surround-
ing units and then analyses the spatial distribution of these 
spatial units. Spatial autocorrelation analysis can be divided 
into global spatial autocorrelation and local spatial autocor-
relation. Global autocorrelation can be used to determine 
the clustering characteristics in space based on the auto-
correlation coefficients. Moran’s I, an index developed by  
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Moran in 1950, is the most commonly used measurement 
index of Global autocorrelation (Moran 1950). Regional 
autocorrelation can be used to calculate the scope of the 
cluster, and the degree of spatial autocorrelation (Anselin 
1995). Getis-Ord Gi* statistic was developed to identify the 
clustering of a low and high index of regional autocorrela-
tion (Getis and Ord 1992). This study uses regional autocor-
relation Getis-Ord Gi* for hotspot analysis:
Getis-Ord Gi* is defined as:

( )
( )

G d
x

w d x
*
i

jj
n
ij jj

n

1

1=
=

=

/
/

   j may equal to i  (5)

where wij is a matrix of spatial weight between feature i and 
j; d is distance; wij(d) = 1 when j within d of i, otherwise, 
wij(d) = 0; xi and xj is the attribute value for feature i and j; n 
is the total number of features.

3. RESULTS AND DISCUSSION
3.1 Images Pre-Processing

This study utilized 26 SPOT images from 1999 to 2016 
collected before and after natural disasters (Table 1) to in-
vestigate the landslide conditions and vegetation variation. 
All satellite images were pre-processed with geometric and 
radiation corrections, where radiation correction was based 
on histogram matching correction to minimize the influenc-
es from factors such as atmospheric condition, photographic 
condition, and landform factors, and so on.

3.2 Mean-Variance Analysis of Normalized Difference 
Vegetation Index (NDVI)

The mean and standard deviation values were calcu-
lated from the NDVI values derived from 26 SPOT satellite 
images of HEFS from 1999 to 2016 (Fig. 3). The results 
showed that the average NDVI was the highest before the 
Chi-Chi earthquake (0.523), and the average value de-
creased after the earthquake and fell to a minimum (0.485) 
in 2001. The NDVI standard deviation is the lowest (0.08) 
before the earthquake and the highest (0.197) in 2003. At 
the same time, according to the results of linear regression 
analysis, the NDVI average has a slight upward trend and 
the NDVI standard deviation has a slight downward trend. 
It can be inferred that the overall vegetation status of HEFS 
has been gradually revived after the earthquake.

In this study, Mean-Variance analysis (Fig. 4) was 
used to investigate the spatial and temporal patterns of the 
overall vegetation status of HEFS. Figure 4 uses the mean 
value of NDVI and spatial variance value as the horizontal 
axis and the vertical axis respectively. An overall average 
of the NDVI mean and spatial variability is noted. The first 
quadrant in Fig. 4 has a high mean value and high spatial 

variability; the second quadrant has a high mean value and 
low spatial variability that indicates vegetation is in a sta-
ble state; the third quadrant has a low mean value and high 
spatial variability that means less vegetation exists and the 
landscape can be easily disturbed. The fourth quadrant is 
characterized by low mean and low spatial variability that 
illustrates a homogenous and degraded landscape with a 
small amount of vegetation. The results showed that the 
NDVI of HEFS was located in the second quadrant before 
the Chi-Chi earthquake representing a stable stage of vege-
tation status. After the earthquake occurred, values of mean 
and variance of NDVI shifted from the second quadrant to 
the fourth quadrant, which indicated the overall state of de-
clining vegetation. During the period from 2000 to 2009, 
vegetation status has fluctuated across all quadrants. After 
the year of 2010, values of mean and variance of NDVI 
were mainly in the second quadrant that suggested the over-
all vegetation status had been stable with high NDVI values 
and low spatial variability.

