
doi: 10.3319/TAO.2021.06.14.01

* Corresponding author 
E-mail: anthes@ucar.edu

COSMIC-2 radio occultation temperature, specific humidity, and precipitable 
water in Hurricane Dorian (2019)

Richard Anthes *, Jeremiah Sjoberg, Therese Rieckh, Tae-Kwon Wee, and Zhen Zeng

COSMIC Program, University Corporation for Atmospheric Research, Boulder, Colorado, United States

ABSTRACT

We consider the accuracy and precision of COSMIC-2 (C2) radio occultation 
retrievals of temperature, specific humidity, and precipitable water (PW) in Hur-
ricane Dorian (2019) and the larger-scale tropical and subtropical environment by 
comparing them with ERA5, MERRA-2, and JRA-55 reanalyses. Because of its high 
signal-to-noise ratio, at least 70% of the C2 soundings penetrate to within 1 km of the 
surface over the oceans, even in the extremely moist hurricane atmosphere. We com-
pute biases and standard deviations of differences of C2 temperature and specific hu-
midity with respect to ERA5 and estimate the standard deviation of random errors of 
C2 using the three-cornered hat (3CH) method. The C2 profiles of mean temperature 
and specific humidity agree closely with ERA5 above 2 km, with a temperature bias 
of less than 0.3 K and a specific humidity bias of less than 0.3 g kg-1 (15%). Below 
2 km, C2 shows a dry bias of up to 2 g kg-1 relative to ERA5, which is likely related 
to factors other than super-refraction. This dry bias below 2 km, which is present 
in more than 90% of the profiles, causes a small (1 - 2%) dry bias in PW. The 3CH 
estimates of C2 temperature error standard deviations are less than 0.5 K throughout 
most of the troposphere. The 3CH error estimates of C2 specific humidity are less 
than 1.0 g kg-1 (25%). These estimates are similar to those of ERA5 and smaller than 
those of MERRA-2 and JRA-55. The 3CH estimates of C2 PW random errors are 
the smallest of all the data sets. Overall, we conclude that C2 provides accurate and 
precise vertical profiles of temperature, water vapor, and precipitable water in the 
hurricane and its environment.
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1. INTRODUCTION

The atmospheric structure of tropical cyclones (TCs) 
and their environment presents observational challenges. 
Satellites, aircraft, radars, radiosondes, and dropsondes 
provide valuable observations of TCs for research and op-
erational forecasts, but all have their limitations. There are 
few radiosonde observations over the oceans, infrared and 
microwave satellite observations are limited by clouds and 
precipitation, and aircraft and dropsonde observations are 
expensive and difficult to obtain when TCs are far from 
land. Radio occultation (RO) observations, which have high 
vertical resolution and are nearly unaffected by clouds and 
precipitation, provide important information on tempera-
ture and water vapor in TCs. Numerous studies have shown 

the positive impact of RO observations on TC track fore-
casts and intensity (Huang et al. 2005, 2010; Chen et al. 
2009, 2015, 2020; Kueh et al. 2009; Liu et al. 2012). RO 
observations in the outer environment of TCs have a sig-
nificant impact on their track forecasts by altering the mod-
eled steering flow, while RO observations within 500 km  
of the TC center improve the intensity and cyclogenesis 
forecasts by enhancing the low- and mid-tropospheric wa-
ter vapor analysis. Anthes et al. (2003) compared a single 
CHAMP (Challenging Minisatellite Payload) RO sounding 
to two nearby radiosondes in Typhoon Toraji (2001) and 
found close agreement. Chou et al. (2009) found large dif-
ferences between three dropsondes and COSMIC (Constel-
lation Observing System for Meteorology, Ionosphere, and 
Climate) RO specific humidity profiles in the vicinity of Ty-
phoon Cimaron (2006), which they attributed to disparities 
in horizontal scale of the RO and dropsonde observations 
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(representativeness differences) in a highly variable specific 
humidity environment. Vergados et al. (2013) composited 
RO data within 3 h and 600 km of 42 TC centers to compare 
azimuthally averaged vertical cross sections of refractiv-
ity and relative humidity from RO and ECMWF analyses 
through TCs. Biondi et al. (2011, 2013, 2015) used the high-
vertical-resolution property of RO data to study the cloud-
top heights and thermal structure of the upper troposphere/
lower stratosphere of TC.

COSMIC-2 (C2), launched 25 June 2019 (Anthes and 
Schreiner 2019; Ho et al. 2020b; Schreiner et al. 2020), pro-
vides 4000 - 5000 RO soundings on average per day in the 
tropics and subtropics (from 45°S to 45°N). These obser-
vations have signal-to-noise ratios (SNR) higher than any 
other RO missions, allowing for deeper penetration into the 
moist lower troposphere. Thus C2 observations offer an ex-
cellent opportunity to observe the vertical structure of TCs 
and their environment with unprecedented horizontal RO 
observation density.