3.3 Landslide Area Identification

Landslide area identification was conducted using 
Maximum-likelihood supervised classification and supple-
mented by artificially assisted interpretation. At the time of 
1999/01/05 (before the Chi-Chi earthquake), only a large 
landslide was spotted in Xinsheng Village which was locat-
ed in the Jhuoshuei Mountain catchment. The rest of land-
slides were scattered distributed across HEFS and small in 
size in several catchments in Beigang River basin (Juiyan 
River, Chuanggu River, Songfeng Mountain, Yangan Ric-
er, Hsuanya and Meiyuan catchments) and Dongyan River 
catchment in Wuxi River basin.

After the Chi-Chi earthquake, landslides areas ex-
panded to a broader spatial coverage. Other than the above-
mentioned catchments, many small landslides were found in 
Huangrou River, Shouchengda Mountain, Guandao River, 
Hsiaochu Mountain, Meimu, and Dongfeng River catch-
ments. In the year of 2008, a big landslide of 0.9 km2 oc-
curred near Meitangan River was triggered by Typhoon 
Sinlaku in September 2008 (Hsieh et al. 2016). This big 
landslide near Meitangan River was easy spotted in the sat-
ellite images taken since 2008/11/28, so-called Meitangan 
River landslide. Analysis of landslide characteristics includ-
ing area, NDVI, aspect, slope, and height were carried out 
and discussed hereafter.

Figure 5 shows the time series of NDVI and total land-
slide areas from 1999 to 2016. The total landslide areas be-
fore the Chi-Chi earthquake is approximately 2 km2. After 
the earthquake, the average value of NDVI decreased and 
the area of landslides increased 1.5 times compared with the 
previous period (3.1 km2). Before 2008, the amplitude of 
NDVI values and the landslide areas were large and fluctu-
ated. After 2008, the averaged NDVI increased and the area 
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of the landslide was relatively stable, approximately 5 km2.
The slope variations of landslides were categorized into 

three time periods, namely before the Chi-Chi earthquake 
(1999/01/05), after the earthquake to 2008, and 2009 - 2016 
(Fig. 6). At the time before the Chi-Chi earthquake, landslides 
in HEFS were evenly distributed at 0 - 50 degrees and the 
size of landslides were relatively small. During the decade 
following the earthquake, landslides in HEFS were concen-
trated at 30 - 40 degrees (the 4th grade slope based on the soil 

and water conservation technical specifications) with much 
larger sizes. The change of landslide sizes is considered to be 
highly related to the effects of the Chi-Chi earthquake on the 
disturbance of surface strata. At the time from 2009 - 2016, 
the concentration slope range shift to 20 - 30 degrees with 
smaller landslide sizes which indicates a lack of large-scale 
landslides and an overall stable status of HEFS.

The landslide elevation variations in HEFS in Fig. 7 
show most landslide within the elevation of 500 - 1000 and 

Fig. 3. NDVI time series of Huisun Experimental Forest Station.

Fig. 4. NDVI Mean-Variance analysis of Huisun Experimental Forest Station.
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Fig. 5. Time series of NDVI mean and landslide area in Huisun Experimental Forest Station.

(a) (b) (c)

Fig. 6. Landslide area slope variations of Huisun Experimental Forest Station: (a) 1999/01/05, (b) 1999 - 2008, and (c) 2009 - 2016.

Fig. 7. Landslide area elevation variations of Huisun Experimental Forest Station.
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1000 - 1500 m. A small proportion of landslides occur in 
the elevation range of 1500 - 2000 m that is consistent with 
the research results of Feng and Lin (2003). The present 
study unifies the slope direction data of the landslide lands 
(Fig. 8), in which 28.75 and 28.71% of the landslides are 
SE-facing and S-facing slopes, respectively. In Taiwan, ty-
phoon route is divided into 10 categories, in which only the 
2nd category, passing over northern Taiwan heading to west 
or north-west, and the 3rd category, passing over central 
Taiwan heading to west or north-west, affect HEFS areas. 
According to the wind direction records from the two near-
est weather stations, Renai and Meifeng stations, the most 
frequent wind direction during typhoon events in this area 
is SE. Bearing in mind that solar energy concentrates on 
S-facing slope and windward side of typhoons, the occur-
rence of landslides becomes more likely on SE-facing and 
S-facing slopes (Lu et al. 2011). Additionally, the aspect of 
the Meitangan River landslide is mainly SE-facing slope. 
Considering the relatively large size of the Meitangan River 
landslide, it is reasonable to expect the dominant aspects of 
landslides are the SE-facing slope.