This paper presents a case study that assesses the accu-
racy of C2 one-dimensional variational (1D-Var) tempera-
ture and specific humidity profiles, and precipitable water 
in Hurricane Dorian (2019). We compare C2 observations 
with three model data sets: the European Centre for Medium 
Range Weather Forecasts (ECMWF) Reanalysis 5th Gener-
ation (ERA5), Japan Meteorological Agency 55-Year Re-
analysis (JRA-55), and the Modern-Era Retrospective anal-
ysis for Research and Applications Version 2 (MERRA-2). 
We compute biases and standard deviations of the differ-
ences of each data set with respect to ERA5 and estimates of 
the random error standard deviations of these data sets using 
the three-cornered hat (3CH) method. To our knowledge, 
this is the first study of C2 errors in temperature and specific 
humidity using the new 1D-Var method (described in sec-
tion 4.2). We could not compare these estimates to similar 
estimates of the COSMIC mission because COSMIC was 
near the end of its lifetime during this period, and very few 
observations were available.

2. HURRICANE DORIAN SUMMARY

Avila et al. (2020) provide an extensive summary 
of Hurricane Dorian. Dorian formed on 24 August 2019, 
from a tropical wave in the central Atlantic and gradually 
strengthened as it moved toward the Lesser Antilles, be-
coming a hurricane on 28 August (Fig. 1). On 1 September, 
Dorian reached Category 5 intensity, with maximum sus-
tained winds of 185 mph (82.7 ms-1) and a minimum central 
pressure of 910 hPa while making landfall in Elbow Cay, 
Bahamas. The ridge of high pressure steering Dorian west-
ward collapsed on 2 September, causing Dorian to stall just 
north of Grand Bahama for about a day. It is the strongest 
known tropical system to impact the Bahamas (Avila et al. 
2020). On the morning of 3 September, Dorian began to 

move slowly towards the north-northwest. Dorian regained 
Category 3 intensity by midnight on 5 September. In the 
early hours of 6 September, Dorian weakened to Category 
1 intensity as it picked up speed and turned northeast along 
the North Carolina coast, eventually making landfall at 
Cape Hatteras. Dorian’s track from 24 August to 7 Septem-
ber is depicted in Fig. 1.

Figure 2 shows a visible satellite photograph of Hur-
ricane Dorian and a radar image of Dorian on 1 September 
as it moved slowly across the Bahamas. These images indi-
cate the extreme cloud and precipitation structure associated 
with an intense hurricane, and the challenging environment 
for 3-dimensional remote sensing.

3. BRIEF DESCRIPTION OF DATA SETS

Radio occultation (RO) is an active limb-sounding 
technique that yields high vertical resolution atmospheric 
profiles and has been shown to have many research and op-
erational uses (Anthes 2011; Bonafoni et al. 2019; Ho et al. 
2020a). The RO concept is described by Melbourne et al. 
(1994) and Kursinski et al. (1997). The vertical resolution 
of RO profiles is 100 m to 1 km depending on the altitude, 
and the horizontal footprint is 100 - 300 km (Anthes 2011; 
Zeng et al. 2019). We use C2 observations of temperature 
and specific humidity from the COSMIC Data Analysis and 
Archival Center (CDAAC) wetPf2, which were obtained 
using a new 1D-Var procedure described in section 4.2. 
Precipitable water is computed from the specific humidity. 
The C2 data available during the time period used in this 
study were not assimilated into any of the three models, and 
hence its errors are considered independent from the errors 
of the reanalyses.

ERA5 is a state-of-the-art reanalysis and is improved 
over the widely used ERA-Interim reanalysis (Hersbach 
et al. 2018). ERA5 has a nominal horizontal resolution of  
31 km and has 137 levels from the surface to 80 km. ERA5 
had among the smallest 3CH error variance estimates of all 
reanalyses studied by Rieckh et al. (2021). We use ERA5 
as a reference to estimate biases in this study because of its 
quality as well as its high horizontal and vertical resolutions.

JRA-55 is based on the operational system of the Japan 
Meteorological Agency as of December 2009, and uses past 
observations from 1958 onwards (Kobayashi et al. 2015). 
The horizontal resolution of JRA-55 is 55 km and the 60 
model levels extend upward to approximately 60 km.

MERRA-2 is produced by the National Aeronautics 
and Space Administration (NASA) Global Modeling and 
Assimilation Office (Gelaro et al. 2017). The horizontal 
resolution of MERRA-2 is approximately 55 km in the lati-
tudinal direction. The MERRA-2 model has 72 model levels 
extending up to 80 km.

We compare the four data sets in two fixed domains 
over the time period 30 August to 5 September 2019 (day of 
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Fig. 1. Best track of Hurricane Dorian (2019) from 24 August to 7 September 2019 (Avila et al. 2020).

Fig. 2. Top: Visible satellite image of Hurricane Dorian nearly stationary over the Bahamas Islands at 13:40 UTC 1 September 2019. Shown are 
parallels of latitude 21 and 28°N and meridians 70, 77, and 84°W (source: NOAA). Bottom: Radar reflectivity of Hurricane Dorian at 15:45 UTC 
1 September 2019. Radar data courtesy of the Bahamas Department of Meteorology and image courtesy of Brian McNoldy, RSMAS, U. Miami.
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year 242 - 248): (1) 15 - 35°N, 86 - 70°W (Dorian window) 
and (2) the global latitude band 15 - 35°N. Figure 3 shows 
the two fixed domains and the locations of the occultation 
points of the C2 soundings provided by CDAAC, with the 
lowest level above mean sea level (MSL) reached by the 
soundings indicated by color. The occultation point is the 
point on Earth’s surface to which the retrieved refractivity 
profile is assigned. It is estimated under the tangent point 
of the ray connecting the GNSS and LEO satellites for a 
certain height of the ray asymptote, defined here based on 
the L1 excess phase of 500 m, which, on average, corre-
sponds to 3 - 4 km height (Kuo et al. 2004). There were 
229 C2 soundings in the Dorian window with 70% reaching  
1 km or lower above MSL, and 3704 soundings in the global 
latitude band with 82% reaching 1 km or lower above MSL. 
We removed outliers from all the data sets by discarding any 
data that fall outside of either the 0.05 or 99.95 percentiles at 
each level. This was applied to the global latitude band only 
and for the data levels whose sample sizes are larger than 
1000. The refractivity values of the reanalysis data sets were 
computed using the Smith and Weintraub (1953) equation 
from the model’s temperature, water vapor pressure (com-
puted from specific humidity), and pressure. When any of 
the co-located reanalysis soundings suggest the occurrence 
of super-refraction (SR), we excluded from the statistics 
the portions of all soundings below the top of the highest 

SR layer because of the known issues caused by SR in RO 
soundings (Rocken et al. 1997; Ao et al. 2003; Sokolovskiy 
2003). SR was considered to occur when the vertical gradi-
ent of refractivity was less than -157 N-units km-1. However, 
because the reanalyses may not detect all cases of SR, it is 
likely that at least some of the C2 profiles were affected by 
SR and biased negatively. 

We also show as examples 18 C2 specific humid-
ity soundings that occurred within 350 km of the center of 
Dorian (the approximate radius of the cloud cover as shown 
in Fig. 2) over the seven days (hurricane domain soundings 
hereafter). Of these, 16 (89%) reached 1 km above MSL or 
lower and 13 (72%) reached 200 m.

4. METHODOLOGY
4.1 3CH Summary

The 3CH method for estimating the error variances of 
three or more data sets simultaneously is a useful tool for 
intercomparing the error (uncertainty) statistics of multiple 
instrument, observational, and model data sets (Anthes and 
Rieckh 2018). Sjoberg et al. (2021) examined the sensitiv-
ity of the 3CH method to factors that limit its accuracy: er-
ror correlations, sample size, different magnitudes of ran-
dom errors, and different vertical resolutions of the data 
sets. Rieckh et al. (2021) used the 3CH method to estimate 

Fig. 3. (a) COSMIC-2 occultations in zonal latitude band from 15 to 35°N during the period 30 August to 5 September 2019. The height of the lowest 
level of the C2 penetration is shown by the color coding on the right. Terrain height is indicated by the grey shading. (b) As in Fig. 3a except for the 
Dorian window. The stars indicate points lying within the hurricane domain (≤ 350 km from the hurricane center) at some time during the period.

(a)

(b)
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the errors of COSMIC and C2, radiosondes, and nine re-
analyses, including ERA5, MERRA-2, and JRA-55. They 
showed how the 3CH method discriminates among the data 
sets, how error correlations and representativeness differ-
ences affect the error estimates, and how the errors vary 
with year, latitude, and atmospheric conditions.