3.4 Frequency of Landslide Occurrence

Figure 9 shows the results of the cumulative numbers 
of landslide occurrence based on identified landslides from 
1999 to 2016 at a 10 square meters’ pixel resolution. Higher 
values indicate a more frequent landslide occurrence and 
vice versa. In the Xinsheng Village area, the observed high 
value indicates a persistent landslide condition inferring 
poor vegetation coverage and bare land. Other observed 
high-value pixels mainly distributed along the Beigang 
River. Three categories of the observed number of landslide 
occurrences, 0 - 9, 10 - 16, and 17 - 26 times, were inves-

tigated in terms of their characteristics of the slope, aspect, 
and distance to a river (Fig. 10).

According to the soil and water conservation technical 
specifications, slopes degrees are classified into six grades 
which are 0 - 5, 5 - 15, 15 - 30, 30 - 40, 40 - 55, and > 55 
degrees, respectively. As shown in Table 2, among the three 
categories of landslide frequencies, the total area is propor-
tional to the slope grade gradient, and the landslide area is 
the largest and the ratio exceeds 55% (6th grade of slope). 
The total landslide area was the largest in the 0 - 9 times 
category of 192.71 km2 while the total area of the landslide 
was 2.28 and 0.75 km2 in the 10 - 16 and 17 - 26 times cat-
egories, respectively.

In the 0 - 9 times category, landslides were found in 
almost every aspect (Table 3). In the 10 -16 and 17 - 26 times 
categories, higher percentages of landslides were found in 
SE-facing and S-facing slopes. In the 10 - 16 times category, 
31.6 and 30.1% of landslides occurred on the SE-facing and 
S-facing slope, respectively. In the 17 - 26 times category, 
35.8 and 45% of landslides occurred on the SE-facing and 
S-facing slope, respectively. Due to two large landslide areas 
in the Xinsheng Village and Meitangan River are SE-facing 
and S-facing, it is reasonable to expect the dominant aspects 
of landslides in HEFS are SE-facing and S-facing slopes.

Regarding the distance between the landslide and the 
river channel, this study uses a 50-m spacing buffer dis-
tances to exam the relationship between the distance to the 
river channel and three categories of landslide frequencies  
(Table 4). The results showed that more than 60% of the 
landslides in each category were located more than 200 m 
away from the river channel. However, for the rest of land-
slides, an inverse relationship was found between the land-
slide areas and the distance to a river channel in the 0 - 9 
and 10 - 16 times categories. In the 17 - 26 times category, a 

Fig. 8. Landslide area aspect percentage of Huisun Experimental Forest Station.



Ming-Der Yang & Hui-Ping Tsai502

Fig. 9. Frequency of landslide occurrence in Huisun Experimental Forest Station.

(a) (b)

(c) (d)

Fig. 10. Huisun Experimental Forest Station information: (a) DEM, (b) aspect, (c) river buffer, and (d) slope.



Post-Earthquake Spatio-Temporal Landslide Analysis 503

higher percentage of slides were found at 50 - 100 m’s river 
buffer. The inverse relationship indicates a possible impact 
of drainage on the adjacent slopes that is in good agreement 
with a study conducted by Feng and Lin (2003).

3.5 Hot Spot Analysis

In this study, hot spot analysis was performed to iden-
tify patterns of spatial significance based on the cumula-
tive number of landslide occurrence (Fig. 11). In addition, 
hot spots and cold spots with different significance levels 
were identified (Fig. 12). In general, the total area of cold 
spots is larger than the total area of hot spots. The hot spots 
area with 99% confidence interval is 5.5 km2, which is the 
largest area in the hot spots analysis. In addition to the two 
landslide areas of Xinsheng Village and Meitangan River, 
the distribution of the hot spots area with 99% confidence 
interval mainly occurred on the right bank of the middle 
section of Beigang River, Jioushien River, Weimien River, 
and Guantao River. The areas of cold spots with 95 and 99% 
confidence intervals are approximately equal size, which 
are 5.2 and 5 km2, respectively. Larger areas of cold spots 
are mostly distributed near the landslide of Xinsheng Vil-
lage and the downstream of Beigang River.