The 3CH equation for the error variance of data set X 
given three data sets (X, Y, Z) is presented in Eq. (1):
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where E denotes the expected value or sample mean. The 
random errors Xf  are defined with respect to the unknown 
“Truth” of the data sets and the bias terms bXY are the mean 
biases between two data sets X and Y. The error standard 
deviations are the square root of the error variances (see 
Sjoberg et al. 2021 for details). All terms can be computed 
from the co-located data except the error covariance terms, 
which are unknown and are neglected.

If there are error correlations among any of the data 
sets, neglect of the error covariance terms will cause inac-
curate results of all 3CH estimates. Error correlations may 
arise in four ways (Rieckh et al. 2021):
(1)  actual error correlations (for example, the correlation of 

model errors with the errors of observations that are as-
similated in the models),

(2)  representativeness errors in which data sets have differ-
ent horizontal or vertical footprints and hence have cor-
related representativeness differences,

(3)  similar errors introduced by the co-location process, and
(4)  correlations arising by chance in small sample sizes.

The 3CH method requires that all data sets be co-lo-
cated to the same time and location. We first interpolate all 
gridded model data sets to the time and horizontal location 
of each C2 observation. The horizontal locations of RO ob-
servations vary with altitude, as the RO tangent point ranges 
from 80 to 250 km (Von Engeln 2006; Healy et al. 2007; 
Burrows 2015). This drift is considered in our horizontal 
interpolation scheme. The model data sets and the RO data 
profiles are interpolated to a common computational height 
grid of constant interval 100 m. The computational proce-
dure is described in Rieckh et al. (2021), Appendix A.

4.2 1D-Var Retrieval of Temperature and Specific 
Humidity

In this study we obtain C2 soundings of temperature, 
moisture, and pressure using the most recent version (Wee 
2018) of the CDAAC one-dimensional variational inversion 

algorithm (1D-Var). This version is an improved version of 
the original CDAAC algorithm that has been in use for many 
years. The 1D-Var produces physically-constrained sound-
ings of temperature and specific humidity given GNSS RO 
observed profiles of bending angles. The background, or a 
priori data set, is the National Centers for Environmental 
Prediction (NCEP) Global Forecast System (GFS) short-
term forecast interpolated to the time and location of the 
RO profile (CDAAC avnPrf). The new 1D-Var no longer 
requires an exact fit to the observations and provides im-
proved temperature and specific humidity profiles (Rieckh 
et al. 2021). The details of the 1D-Var algorithm are pre-
sented in the Appendix.

4.3 Precipitable Water

Precipitable water (PW in mm) is defined by

qdzPW t= #  (2)

where t  is the density of moist air (kg m-3) and q is the spe-
cific humidity (kg kg-1) and is related to water vapor pres-
sure e (hPa) by

. ( . )q e p e0 622 0 378= -  (3)

where p is pressure (hPa). The integration in Eq. (2) is over 
height z from the surface to a high level at which the spe-
cific humidity becomes negligibly small (here taken to be 
15 km).

Most RO observations do not reach the surface, instead 
terminating at some level Zb, which for C2 is usually 1 km or 
lower over the oceans (cf. Fig. 3). Therefore, the RO specif-
ic humidity in the layer from Zb to the surface must be esti-
mated in some way to obtain the PW. Previous studies have 
used different ways of filling in this void (Teng et al. 2013; 
Fonseca et al. 2018). Here we use the co-located q profile 
from the GFS short-term forecast (CDAAC avnPrf) at the 
lowest reported level and linearly interpolate between this 
value and the C2 value at Zb to estimate the missing RO data. 
The median height of the lowest GFS level is 102 m in the 
hurricane domain, 115 m in the Dorian window, and 118 m  
in the global latitude band. The specific humidity below the 
lowest GFS level is assumed to be constant at the value at 
the lowest level. Since all of the three model data sets are in-
terpolated to Zb for the 3CH calculations, we use the model 
value of q at Zb and the same GFS data to fill in the model 
data set values. For the PW estimates, we only include C2 
profiles that reach 1 km or lower above sea level (Fig. 3); 
thus the number of profiles in the PW calculations is smaller 
than the number used in computing the 3CH estimates (see 
Table 1) and emphasizes profiles over the oceans. Because 
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of uncertainties introduced by the use of the GFS data below 
1 km, we also calculated the PW values from 1 to 15 km.

5. RESULTS

In this section we estimate the biases and standard 
deviations of the differences of all data sets from ERA5 
(analogous to O – B statistics where O denotes observations 
and B is a background or reference data set). We also esti-
mate the error standard deviations of temperature, specific 
humidity, and precipitable water of all four data sets using 
the 3CH method. The specific humidities of all the data sets 
are normalized by the sample mean value of ERA5.

5.1 Mean Specific Humidity and Precipitable Water

Figure 4 shows the 7-day mean vertical profile of the 
C2 specific humidity in the hurricane soundings, in the 
Dorian window, and over the global latitude band. The cor-
responding mean ERA5 profiles are also shown. The wa-
ter vapor within 350 km of the storm center is significantly 
higher above 2 km than in the Dorian window and global 
latitude band, reflecting the deep moist convective atmo-
sphere of the hurricane. The mean C2 and ERA5 profiles 
agree very closely, except below 2 km where C2 shows a 
dry bias in all three domains.

The mean C2 and ERA5 PW for the three windows are 
also given in the legend of Fig. 4. The C2 hurricane mean 
of 54.70 mm is considerably larger than the mean PW in the 
larger domains, but slightly smaller than the ERA5 hurri-
cane mean of 56.26 mm, reflecting the dry bias in C2 below 
2 km. The difference in PW between C2 and ERA5 is larg-
est in the hurricane domain (1.56 mm), likely because the 
C2 profiles penetrate closer to the surface in this domain 
compared to the other two domains. Thus the GFS values 
of specific humidity used to fill the gaps between the lowest 
penetration level and the surface have a greater effect on the 
PW values of the other domains, reducing the effect of the 
dry C2 bias.

The departures from the Dorian window mean of the 
18 C2 hurricane soundings are shown in the right panel of 
Fig. 4, which illustrates the variability, high vertical resolv-
ing power, and penetration depths of these profiles that are 
near the center of Dorian.

5.2 Differences of C2, MERRA-2, and JRA-55 from 
ERA5

Figure 5 shows the biases and standard deviations of 
the differences of the C2, MERRA-2, and JRA-55 tempera-
tures to the reference ERA5 for the Dorian window (Fig. 5, 
left) and the global latitude band (Fig. 5, right). The results 
are similar in the two regions, indicating that the biases and 
standard deviations of differences of all data sets compared 

to ERA5 do not vary much in the hurricane environment 
compared to the non-hurricane environment. The bias of C2 
temperature oscillates around 0 and is less than 0.3 K in 
magnitude between 0 and 15 km. The standard deviation of 
the C2 temperature differences is less than 1.0 K.

Figure 6 shows the biases and standard deviations of 
the refractivity and specific humidity of the three data sets 
with respect to ERA5. The refractivity biases and standard 
deviations of the differences are highly correlated with 
those of specific humidity below 5 km, indicating the domi-
nance of water vapor variations and errors in the refractiv-
ity statistics below 5 km. The C2 specific humidity bias in 
both domains is negative below 2 km, reaching a maximum 
magnitude of about 12% and 2.2 g kg-1 (Fig. 6, middle and 
bottom row). This is related to a negative bias in refractivity 
reaching -4.2% (Fig. 6, top row) in this layer. We found that 
most (91.5%) of the C2 soundings show some negative bias 
at 500 m. Percentages of C2 soundings with biases equal 
to or exceeding the following bias thresholds were 72.9% 
(-2% bias), 44.0% (-4% bias), 19.0% (-6% bias), 6.8% (-8% 
bias), and 2.2% (-10% bias).

Schreiner et al. (2020) also found negative refractiv-
ity biases for C2, and Ho et al. (2020b) and Johnston et 
al. (2021) found dry biases in C2 specific humidity below 
2 km. These studies all included profiles with SR, which 
is known to be a significant cause of negative refractivity 
biases (Ao et al. 2003; Sokolovskiy 2003; Feng et al. 2020) 
in the tropics and subtropics.

The widespread negative bias in this study is not main-
ly related to SR, however, because data were not included in 
these statistics if SR was detected in soundings of any of the 
data sets. However, as noted above, the reanalyses may not 
identify all cases of SR in the real atmosphere, thus some 
of the C2 profiles may contain the effects of SR. Rieckh 
et al. (2021) also found a similar dry bias in C2 compared 
to ERA5 below 2 km even though they used the same SR 
detection and removal process. It is possible that the ERA5 
data are biased moist compared to Truth in these compari-
sons, because the GFS profiles also have a similar dry bias 
compared to ERA5 below 2 km (not shown). However, the 
MERRA-2 and JRA-55 profiles of specific humidity show 
small biases of both signs in the lowest 2 km compared to 
ERA5 (Fig. 6). Furthermore, several of the hurricane C2 
profiles that were close in time and space to dropsondes 
from NOAA reconnaissance aircraft were also biased dry 
compared to the dropsondes (not shown). Thus we conclude 
that C2 refractivity and 1D-Var retrievals of specific humid-
ity likely have a negative bias below 2 km, caused by factors 
other than or in addition to SR. Feng et al. (2020, section 4b) 
and Schreiner et al. (2020) summarize possible other causes 
for these negative biases. These are associated with low 
SNR values in the complex moist lower troposphere and/
or the propagation of radio waves in an atmosphere with 
random refractivity perturbations.
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Data Set Dorian Window PW (mm) Dorian Window PW Error (mm) Zonal PW (mm) Zonal PW Error (mm)