Overall, the landslides identified in HEFS shows a 
stable trajectory in terms of its sizes and NDVI. Combining 
the results of mean variance analysis, landslide area, and 
NDVI time series (Figs. 4 and 5), landslides in HEFS move 
toward a relatively stable stage. Additionally, the hot spots 
are also coincident with SE-facing slope and locate rela-
tively closer to the nearest river channel. A prior study con-
ducted by Feng and Lin (2003) stated the landslide sizes in 
HEFS positively correlated with the distance to road and to 
river and even the closer the bigger. However, Feng and Lin 
(2003) also concluded aspect being not an important factor 
to landslides that is disapproved by the analysis in the pres-
ent study. Compared with their study time period of 1987 to 
2001 being mostly before the Chi-Chi earthquake and only 
two aerial photos being used, the present study covers a lon-
ger time span from 1999 to 2016 and 26 satellite images are 
used to provide a more comprehensive evaluation of land-
slide after the Chi-Chi earthquake in HEFS.

Moreover, topography is another important factor of 
landslides. According to a study conducted by Weissel and 
Stark (2001), seismically-triggered slope failures are found 
to be concentrated at and near ridge crest, however, heavy 
rains-caused slope failure mainly occur in saturated, collu-
vial hollows further down slope. In the present study, the 
relationship between topography and landslide can be il-
lustrated by the largest landslide-Meiyuan Shan landslide, 
which is associated with Typhoon Sinlaku on 14 - 15 Sep-
tember 2008, occurred within Meitangan River basin in 
Beigang River system.

Furthermore, a prior study (Lin et al. 2006) investigated 

Frequency 0 - 9 10 - 16 17 - 26

Slope (degree) km2 (%)

0 - 5 0.79 (0.4) 0.01 (0.6) 0.00 (0.0)

5 - 15 5.57 (2.9) 0.09 (4.0) 0.00 (0.0)

15 - 30 18.08 (9.4) 0.17 (7.3) 0.01 (1.2)

30 - 40 18.83 (9.8) 0.24 (10.4) 0.02 (2.9)

40 - 55 39.36 (20.4) 0.40 (17.7) 0.08 (10.9)

> 55 110.08 (57.1) 1.37 (60.0) 0.64 (85.0)

Total area 192.71 2.28 0.75

Table 2. Slope variations of landslide frequency categories.

Frequency 0 - 9 10 - 16 17 - 26

Aspect km2 (%)

FLAT 0.00 (0.0) 0.00 (0.0) 0.00 (0.0)

N 22.44 (11.6) 0.02 (1.1) 0.00 (0.1)

NE 17.93 (9.3) 0.12 (5.0) 0.01 (1.6)

E 22.52 (11.7) 0.38 (16.6) 0.08 (10.7)

SE 26.97 (14.0) 0.72 (31.6) 0.27 (35.8)

S 24.79 (12.9) 0.69 (30.1) 0.34 (45.0)

SW 23.03 (12.0) 0.21 (9.0) 0.04 (5.4)

W 27.37 (14.2) 0.11 (5.0) 0.01 (1.4)

NW 27.66 (14.4) 0.03 (1.5) 0.00 (0.0)

Table 3. Aspect variations of landslide frequency categories.