COSMIC-2 48.29 1.580 (0.193) 44.48 1.619 (0.067)

ERA5 48.89 2.028 (0.148) 45.47 1.842 (0.059)

MERRA-2 50.38 2.814 (0.106) 46.47 2.492 (0.043)

JRA-55 47.11 2.351 (0.127) 44.59 3.558 (0.030)

Table 1. Mean PW (mm) and mean error standard deviation estimate (mm) for four data sets. Values in parentheses give 
the standard deviation of the error estimates. The sample sizes for Dorian window and global latitude bands are 166 and 
2197, respectively.

Fig. 4. Left: Mean 7-day specific humidity profile of C2 (red) in the 15 - 35°N latitude band (dotted), Dorian window (dash-dot), and hurricane 
soundings (dashed). The corresponding profiles of the mean ERA5 q are shown as blue profiles. Mean PW values (mm) for each domain are shown 
in the figure legend. Right: Departures from the Dorian window mean q for the 18 individual C2 hurricane soundings. The mean of these departures 
is indicated by the dashed red profile.

Fig. 5. Mean (solid) and standard deviation (dashed) of temperature differences from ERA5 of C2 (red), MERRA-2 (green), and JRA-55 (orange) 
for the Dorian window (left) and 15 - 35°N latitude band (right). The sample size at each level, which is determined by C2, is shown by the black 
dotted line on the right of each panel.
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Fig. 6. Mean (solid) and standard deviation (dashed) of differences from ERA5 of C2 (red), MERRA-2 (green), and JRA-55 (orange) for the Dorian 
window (left) and 15 - 35°N latitude band (right). Top row: normalized refractivity (%); middle row: normalized specific humidity (%); bottom row: 
specific humidity (g kg-1). In the top two rows the refractivity and specific humidity are normalized by the corresponding value of ERA5.
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A small positive bias in C2 specific humidity occurs 
throughout most of the troposphere above 2 km. This small 
bias, and the larger MERRA-2 biases in the upper tropo-
sphere, agree with the findings of Johnston et al. (2021). 
Except for the negative bias below 2 km, the C2 biases are 
smaller than those of MERRA-2 and JRA-55. The standard 
deviation of the differences of C2 compared to ERA5 are 
also slightly smaller than those of MERRA-2 and JRA-55, 
with a maximum of approximately 1.2 g kg-1 near 1 - 2 km 
and 35% near 6 - 10 km in the global latitude band.

5.3 3CH Error Estimates for Temperature and Specific 
Humidity

Figure 7 shows the 3CH estimates of the error standard 
deviations of the temperature (Fig. 7, top row), specific hu-
midity (Fig. 7, middle row), and normalized specific humid-
ity (Fig. 7, bottom row) for the four data sets. The left col-
umn corresponds to the Dorian window and the right column 
to the global 15 - 35°N band. For each of the four data sets, 
there are three unique triplets and therefore three different es-
timates of errors. In Fig. 7 we depict the means of these three 
estimates as solid curves. The +/- 1 standard deviation of the 
three estimates for each data set are shown by the shading. 
As discussed by Rieckh et al. (2021), the standard deviation 
of the estimates is a measure of their uncertainty; in these 
results the uncertainty is much less than the estimates.

Overall, the error estimate profiles in the Dorian win-
dow exhibit greater noise compared to those of the latitude 
band, which results from the much smaller sample size in 
the Dorian window. However, the general characteristics of 
the error estimate profiles do not vary greatly in the two 
windows, indicating that a sample size as small as 230 can 
give meaningful results.

The profiles of temperature error estimates (Fig. 7, 
top row) indicate that the ERA5 errors are smallest below 
15 km, followed by JRA-55, C2, and MERRA-2. All er-
ror standard deviations are less than 0.75 K. The specific 
humidity error estimate profiles (middle and bottom rows) 
indicate that the C2 error estimates are less than 1 g kg-1 at 
all levels and are comparable to the ERA5 errors, which are 
slightly smaller than the JRA-55 and MERRA-2 errors.

The overall similarity of the C2 temperature and spe-
cific humidity error profiles in the two windows also indi-
cates that the magnitude of the C2 random errors does not 
vary greatly between the hurricane environment and the rest 
of the tropics and subtropics, illustrating the important char-
acteristic of RO observations being relatively unaffected by 
clouds and precipitation, even in the environment of an in-
tense hurricane.

5.4 Precipitable Water Results

The mean PW values for the four data sets and two 

domains are shown in Table 1. The PW for all data sets is 
higher in the Dorian window. The C2 PW is 1 - 2% lower 
than the ERA5 PW because of the negative bias in C2 spe-
cific humidity below 2 km. The PW for the 18 C2 hurricane 
soundings is 54.70 mm (see Fig. 4). All of these values are 
smaller than the maximum PW values reaching 80 mm that 
have been observed very close to the center of hurricanes 
(Zhao et al. 2019). The maximum PW values for the hurri-
cane soundings for the four data sets occurred on 1 Septem-
ber 2019, 54.5 km southeast of the Dorian center, and were: 
65.32 mm (C2), 70.42 mm (ERA5), 76.76 mm (MERRA-2), 
and 61.31 mm (JRA-55).

The mean 3CH estimates of the errors in PW values are 
shown in the third and fifth columns, with standard devia-
tions of the three estimates shown in parentheses. Because 
of the small sample size, 3CH estimates are not shown for 
the hurricane soundings. The errors in the Dorian window 
are all between 1.6 and 2.8 mm. The range is somewhat 
greater for the global latitude band, with C2 showing the 
smallest error of near 1.6 mm and JRA-55 showing the larg-
est error of 3.6 mm. The standard deviation of the 3CH es-
timates shows that the uncertainty is small compared to the 
estimated errors.

Because of the additional uncertainty in the PW esti-
mates introduced by the filling of missing data below the 
lowest level of C2, we also compute the PW from 1 to  
15 km, which contributes 65% of the total PW and does 
not require any filling (Table 2). As expected, the total PW 
is considerably reduced when the moist lowest km of the 
atmosphere is eliminated. The 3CH estimates of errors are 
also lower. Without the large negative biases in C2 specific 
humidity below 1 km, the C2 estimates of PW now agree 
closely with those of ERA5. The C2 estimated random er-
rors are the lowest when the filling of the missing data is not 
introducing additional uncertainty.

6. CONCLUSIONS

We compared COSMIC-2 (C2) radio occultation tem-
perature, specific humidity, and precipitable water with 
three model data sets (ERA5, MERRA-2, and JRA-55 re-
analyses) in the environment of Hurricane Dorian (Septem-
ber 2019) about two months after the launch of C2. The C2 
temperature and specific humidity data were obtained us-
ing the new COSMIC Data Analysis and Archive Center 
(CDAAC) 1D-Var retrieval method with the GFS short-
range forecast as the background.

We computed biases and standard deviations of the 
differences of all the data sets with respect to ERA5 as a 
reference. We also estimated the random error standard de-
viations of all four data sets using the three-cornered hat 
(3CH) method. We compared the statistics in two regions: 
the near-hurricane environment (Dorian window) and the 
15 - 35°N global latitude band. The sample size varied from 
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Fig. 7. Mean (solid) and standard deviation (shading) of the 3CH estimates of error standard deviations of temperature (K, top), specific humidity 
(g kg-1, middle), and normalized specific humidity (%, bottom) for C2 (red), ERA5 (blue), MERRA-2 (green), and JRA-55 (orange). Left column is 
for the Dorian window; right column is for the 15 - 35°N latitude band. The sample size is indicated by the dotted profile on the right of each panel.
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229 in the hurricane window to 3704 in the global band. 
Despite this large difference in sample size and the extreme 
moist environment of the hurricane, the error statistics were 
similar in both regions, confirming that the C2 RO profiles 
are not significantly degraded by clouds and precipitation in 
the hurricane.

At least 70% of all C2 profiles reached at least 1 km 
above MSL in both regions. The biases with respect to 
ERA5 and the estimated error statistics of the C2 observa-
tions compared favorably with those of the other data sets, 
with the exception of a negative bias in C2 specific humid-
ity below 2 km. This bias, which occurs in most of the C2 
profiles, is likely associated with factors other than or in 
addition to super-refraction, as we identified levels of super-
refraction in all three reanalyses profiles and excluded the 
data below these levels from our analysis. Random errors in 
C2 temperature and specific humidity were estimated to be 
less than 0.75 K and 1 g kg-1 (30%) respectively at all levels, 
including the hurricane environment.

Precipitable water (PW) estimates in the two regions 
showed higher water vapor content in the Dorian window 
compared to the mean global values between 15 - 35°N. 
For example, the mean C2 PW in the Dorian window was 
48.3 mm compared to 44.5 mm in the global latitude band. 
Within 350 km of the Dorian center, the mean PW of 17 
C2 soundings was 54.7 mm. The 3CH estimates of the er-
ror standard deviations of the C2 PW for the two domains 
were 1.58 mm (3.3%) and 1.62 mm (3.6%) respectively, 
and were the smallest of the four data sets.