Frequency 0 - 9 10 - 16 17 - 26

River buffer (m) km2 (%)

0 - 50 12.78 (6.6) 0.28 (12.7) 0.05 (6.4)

50 - 100 11.79 (6.1) 0.23 (10.4) 0.09 (12.0)

100 - 150 11.36 (5.9) 0.19 (8.6) 0.08 (10.9)

150 - 200 10.97 (5.7) 0.16 (7.0) 0.08 (10.1)

> 200 145.75 (75.7) 1.36 (61.3) 0.46 (60.5)

Table 4. River buffer variations of landslide frequency categories.
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the impact of the Chi-Chi earthquake on subsequent rain-
fall-induced landslides in central Taiwan, and found that the 
rainfall-induced landslides occurred mainly in places with 
slopes between 40 and 50 degrees by using eight satellite 
images covering the study period from 1996 to 2001. The 
present study analyses 26 satellite images covering approxi-
mately two decades mostly after the Chi-Chi earthquake to 
provide updated and extensive analyses. The present study 
divides the pattern of slope variations into three time periods 
and discovers a noticeable change during a decade following 
the Chi-Chi earthquake and those years after 2008. During 
the decade following the earthquake, landslide often oc-
curred on 30 - 40 degrees and had sizes larger than before the 
earthquake. Afterwards, in the time period of 2009 - 2016 
the concentration slope range shifts to 20 - 30 degrees with 
smaller landslide sizes which indicates a lack of large-scale 
landslides and an overall stable status of HEFS.

4. CONCLUSION

Multi-date and multi-sensor satellite images coupled 
with a landslide identification process were used in this 
study to investigate the landslide pattern in spatial and tem-
poral perspectives. The results reveal that total landslide ar-
eas decreased and NDVI value increased from 1999 to 2016 
by analyzing 26 SPOT images. In addition, several charac-
teristics of landslides, such as topography (slope, elevation, 
and aspect) and distance to the river, were also discerned.

Overall, the long-term landslide trends of HEFS is ap-
proaching a stable stage in terms of the slightly increasing 
mean NDVI value with decreasing NDVI variance. Based 
on the linear regression and Mean-Variance analyses, the 
total landslide areas were temporally fluctuated after the 
Chi-Chi earthquake and remained quite stable from 2008 
to 2016. The slope characteristic of landslides changed to a  

Fig. 11. Landslide hotspot analysis of Huisun Experimental Forest Station.

Fig. 12. Area of landslide hotspot analysis.
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concentration in 30 - 40 degree after the Chi-Chi earthquake. 
After 2008, the slope characteristic of landslides changed 
again to a concentration in 20 - 30 degree. Additionally, 
the size of the landslide is larger during a decade after the 
earthquake than the later years, 2008 to 2016. Spatially, two 
landslide areas of Xinsheng Village and Meitangan River 
were identified as hot spots with 99% confidence interval. 
In HEFS, more than 50% of landslides were observed in 
places of S-facing and SE-facing slopes, and the majority of 
landslides occurred at 500 - 1500 m elevation. Based on the 
frequency of landslide occurrence, the total landslide area 
is the largest in the 0 - 9 times category. In the 10 - 16 and 
17 - 26 times categories, high percentages of landslides were 
found in SE-facing and S-facing slopes. An inverse relation-
ship was found between the landslide areas and the distance 
to the river channel in the 0 - 9 and 10 - 16 times categories. 
The hot spot analysis identified areas with frequent landslide 
occurrence that provides a simple priority list for effective 
mitigation. Additionally, the hot spot analysis results are 
useful for the development of location-specific and helpful 
for intervention measure and assessing landscape dynamics.

Findings from the present study provide valuable 
knowledge of landslide patterns in HEFS and thus can serve 
as the reference for spatial planning and predicting unstable 
areas prone to landslides. In addition, this study can serve 
as a fundamental basis for understanding and even enhance 
modeling geo-processes related to landslide dynamics. 
Moreover, this study evaluates the present risk which is cru-
cial to establishing early-warning systems and developing 
possible prediction models. Future climate change is likely 
to occur at an unpredictable speed and magnitude, which 
may lead to more extreme landslide triggering events. 
Therefore, a strong and sound historical spatio-temporal 
landslide analysis is urgently needed as the foundation of 
management and the greatest support for decision-making, 
especially in the context of global change. The significance 
of forming a reliable semi-auto or automated landslide 
identification and monitoring method becomes evident. 
Furthermore, establishing proper short-term and long-term 
landslides managing strategies, such as an early-warning 
system, is currently a feasible and beneficial approach to 
reduce risks and vulnerability under geomorphology and 
climatic influence for HEFS and places beyond.
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