These results, although the hurricane sample size is 
small, indicate that the C2 1D-Var retrieves high quality 
temperature and water vapor soundings, even in the extreme 
cloud and precipitation atmosphere of an intense hurricane, 
as well as in the Northern Hemisphere tropics and subtrop-
ics. This is remarkable considering that the error covariance 
matrices used for the 1D-Var are based on climatological 
error statistics (Wee 2018) and are not tailored to such ex-
treme weather conditions. This in turn indicates that the in-
formation content of C2 bending angle observations is rich 
enough to properly constrain the retrievals, overcoming the 
limitation of using the static error covariance matrices.
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APPENDIX. THE 1D-VAR RETRIEVAL OF 
TEMPERATURE AND SPECIFIC HUMIDITY

The CDAAC 1D-Var used in this study (Wee 2018) is 
built upon the incremental formulation (Courtier et al. 1994) 
and makes use of the control-variable transform (Parrish 
and Derber 1992) to provide physically-constrained ther-
modynamic soundings which are of the most likely, subject 
to a given set of RO observations, the background (a priori), 
and their error covariance matrices (ECMs). The desired 
thermodynamic soundings are retrieved at the minimum 
of a quadratic cost function, attained through a Newton-
type iteration for which the gradient of the cost function is 
calculated with the adjoint technique (e.g., Lewis and Der-
ber 1985), which offers an efficient means to evaluate the 
gradient, while the steepest descent of the cost function is 
searched with the aid of a quasi-Newtonian limited-memory 
algorithm for large-scale optimization (Zhu et al. 1997).

The observation type used by the 1D-Var is the atmo-
spheric (ionosphere-corrected) bending angle for which the 
Abel transform of the refractivity is used as the forward 
model. One of the issues with the Abel transform is that the 
model sounding simulates not only the bending angle but 
also its location (impact parameter). The model error pro-
jected onto the impact parameter introduces considerable 
error to the interpreted location of the observation, which 
in turn produces extra – potentially significant – represen-
tativeness error in the lower troposphere (Wee 2018). To 
address this issue, we undertake two separate, sequential 

1D-Var minimizations: (1) The refractivity as a function 
of the impact parameter (the lone state/control variable) 
is variationally determined from observed bending angle 
via the Abel transform, which, upon completion, gives the 
height of the refractivity as per the definition of the refrac-
tional radius. (2) The next step is a regular 1D-Var proce-
dure for which the “optimal” refractivity acquired from the 
prior step as a function of height is used as the observation 
to give soundings of temperature, moisture, and pressure. 
The essence of this two-step approach lies in that the re-
trieval problem is broken down into separate well-defined 
minimization problems in which the observation and the 
solution reside always in the same coordinate, which avoids 
the transform between the height and the refractional radius 
– and the uncertainty associated with it – in the course of 
each minimization. The control variables used in the second 
minimization are a temperature sounding (covering the en-
tire height range), a sounding of the pseudo (in reference to 
the background temperature) relative humidity (< 30 km), 
and the pressure at the lowest height. The state variables are 
constrained in such a way that the virtual temperature and 
pressure are in hydrostatic balance and the moisture remains 
non-negative and sub-saturated.

The background provided for the lower part of the 1D-
Var domain is a short-term NCEP GFS forecast (CDAAC 
avnPrf), interpolated to the location and time of each C2 
sounding. The C2 sounding is extended above the model 
top, mainly for the Abel transform, with a four-dimensional 
(available monthly and at 00, 06, 12, 18 UTC) climatology 
of the ECMWF analysis and with the empirical model of the 
US Naval Research Laboratory, MSIS (Hedin 1991), above 
the ECMWF model top. The 1D-Var makes use of two aux-
iliary data sets, one of which contains the observation ECMs 
diagnosed at every 5° in latitude and for each month of the 
year by applying the Hollingsworth-Lönnberg method (Hol-
lingsworth and Lönnberg 1986) to ~1.5 million nearby pairs 
of COSMIC soundings available for years 2007 through 
2014, and the other of which holds the background ECMs 
estimated through the NMC (National Meteorological Cen-
ter) method (Parrish and Derber 1992), available monthly 
at every 10° in latitude and longitude. The ECMs are taken 
at the location nearest to each individual C2 sounding. The 
background ECM takes into account cross (inter-variable) 
error correlations, while the observation ECM is purely di-
agonal and no attempt is made to adjust the diagonal ele-
ments in magnitude for C2.
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